Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.726
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273601

RESUMEN

The partition behavior of single and double-point mutants of bacteriophage T4 lysozyme (T4 lysozyme) and staphylococcal nuclease A was examined in different aqueous two-phase systems (ATPSs) and studied by Solvent Interaction Analysis (SIA). Additionally, the solvent accessible surface area (SASA) of modeled mutants of both proteins was calculated. The in silico calculations and the in vitro analyses of the staphylococcal nuclease and T4 lysozyme mutants correlate, indicating that the partition analysis in ATPSs provides a valid descriptor (SIA signature) covering various protein features, such as structure, structural dynamics, and conformational stability.


Asunto(s)
Bacteriófago T4 , Nucleasa Microcócica , Muramidasa , Mutación Puntual , Solventes , Termodinámica , Muramidasa/química , Muramidasa/genética , Muramidasa/metabolismo , Solventes/química , Bacteriófago T4/genética , Bacteriófago T4/enzimología , Nucleasa Microcócica/química , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética , Simulación por Computador , Modelos Moleculares , Conformación Proteica , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Biosens Bioelectron ; 266: 116727, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39232433

RESUMEN

The isolation and identification of pathogenic bacteria from a variety of samples are critical for controlling bacterial infection-related health problems. The conventional methods, such as plate counting and polymerase chain reaction-based approaches, tend to be time-consuming and reliant on specific instruments, severely limiting the effective identification of these pathogens. In this study, we employed the specificity of the cell wall-binding (CBD) domain of the Staphylococcus aureus bacteriophage 80 alpha (80α) endolysin towards the host bacteria for isolation. Amidase 3-CBD conjugated magnetic beads successfully isolated as few as 1 × 102 CFU/mL of S. aureus cells from milk, blood, and saliva. The cell wall hydrolyzing activity of 80α endolysin promoted the genomic DNA extraction efficiency by 12.7 folds on average, compared to the commercial bacterial genomic DNA extraction kit. Then, recombinase polymerase amplification (RPA) was exploited to amplify the nuc gene of S. aureus from the extracted DNA at 37 °C for 30 min. The RPA product activated Cas12a endonuclease activity to cleave fluorescently labeled ssDNA probes. We then converted the generated signal into a fluorescent readout, detectable by either the naked eye or a portable, self-assembled instrument with ultrasensitivity. The entire procedure, from isolation to identification, can be completed within 2 h. The simplicity and sensitivity of the method developed in this study make it of great application value in S. aureus detection, especially in areas with limited resource supply.


Asunto(s)
Técnicas Biosensibles , Endopeptidasas , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/virología , Técnicas Biosensibles/métodos , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/genética , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Humanos , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/química , Fagos de Staphylococcus/aislamiento & purificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones Estafilocócicas/microbiología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Nucleasa Microcócica/química , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética , Proteínas Virales/química , Proteínas Virales/metabolismo
3.
Anal Chim Acta ; 1319: 342984, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122282

RESUMEN

BACKGROUND: Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), pose a significant threat to public health. Existing detection methods, like cultivation-based techniques, demand significant time and labor, while molecular diagnostic techniques, such as PCR, necessitate sophisticated instrumentation and skilled personnel. Although previous multiplex loop-mediated isothermal amplification assays based on fluorescent dyes (mfLAMP) offer simplicity and cost-effectiveness, they are prone to false-positive results. Therefore, developing a rapid and efficient multiplex assay for high-sensitivity MRSA is imperative to create a practical diagnostic tool for point-of-care testing. RESULTS: Here, we developed a mfLAMP combined with a lateral flow assay (mfLAMP-LFA) for the visual and simultaneous detection of the mecA (PBP2a-specific marker) and nuc (S. aureus-specific marker) genes in MRSA. We optimized mfLAMP-LFA using graphene oxide (GO)-based purification and specific DNA probes and evaluated its sensitivity, specificity, and stability. Utilizing GO to mitigate false-positive results by acting as a trap for free DNA probes, the mfLAMP-LFA method successfully identified mecAf and nucf-probes, exhibiting distinct red, green, and yellow fluorescence signals. The detection sensitivity of the developed mfLAMP-LFA method (1 CFU mL-1 in phosphate-buffered saline (PBS)) was comparable to other highly sensitive MRSA detection methods (1 CFU mL-1 in PBS). Furthermore, the method demonstrated specificity for MRSA, detecting it in irrigation water samples within the desired range and achieving reliable recovery rates from spiked samples. SIGNIFICANCE: This novel strategy is the first to incorporate GO into mfLAMP-LFA, enabling specific and sensitive MRSA detection and advancing rapid bacterial detection. This assay facilitates MRSA diagnostics, contributing to improved public health and food safety by delivering rapid, cost-effective point-of-care results. It enables the simultaneous detection of multiple bacteria, even in irrigation water samples artificially inoculated with MRSA, which contain aerobic bacteria at 2.7 × 102 CFU mL-1.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus Resistente a Meticilina , Nucleasa Microcócica , Técnicas de Amplificación de Ácido Nucleico , Proteínas de Unión a las Penicilinas , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Unión a las Penicilinas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Nucleasa Microcócica/genética , Proteínas Bacterianas/genética , Fluorescencia , Técnicas de Diagnóstico Molecular/métodos , Colorantes Fluorescentes/química , Grafito
4.
Methods Mol Biol ; 2846: 263-283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141241

