Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39058380

RESUMEN

Vespula germanica and Vespula vulgaris are two common European wasps that have ecological and economic importance as a result of their artificial introduction into many different countries and environments. Their success has undoubtedly been aided by their capacity for visually guided hunting, foraging, learning and using visual cues in the context of homing and navigation. However, the visual systems of V. germanica and V. vulgaris have not received any deep attention. We used electrophysiology, together with optical and anatomical techniques, to measure the spatial resolution and optical sensitivity of the compound eyes of both species. We found that both wasps have high anatomical spatial resolution with narrow interommatidial angles (Δϕ between 1.0 and 1.5 deg) and a distinct acute zone in the fronto-ventral part of the eye. These narrow interommatidial angles are matched to photoreceptors having narrow angular sensitivities (acute zone acceptance angles Δρ below 1.3 deg), indicating eyes of high spatial resolution that are well suited to their ecological needs. Additionally, we found that both species possess an optical sensitivity that is typical of other day-flying hymenopterans.


Asunto(s)
Ojo Compuesto de los Artrópodos , Avispas , Animales , Avispas/fisiología , Ojo Compuesto de los Artrópodos/fisiología , Ojo Compuesto de los Artrópodos/anatomía & histología , Visión Ocular/fisiología , Femenino , Especificidad de la Especie
2.
Arthropod Struct Dev ; 80: 101361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38795499

RESUMEN

One of the least studied eyes of any beetle taxon are those of the scarabaeoid family Passalidae. Some members of this family of around 600 species worldwide are known to have superposition eyes (Aceraius grandis; A. hikidai) while others have apposition eyes (Cylindrocaulus patalis; Ceracupes yui). In C. yui of nearly 3 cm body length (this paper) the retinal layer is very thin and occupies approximately half of an ommatidium's total length, the latter amounting to 284 and 266 µm in the respective dorsal and ventral eye regions. The two eye regions are almost completely separated by a prominent cuticular canthus, a feature usually associated with the presence of a tracheal tapetum, a clear-zone between dioptric and light-perceiving structures and a regular array of smooth facets. In C. yui the facets are smooth (but not very regular) and a tracheal tapetum and a clear-zone are absent. The rhabdoms, formed by 8-9 retinula cells, are complicated, multilobed structures with widths and lengths of around 15 and 80 µm, respectively. The combination of some superposition and mostly apposition eye features, e.g., extensive corneal exocones, relatively small number of ommatidia, absence of a clear-zone and tracheal bush, suggest an adaptation of this species' eye to the fossorial lifestyle of C. yui, and, thus, a manifestation of the passalid eye's plasticity.


Asunto(s)
Escarabajos , Animales , Escarabajos/ultraestructura , Escarabajos/anatomía & histología , Microscopía Electrónica de Rastreo , Ojo Compuesto de los Artrópodos/ultraestructura , Ojo Compuesto de los Artrópodos/anatomía & histología , Microscopía Electrónica de Transmisión , Femenino , Masculino , Ojo/ultraestructura , Ojo/anatomía & histología
3.
Evol Dev ; 26(5): e12479, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733133

RESUMEN

Understanding the origin of novel morphological traits is a long-standing objective in evolutionary developmental biology. We explored the developmental genetic mechanisms that underpin the formation of a textbook example of evolutionary novelties, the cephalic horns of beetles. Previous work has implicated the gene regulatory networks associated with compound eye and ocellar development in horn formation and suggested that horns and compound eyes may influence each other's sizes. Therefore, we investigated the functional significance of genes central to visual system formation in the initiation, patterning, and size determination of head horns across three horned beetle species. We find that while the downregulation of canonical eye patterning genes reliably reduces or eliminates compound eye formation, it does not alter the position or shape of head horns yet does result in an increase in relative horn length. We discuss the implications of our results for our understanding of the genesis of cephalic horns in particular and evolutionary novelties in general.