RESUMEN

Chromatin endogenous cleavage coupled with high-throughput sequencing (ChEC-seq) is a profiling method for protein-DNA interactions that can detect binding locations in vivo, does not require antibodies or fixation, and provides genome-wide coverage at near nucleotide resolution.The core of this method is an MNase fusion of the target protein, which allows it, when triggered by calcium exposure, to cut DNA at its binding sites and to generate small DNA fragments that can be readily separated from the rest of the genome and sequenced.Improvements since the original protocol have increased the ease, lowered the costs, and multiplied the throughput of this method to enable a scale and resolution of experiments not available with traditional methods such as ChIP-seq. This method describes each step from the initial creation and verification of the MNase-tagged yeast strains, over the ChEC MNase activation and small fragment purification procedure to the sequencing library preparation. It also briefly touches on the bioinformatic steps necessary to create meaningful genome-wide binding profiles.


Asunto(s)
Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cromatina/genética , Cromatina/metabolismo , Sitios de Unión , Análisis de Secuencia de ADN/métodos , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética , Biología Computacional/métodos
5.
Int J Biol Macromol ; 277(Pt 1): 134023, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032881

RESUMEN

The healthcare burden rendered by methicillin-resistant Staphylococcus aureus (MRSA) warrants the development of therapeutics that offer a distinct benefit in the clinics as compared to conventional antibiotics. The present study describes the potential of napthalimide-based synthetic ligands (C1-C3) as inhibitors of the staphylococcal nuclease known as micrococcal nuclease (MNase), a key virulence factor of the pathogen. Amongst the ligands, the most potent MNase inhibitor C1 rendered non-competitive inhibition, reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of ~950 nM. CD spectroscopy suggested distortion of MNase conformation in presence of C1. Flow cytometry and confocal microscopy indicated that C1 restored the ability of activated THP-1 cells to engulf DNA-entrapped MRSA cells. Interestingly, C1 could inhibit MRSA adhesion onto collagen. For potential application, C1-loaded pluronic F-127 micellar nanocarrier (C1-PMC) was generated, wherein the anti-adhesion activity of the pluronic carrier (PMC) and C1 was harnessed in tandem to deter MRSA cell adhesion onto collagen. MRSA biofilm formation was hindered on C1-PMC-coated titanium (Ti) wire, while eluates from C1-PMC-coated Ti wires were non-toxic to HEK 293, MG-63 and THP-1 cells. The multifunctional C1 provides a blueprint for designing therapeutic materials that hold translational potential for mitigation of MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Nucleasa Microcócica/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Prótesis e Implantes/microbiología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Células THP-1 , Infecciones Estafilocócicas/tratamiento farmacológico , Poloxámero/química , Poloxámero/farmacología
6.
Sci Adv ; 10(27): eadm9740, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959309

RESUMEN

Micrococcal nuclease sequencing is the state-of-the-art method for determining chromatin structure and nucleosome positioning. Data analysis is complex due to the AT-dependent sequence bias of the endonuclease and the requirement for high sequencing depth. Here, we present the nucleosome-based MNase accessibility (nucMACC) pipeline unveiling the regulatory chromatin landscape by measuring nucleosome accessibility and stability. The nucMACC pipeline represents a systematic and genome-wide approach for detecting unstable ("fragile") nucleosomes. We have characterized the regulatory nucleosome landscape in Drosophila melanogaster, Saccharomyces cerevisiae, and mammals. Two functionally distinct sets of promoters were characterized, one associated with an unstable nucleosome and the other being nucleosome depleted. We show that unstable nucleosomes present intermediate states of nucleosome remodeling, preparing inducible genes for transcriptional activation in response to stimuli or stress. The presence of unstable nucleosomes correlates with RNA polymerase II proximal pausing. The nucMACC pipeline offers unparalleled precision and depth in nucleosome research and is a valuable tool for future nucleosome studies.


Asunto(s)
Drosophila melanogaster , Nucleasa Microcócica , Nucleosomas , Saccharomyces cerevisiae , Nucleosomas/metabolismo , Nucleosomas/genética , Animales , Nucleasa Microcócica/metabolismo , Drosophila melanogaster/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Genoma , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Cromatina/genética , Cromatina/metabolismo , Análisis de Secuencia de ADN/métodos
7.
Methods Mol Biol ; 2837: 33-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044073

RESUMEN

The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) is organized as a minichromosome structure in the nucleus of infected hepatocytes and considered the major obstacle to the discovery of a cure for HBV. Until now, no strategies directly targeting cccDNA have been advanced to clinical stages as much is unknown about the accessibility and activity regulation of the cccDNA minichromosome. We have described the method for evaluation of the cccDNA minichromosome accessibility using micrococcal nuclease-quantitative polymerase chain reaction and high-throughput sequencing, which could be useful tools for cccDNA research and HBV cure studies.


Asunto(s)
ADN Circular , ADN Viral , Virus de la Hepatitis B , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Hepatitis B/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Circular/genética , Humanos , ADN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética
8.
Genes (Basel) ; 15(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927609

RESUMEN

MOTIVATION: High-resolution Hi-C data, capable of detecting chromatin features below the level of Topologically Associating Domains (TADs), significantly enhance our understanding of gene regulation. Micro-C, a variant of Hi-C incorporating a micrococcal nuclease (MNase) digestion step to examine interactions between nucleosome pairs, has been developed to overcome the resolution limitations of Hi-C. However, Micro-C experiments pose greater technical challenges compared to Hi-C, owing to the need for precise MNase digestion control and higher-resolution sequencing. Therefore, developing computational methods to derive Micro-C data from existing Hi-C datasets could lead to better usage of a large amount of existing Hi-C data in the scientific community and cost savings. RESULTS: We developed C2c ("high" or upper case C to "micro" or lower case c), a computational tool based on a residual neural network to learn the mapping between Hi-C and Micro-C contact matrices and then predict Micro-C contact matrices based on Hi-C contact matrices. Our evaluation results show that the predicted Micro-C contact matrices reveal more chromatin loops than the input Hi-C contact matrices, and more of the loops detected from predicted Micro-C match the promoter-enhancer interactions. Furthermore, we found that the mutual loops from real and predicted Micro-C better match the ChIA-PET data compared to Hi-C and real Micro-C loops, and the predicted Micro-C leads to more TAD-boundaries detected compared to the Hi-C data. The website URL of C2c can be found in the Data Availability Statement.


Asunto(s)
Cromatina , Cromatina/genética , Humanos , Biología Computacional/métodos , Redes Neurales de la Computación , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética , Nucleosomas/genética , Programas Informáticos
9.
Methods Mol Biol ; 2832: 33-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869785

RESUMEN

Nucleosome occupancy plays an important role in chromatin compaction, affecting biological processes by hampering the binding of cis-acting elements such as transcription factors, RNA polymerase machinery, and coregulatory. Accessible regions allow for cis-acting elements to bind DNA and regulate transcription. Here, we detail our protocol to profile nucleosome occupancy and chromatin structure dynamics under drought stress at the genome-wide scale using micrococcal nuclease (MNase) digestion. Combining variable MNase concentration treatments and high-throughput sequencing, we investigate the changes in the overall chromatin state using bread wheat samples from an exemplary drought experiment.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Nucleasa Microcócica , Nucleosomas , Estrés Fisiológico , Triticum , Nucleosomas/metabolismo , Nucleosomas/genética , Nucleasa Microcócica/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Estrés Fisiológico/genética , Triticum/genética , Triticum/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Cromatina/metabolismo , Cromatina/genética , Plantas/genética , Plantas/metabolismo
10.
Medicine (Baltimore) ; 103(24): e38562, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875387