Asunto(s)
Escarabajos , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/anatomía & histología , Escarabajos/genética , Evolución Biológica , Tipificación del Cuerpo , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Ojo Compuesto de los Artrópodos/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Ojo/anatomía & histología , Ojo/crecimiento & desarrollo
4.
Zoology (Jena) ; 165: 126173, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820711

RESUMEN

Compound eyes undoubtedly represent the widespread eye architecture in the animal kingdom. The insects' compound eye shows a wide variety of designs, and insects use their visual capacity to accomplish several tasks, including avoiding enemies, searching for food and shelter, locating a mate, and acquiring information about the environment and its surroundings. Broad literature data support the concept that visual ability lies in the way the eyes are built. Since the resolution and sensitivity of the compound eye are partly determined by the density of the ommatidia and the size of the facets. Morphological parameters of the compound eyes could influence the function of the visual organ and its capacity to process information, also representing a sensitive indicator of different habitat demands. In this study, we compared compound eyes' parameters in four closely related species of tiger beetles to disclose differences arising from different habitats. Furthermore, to investigate whether there are consistent intersexual differences, we also compared the most relevant parameters of the eye in males and females of four selected species. Our results show sex-related and interspecific differences that occur in examined species.


Asunto(s)
Escarabajos , Especificidad de la Especie , Animales , Escarabajos/anatomía & histología , Escarabajos/fisiología , Femenino , Masculino , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología
5.
Sci Robot ; 9(90): eadl3606, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748779

RESUMEN

Arthropods' eyes are effective biological vision systems for object tracking and wide field of view because of their structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision system of the praying mantis using stereoscopically coupled artificial compound eyes, we demonstrated spatiotemporal object sensing and tracking in 3D space with a wide field of view. Furthermore, to achieve a fast response with minimal latency, data storage/transportation, and power consumption, we processed the visual information at the edge of the system using a synaptic device and a federated split learning algorithm. The designed and fabricated stereoscopic artificial compound eye provides energy-efficient and accurate spatiotemporal object sensing and optical flow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conventional complementary metal-oxide semiconductor-based imaging systems. Our biomimetic imager shows the potential of integrating nature's unique design using hardware and software codesigned technology toward capabilities of edge computing and sensing.


Asunto(s)
Biomimética , Ojo Compuesto de los Artrópodos , Percepción de Profundidad , Animales , Percepción de Profundidad/fisiología , Ojo Compuesto de los Artrópodos/fisiología , Ojo Compuesto de los Artrópodos/anatomía & histología , Algoritmos , Mantódeos/fisiología , Imagenología Tridimensional , Diseño de Equipo , Materiales Biomiméticos
6.
Bioessays ; 46(5): e2300240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593308

RESUMEN

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Asunto(s)
Evolución Biológica , Insectos , Visión Ocular , Animales , Visión Ocular/fisiología , Insectos/fisiología , Insectos/genética , Ojo/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Ojo Compuesto de los Artrópodos/anatomía & histología
7.
Arthropod Struct Dev ; 61: 101032, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33711677

RESUMEN

Great progress has been made during the last decades in understanding visual systems of arthropods living today. Thus it seems worthwhile to review what is known about structure and function of the eyes of trilobites, the most important group of marine arthropods during the Paleozoic. There are three types of compound eyes in trilobites. The oldest and most abundant is the so-called holochroal eye. The sensory system represents a typical apposition eye, and all units are covered by one cornea in common. The so-called abathochroal eye (only in eodiscid trilobites) consists of small lenses, each individually covered by a thin cuticular cornea. The schizochroal eye is represented just in the suborder Phacopina, and probably is a highly specialized visual system. We discuss the calcitic character of trilobite lenses, the phylogenetic relevance of the existence of crystalline cones in trilobites, and consider adaptations of trilobite's compound eyes to different ecological constraints. The aim of this article is to give a resumé of what is known so far about trilobite vision, and to open perspectives to what still might be done.