RESUMEN

In Algeria, the issue of antibiotic resistance is on the rise, being the Staphylococcus aureus infection as a significant concern of hospital-acquired infections. The emergence of antibiotic resistance in this bacterium poses a worldwide challenge. The aim of this study aims to establish the incidence of S aureus strains in Algeria as well as identify phenotypic and genotypic resistance based on the "mecA" and "nuc" genes. From 2014 to 2017, a total of 185 S aureus strains were isolated from patients at a hospital in the city of Rouïba, Algiers the number of isolates was slightly higher in males at 58.06% compared to females at 41.94%, resulting in a sex ratio of 1.38. the Oxacillin and Cefoxitin DD test (1 µg oxacillin disk and 30 µg cefoxitin disk) identified 42 strains as resistant. The results indicated high resistance to lactam antibiotics, with penicillin having a 100% resistance rate. There was also significant resistance to oxacillin (51.25%) and cefoxitin (50%). This resistance was frequently associated with resistance to other antibiotic classes, such as aminoglycosides (50%) and Macrolides (28.29%). To confirm methicillin-resistant characteristics, a polymerase chain reaction (PCR) multiplex was conducted on 10 isolates (6 SARM; 4 MSSA) on a phenotypic level. Three isolates tested positive for "mecA," while 7 were negative. All strains carry the nuc gene, which is specific to S aureus. In Algeria, the incidence of S aureus resistance is slightly lower compared to other countries, but it is increasing over time. It is now more crucial than ever to restrict the proliferation of multidrug-resistant strains and reduce undue antibiotic prescriptions. To achieve this, it is vital to keep updated on the epidemiology of this bacterium and its antibiotic susceptibility. This will enable the formulation of appropriate preventive control measures to manage its progression.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Antibacterianos/farmacología , Femenino , Masculino , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Argelia/epidemiología , Prevalencia , Proteínas Bacterianas/genética , Oxacilina/farmacología , Adulto , Proteínas de Unión a las Penicilinas/genética , Cefoxitina/farmacología , Persona de Mediana Edad , Nucleasa Microcócica/genética , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación
11.
mSphere ; 9(5): e0012624, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38695568

RESUMEN

Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). The extracellular matrix of MRSA biofilms contains significant amounts of double-stranded DNA that hold the biofilm together. MRSA cells secrete micrococcal nuclease (Nuc1), which degrades double-stranded DNA. In this study, we used standard methodologies to investigate the role of Nuc1 in MRSA biofilm formation and dispersal. We quantified biofilm formation and extracellular DNA (eDNA) levels in broth and agar cultures. In some experiments, cultures were supplemented with sub-MIC amoxicillin to induce biofilm formation. Biofilm erosion was quantitated by culturing biofilms on rods and enumerating detached colony-forming units (CFUs), and biofilm sloughing was investigated by perfusing biofilms cultured in glass tubes with fresh broth and measuring the sizes of the detached cell aggregates. We found that an MRSA nuc1- mutant strain produced significantly more biofilm and more eDNA than a wild-type strain, both in the absence and presence of sub-MIC amoxicillin. nuc1- mutant biofilms grown on rods detached significantly less than wild-type biofilms. Detachment was restored by exogenous DNase or complementing the nuc1- mutant. In the sloughing assay, nuc1- mutant biofilms released cell aggregates that were significantly larger than those released by wild-type biofilms. Our results suggest that Nuc1 modulates biofilm formation, biofilm detachment, and the sizes of detached cell aggregates. These processes may play a role in the spread and subsequent survival of MRSA biofilms during biofilm-related infections.IMPORTANCEInfections caused by antibiotic-resistant bacteria known as methicillin-resistant Staphylococcus aureus (MRSA) are a significant problem in hospitals. MRSA forms adherent biofilms on implanted medical devices such as catheters and breathing tubes. Bacteria can detach from biofilms on these devices and spread to other parts of the body such as the blood or lungs, where they can cause life-threatening infections. In this article, researchers show that MRSA secretes an enzyme known as thermonuclease that causes bacteria to detach from the biofilm. This is important because understanding the mechanism by which MRSA detaches from biofilms could lead to the development of procedures to mitigate the problem.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Nucleasa Microcócica , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Nucleasa Microcócica/genética , Nucleasa Microcócica/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Factores de Virulencia/genética , Pruebas de Sensibilidad Microbiana , Amoxicilina/farmacología
12.
Small ; 20(24): e2311764, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506607

RESUMEN

The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.


Asunto(s)
Técnicas Biosensibles , Staphylococcus aureus Resistente a Meticilina , Técnicas de Amplificación de Ácido Nucleico , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Animales , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética
13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 11-18, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38433625

RESUMEN

Objective To investigate the effect of staphylococcal nuclease and tudor domain containing 1(SND1) on the biological function of osteosarcoma cells and decipher the mechanism of SND1 in regulating ferroptosis in osteosarcoma cells via SLC7A11. Methods Human osteoblasts hFOB1.19 and osteosarcoma cell lines Saos-2,U2OS,HOS,and 143B were cultured,in which the expression level of SND1 was determined.Small interfering RNA was employed to knock down the expression of SND1(si-SND1) in the osteosarcoma cell line HOS and 143B.The CCK8 assay kit,colony formation assay,and Transwell assay were employed to examine the effect of SND1 expression on the biological function of osteosarcoma cells.Furthermore,we altered the expression of SND1 and SLC7A11 in osteosarcoma cells to investigate the effect of SND1 on osteosarcoma ferroptosis via SLC7A11. Results The mRNA and protein levels of SND1 in Saos-2,U2OS,HOS,and 143B cells were higher than those in hFOB1.19 cells(all P<0.01).Compared with the control group,transfection with si-SND1 down-regulated the expression level of SND1 in HOS and 143B cells(all P<0.01),decreased the viability of HOS and 143B cells,reduced the number of colony formation,and inhibited cell invasion and migration(all P<0.001).The ferroptosis inducer Erastin promoted the apoptosis of HOS and 143B cells,while the ferroptosis inhibitor Ferrostatin-1 improved the viability of HOS and 143B cells(all P<0.001).After SND-1 knockdown,Erastin reduced the viability of HOS and 143B cells,while Ferrostatin-1 restored the cell viability(all P<0.001).After treatment with Erastin in the si-SND1 group,the levels of iron and malondialdehyde were elevated,and the level of glutathione was lowered(all P<0.001).The results of in vivo experiments showed that SND1 knockdown inhibited the mass of the transplanted tumor in 143B tumor-bearing nude mice(P<0.001).Knocking down the expression of SND1 resulted in down-regulated SLC7A11 expression(all P<0.001) and increased ferroptosis in HOS and 143B cells(P<0.001,P=0.020). Conclusions SND1 presents up-regulated expression in osteosarcoma cells.It may inhibit ferroptosis by up-regulating the expression of SLC7A11,thereby improving the viability of osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Ciclohexilaminas , Eliptocitosis Hereditaria , Ferroptosis , Osteosarcoma , Fenilendiaminas , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+ , Endonucleasas , Ratones Desnudos , Nucleasa Microcócica , Dominio Tudor
14.
Neoplasia ; 47: 100963, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176295

RESUMEN

Muscle-invasive and metastatic bladder cancer indicates extra worse prognosis. Accumulating evidence roots for the prominent role of circular RNAs(circRNAs) in bladder cancer, while the mechanisms linking circRNAs and bladder cancer metastasis remain limitedly investigated. Here, we identified a significantly upregulated circRNA candidate, hsa_circ_0001583, from online datasets. Validated by qRT-PCR, PCR, sanger sequencing, actinomycin D and RNase R digestion experiments, hsa_circ_0001583 was proved to be a genuine circular RNA with higher expression levels in bladder cancer tissue. Through gain and loss of function experiments, hsa_circ_0001583 exhibited potent migration and invasion powers both in vitro and in vivo. The staphylococcal nuclease and Tudor domain containing 1 (SND1) was identified as an authentic binding partner for hsa_circ_0001583 through RNA pulldown and RIP experiments. Elevated levels of hsa_circ_0001583 could bind more to