Asunto(s)
Artrópodos , Fósiles , Animales , Artrópodos/anatomía & histología , Artrópodos/fisiología , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Córnea , Fósiles/anatomía & histología , Filogenia , Visión Ocular/fisiología
8.
Mol Biol Evol ; 38(5): 1924-1942, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33386848

RESUMEN

Revealing the mechanisms underlying the breathtaking morphological diversity observed in nature is a major challenge in Biology. It has been established that recurrent mutations in hotspot genes cause the repeated evolution of morphological traits, such as body pigmentation or the gain and loss of structures. To date, however, it remains elusive whether hotspot genes contribute to natural variation in the size and shape of organs. As natural variation in head morphology is pervasive in Drosophila, we studied the molecular and developmental basis of differences in compound eye size and head shape in two closely related Drosophila species. We show differences in the progression of retinal differentiation between species and we applied comparative transcriptomics and chromatin accessibility data to identify the GATA transcription factor Pannier (Pnr) as central factor associated with these differences. Although the genetic manipulation of Pnr affected multiple aspects of dorsal head development, the effect of natural variation is restricted to a subset of the phenotypic space. We present data suggesting that this developmental constraint is caused by the coevolution of expression of pnr and its cofactor u-shaped (ush). We propose that natural variation in expression or function of highly connected developmental regulators with pleiotropic functions is a major driver for morphological evolution and we discuss implications on gene regulatory network evolution. In comparison to previous findings, our data strongly suggest that evolutionary hotspots are not the only contributors to the repeated evolution of eye size and head shape in Drosophila.


Asunto(s)
Evolución Biológica , Ojo Compuesto de los Artrópodos/anatomía & histología , Drosophila/anatomía & histología , Pleiotropía Genética , Animales , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Redes Reguladoras de Genes , Cabeza/anatomía & histología , Larva/crecimiento & desarrollo , Masculino , Especificidad de la Especie , Factores de Transcripción/metabolismo , Transcriptoma
9.
Arthropod Struct Dev ; 60: 101007, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33341370

RESUMEN

As an obligate ectoparasite of bats, the bat fly Trichobius frequens (Diptera: Streblidae) inhabits the same subterranean environment as their nocturnal bat hosts. In this study, we characterize the macromorphology, optical architecture, rhabdom anatomy, photoreceptor absorbance, and opsin expression of the significantly reduced visual system in T. frequens resulting from evolution in the dark. The eyes develop over a 21-22 day pupal developmental period, with pigmentation appearing on pupal day 11. After eclosion as an adult, T. frequens eyes consist of on average 8 facets, each overlying a fused rhabdom consisting of anywhere from 11 to 18 estimated retinula cells. The dimensions of the facets and fused rhabdoms are similar to those measured in other nocturnal insects. T. frequens eyes are functional as shown by expression of a Rh1 opsin forming a visual pigment with a peak sensitivity to 487 nm, similar to other dipteran Rh1 opsins. Future studies will evaluate how individuals with such reduced capabilities for spatial vision as well as sensitivity still capture enough visual information to use flight to maneuver through dark habitats.


Asunto(s)
Ojo Compuesto de los Artrópodos/anatomía & histología , Dípteros/anatomía & histología , Células Fotorreceptoras de Invertebrados/citología , Animales , Quirópteros/parasitología , Ojo Compuesto de los Artrópodos/ultraestructura , Dípteros/genética , Dípteros/ultraestructura , Femenino , Expresión Génica , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Microscopía Confocal , Microscopía Electrónica de Rastreo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestructura
10.
Curr Opin Insect Sci ; 42: 14-22, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32841784

RESUMEN

Dragonflies belong to the oldest known lineage of flying animals, found across the globe around streams, ponds and forests. They are insect predators, specialising in ambush attack as aquatic larvae and rapid pursuit as adults. Dragonfly adults hunt amidst swarms in conditions that confuse many predatory species, and exhibit capture rates above 90%. Underlying the performance of such a remarkable predator is a finely tuned visual system capable of tracking targets amidst distractors and background clutter. The dragonfly performs a complex repertoire of flight behaviours, from near-motionless hovering to acute turns at high speeds. Here, we review the optical, neuronal, and behavioural adaptations that underlie the dragonflies' ability to achieve such remarkable predatory success.


Asunto(s)
Ojo Compuesto de los Artrópodos/fisiología , Odonata/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Navegación Espacial , Percepción Visual/fisiología , Animales , Conducta Competitiva , Ojo Compuesto de los Artrópodos/anatomía & histología , Odonata/anatomía & histología , Conducta Predatoria
11.
Sci Rep ; 10(1): 12029, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792496

RESUMEN

In all arthropods the plesiomorphic (ancestral character state) kind of visual system commonly is considered to be the compound eye. Here we are able to show the excellently preserved internal structures of the compound eye of a 429 Mya old Silurian trilobite, Aulacopleura koninckii (Barrande, 1846). It shows the characteristic elements of a modern apposition eye, consisting of 8 (visible) receptor cells, a rhabdom, a thick lens, screening pigment (cells), and in contrast to a modern type, putatively just a very thin crystalline cone. Functionally the latter underlines the idea of a primarily calcitic character of the lens because of its high refractive properties. Perhaps the trilobite was translucent. We show that this Palaeozoic trilobite in principle was equipped with a fully modern type of visual system, a compound eye comparable to that of living bees, dragonflies and many diurnal crustaceans. It is an example of excellent preservation, and we hope that this manuscript will be a starting point for more research work on fossil evidence, and to develop a deeper understanding of the evolution of vision.


Asunto(s)
Ojo Compuesto de los Artrópodos/anatomía & histología , Fósiles/anatomía & histología , Animales , Artrópodos , Evolución Biológica , Extinción Biológica , Preservación Biológica
12.
Sci Rep ; 10(1): 5129, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198412

RESUMEN

Thylacocephalans are enigmatic arthropods with an erratic Palaeozoic and Mesozoic fossil record. In many of the few localities where they occur, they are quite abundant. This also holds true for the Famennian Thylacocephalan Layer in the Maider (eastern Anti-Atlas of Morocco), a small epicontinental basin hosting some strata with taphonomic properties of a conservation deposit yielding exceptionally preserved gnathostomes and non-vertebrates. In a thin argillaceous interval in the earliest middle Famennian, thylacocephalans occur in such great numbers that they became eponyms of this unit. Therein, we discovered a new taxon of thylacocephalans, Concavicaris submarinus sp. nov., which represent the oldest records of thylacocephalans from Africa. In the CT-imagery, the holotype of Concavicaris submarinus sp. nov. revealed anatomical details including its eyes, appendages and other soft parts. Sedimentary facies and faunal composition of the Thylacocephalan Layer suggest that these animals populated the water column above the low-oxygen sea floor. Thus, thylacocephalans likely represented an important component of the diet of chondrichthyans and placoderms, which are quite common as well. The abundance of thylacocephalans in other conservation deposits like the Cleveland Shale (USA) and the Gogo Formation (Australia) underline their pivotal role in Late Devonian pelagic food webs.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/clasificación , Fósiles/anatomía & histología , Animales , Artrópodos/fisiología , Evolución Biológica , Ojo Compuesto de los Artrópodos/anatomía & histología , Cadena Alimentaria , Marruecos , Paleontología/métodos
13.
Arthropod Struct Dev ; 54: 100902, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31991325

RESUMEN

Copepoda is one of the crustacean taxa with still unresolved phylogenetic relationships within Tetraconata. Recent phylogenomic studies place them close to Malacostraca and Cirripedia. Little is known about the morphological details of the copepod nervous system, and the available data are sometimes contradictory. We investigated several representatives of the subgroup Calanoida using immunohistochemical labeling against alpha-tubulin and various neuroactive substances, combining this with confocal laser scanning analysis and 3D reconstruction. Our results show that the studied copepods exhibit only a single anterior protocerebral neuropil which is connected to the nerves of two protocerebral sense organs: the frontal filament organ and a photoreceptor known as the Gicklhorn's organ. We suggest, on the basis of its position and the innervation it provides, that Gicklhorn's organ is homologous to the compound eye in arthropods. With regard to the frontal filament organ, we reveal detailed innervation to the lateral protocerebrum and the appearance of spherical bodies that stain intensely against alpha tubulin. A potential homology of these bodies to the onion bodies in malacostacan crustaceans and in Mystacocarida is suggested. The nauplius eye in all the examined calanoids shows the same basic pattern of innervation with the middle cup sending its neurites into the median nerve, while the axons of the lateral cups proceed into both the median and the lateral nerves. The early development of the axonal scaffold of the nauplius eye neuropil from the proximal parts of the nauplius eye nerves follows the same pattern as in other crustaceans. In our view, this specific innervation pattern is a further feature supporting the homology of the nauplius eye in crustaceans.


Asunto(s)
Ojo Compuesto de los Artrópodos/anatomía & histología , Copépodos/anatomía & histología , Animales , Encéfalo/anatomía & histología , Encéfalo/ultraestructura , Ojo Compuesto de los Artrópodos/ultraestructura , Copépodos/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo , Neurópilo/citología , Neurópilo/ultraestructura , Órganos de los Sentidos/anatomía & histología , Órganos de los Sentidos/ultraestructura
14.
Sci Rep ; 9(1): 17797, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780700

RESUMEN

Sea scorpions (Eurypterida, Chelicerata) of the Lower Devonian (~400 Mya) lived as large, aquatic predators. The structure of modern chelicerate eyes is very different from that of mandibulate compound eyes [Mandibulata: Crustacea and Tracheata (Hexapoda, such as insects, and Myriapoda)]. Here we show that the visual system of Lower Devonian (~400 Mya) eurypterids closely matches that of xiphosurans (Xiphosura, Chelicerata). Modern representatives of this group, the horseshoe crabs (Limulidae), have cuticular lens cylinders and usually also an eccentric cell in their sensory apparatus. This strongly suggests that the xiphosuran/eurypterid compound eye is a plesiomorphic structure with respect to the Chelicerata, and probably ancestral to that of Euchelicerata, including Eurypterida, Arachnida and Xiphosura. This is supported by the fact that some Palaeozoic scorpions also possessed compound eyes similar to those of eurypterids. Accordingly, edge enhancement (lateral inhibition), organised by the eccentric cell, most useful in scattered light-conditions, may be a very old mechanism, while the single-lens system of arachnids is possibly an adaptation to a terrestrial life-style.


Asunto(s)
Ojo Compuesto de los Artrópodos/anatomía & histología , Fósiles/anatomía & histología , Fósiles/historia , Cangrejos Herradura/anatomía & histología , Animales , Organismos Acuáticos , Evolución Biológica , Historia Antigua , Cangrejos Herradura/genética , Cristalino/anatomía & histología , Microscopía/métodos , Filogenia , Escorpiones/anatomía & histología , Escorpiones/genética
15.
Curr Biol ; 29(18): 3101-3108.e4, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31474538

RESUMEN

Both vertebrates and invertebrates commonly exploit photonic structures adjacent to their photoreceptors for visual benefits. For example, use of a reflecting structure (tapetum) behind the retina increases photon capture, enhancing vision in dim light [1-5]. Colored filters positioned lateral or distal to a photoreceptive unit may also be used to tune spectral sensitivity by selective transmission of wavelengths not absorbed or scattered by the filters [6-8]. Here we describe a new category of biological optical filter that acts simultaneously as both a transmissive spectral filter and narrowband reflector. Discovered in the larval eyes of only one family of mantis shrimp (stomatopod) crustaceans (Nannosquillidae), each crystalline structure bisects the photoreceptive rhabdom into two tiers and contains an ordered array of membrane-bound vesicles with sub-wavelength diameters of 153 ± 5 nm. Axial illumination of the intrarhabdomal structural reflector (ISR) in vivo produces a narrow band of yellow reflectance (mean peak reflectivity, 572 ± 18 nm). The ISR is similar to several synthetic devices, such as bandgap filters, laser mirrors, and (in particular) fiber Bragg gratings used in optical sensors for a wide range of industries. To our knowledge, the stomatopod larval ISR is the first example of a naturally occurring analog to these human-made devices. Considering what is known about these animals' visual ecology, we propose that these reflecting filters may help improve the detection of pelagic bioluminescence in shallow water at night. VIDEO ABSTRACT.


Asunto(s)
Células Fotorreceptoras/fisiología , Retina/fisiología , Animales , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Crustáceos , Larva/metabolismo , Larva/fisiología , Luz , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Retina/patología , Rayos Ultravioleta , Visión Ocular/fisiología
16.
Curr Opin Insect Sci ; 30: 46-51, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30553484

RESUMEN

Flying insects are being studied these days as if they were agile micro air vehicles fitted with smart sensors, requiring very few brain resources. The findings obtained on these natural fliers have proved to be extremely valuable when it comes to designing compact low-weight artificial optical sensors capable of performing visual processing tasks robustly under various environmental conditions (light, clouds, contrast). Here, we review some outstanding bio-inspired visual sensors, which can be used for either detecting motion in the visible spectrum or controlling celestial navigation in the ultraviolet spectrum and for attitude stabilisation purposes. Biologically inspired visual sensors do not have to comprise a very large number of pixels: they are able to perform both short and long range navigation tasks surprisingly well with just a few pixels and a weak resolution.


Asunto(s)
Ojo Compuesto de los Artrópodos/fisiología , Insectos/fisiología , Microtecnología/métodos , Vehículos a Motor , Percepción Visual , Animales , Ojo Compuesto de los Artrópodos/anatomía & histología , Insectos/anatomía & histología , Microtecnología/instrumentación , Visión Ocular
17.
Elife ; 72018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30526849

RESUMEN

Flying animals need continual sensory feedback about their body position and orientation for flight control. The visual system provides essential but slow feedback. In contrast, mechanosensory channels can provide feedback at much shorter timescales. How the contributions from these two senses are integrated remains an open question in most insect groups. In Diptera, fast mechanosensory feedback is provided by organs called halteres and is crucial for the control of rapid flight manoeuvres, while vision controls manoeuvres in lower temporal frequency bands. Here, we have investigated the visual-mechanosensory integration in the hawkmoth Macroglossum stellatarum. They represent a large group of insects that use Johnston's organs in their antennae to provide mechanosensory feedback on perturbations in body position. Our experiments show that antennal mechanosensory feedback specifically mediates fast flight manoeuvres, but not slow ones. Moreover, we did not observe compensatory interactions between antennal and visual feedback.


Asunto(s)
Antenas de Artrópodos/fisiología , Vuelo Animal/fisiología , Mecanorreceptores/fisiología , Orientación/fisiología , Percepción Espacial/fisiología , Visión Ocular/fisiología , Animales , Antenas de Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Retroalimentación Sensorial/fisiología , Femenino , Masculino , Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Grabación en Video , Alas de Animales/anatomía & histología , Alas de Animales/inervación , Alas de Animales/fisiología
18.
PLoS One ; 13(10): e0205556, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30359400

RESUMEN

Cave animals provide a unique opportunity to study contrasts in phenotype and life history in strikingly different environments when compared to surface populations, potentially related to natural selection. As such, we compared a permanent cave-living Gammarus lacustris (L.) population with two lake-resident surface populations analyzing morphology (eye- and antennal characters) and life-history (size at maturity, fecundity and egg-size). A part of the cytochrome c oxidase subunit I gene in the mitochondrion (COI) was analyzed to contrast genetic relationship of populations and was compared to sequences in GenBank to assess phylogeography and colonization scenarios. In the cave, a longer life cycle was implied, while surface populations seemed to have a shorter life cycle. Egg size, and size at maturity for both sexes, were larger in the cave than in surface populations, while fecundity was lower in the cave than in surface populations. The cave population had longer first- and second antennae with more articles, longer first- and second peduncles, and fewer ommatidia than surface populations. The cold low-productive cave environment may facilitate different phenotypic and life-history traits than in the warmer and more productive surface lake environments. The trait divergences among cave and surface populations resembles other cave-surface organism comparisons and may support a hypothesis of selection on sensory traits. The cave and Lake Ulvenvann populations grouped together with a sequence from Slovenia (comprising one genetic cluster), while Lake Lille Lauarvann grouped with a sequence from Ukraine (comprising another cluster), which are already recognized phylogenetic clusters. One evolutionary scenario is that the cave and surface populations were colonized postglacially around 9 000-10 000 years ago. We evaluate that an alternative scenario is that the cave was colonized during an interstadial during the last glaciation or earlier during the warm period before onset of the last glaciation.


Asunto(s)
Anfípodos/anatomía & histología , Anfípodos/genética , Evolución Biológica , Cuevas , Lagos , Animales , Antenas de Artrópodos/anatomía & histología , Tamaño Corporal , Ojo Compuesto de los Artrópodos/anatomía & histología , Complejo IV de Transporte de Electrones/genética , Femenino , Fertilidad , Variación Genética , Haplotipos , Masculino , Filogeografía , Caracteres Sexuales , Especificidad de la Especie
19.
Artículo en Inglés | MEDLINE | ID: mdl-29869100

RESUMEN

The palm borer moth Paysandisia archon (Burmeister, 1880) (fam. Castniidae) is a large, diurnally active palm pest. Its compound eyes consist of ~ 20,000 ommatidia and have apposition optics with interommatidial angles below 1°. The ommatidia contain nine photoreceptor cells and appear structurally similar to those in nymphalid butterflies. Two morphological ommatidial types were identified. Using the butterfly numbering scheme, in type I ommatidia, the distal rhabdom consists exclusively of the rhabdomeres of photoreceptors R1-2; the medial rhabdom has contributions from R1-8. The rhabdom in type II ommatidia is distally split into two sub-rhabdoms, with contributions from photoreceptors R2, R3, R5, R6 and R1, R4, R7, R8, respectively; medially, only R3-8 and not R1-2 contribute to the fused rhabdom. In both types, the pigmented bilobed photoreceptors R9 contribute to the rhabdom basally. Their nuclei reside in one of the lobes. Upon light adaptation, in both ommatidial types, the rhabdoms secede from the crystalline cones and pigment granules invade the gap. Intracellular recordings identified four photoreceptor classes with peak sensitivities in the ultraviolet, blue, green and orange wavelength regions (at 360, 465, 550, 580 nm, respectively). We discuss the eye morphology and optics, the photoreceptor spectral sensitivities, and the adaptation to daytime activity from a phylogenetic perspective.


Asunto(s)
Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/fisiología , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/fisiología , Adaptación Ocular/fisiología , Animales , Ojo Compuesto de los Artrópodos/ultraestructura , Femenino , Luz , Masculino , Células Fotorreceptoras de Invertebrados/ultraestructura , Pigmentación , Visión Ocular/fisiología , Alas de Animales/anatomía & histología
20.
J Exp Biol ; 221(Pt 10)2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29622664

RESUMEN

Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats.


Asunto(s)
Visión de Colores , Ojo Compuesto de los Artrópodos/anatomía & histología , Crustáceos/fisiología , Animales , Ojo Compuesto de los Artrópodos/inervación , Ojo Compuesto de los Artrópodos/fisiología , Electrorretinografía , Femenino , Luz , Masculino , Neurópilo/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Retina/fisiología , Vías Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA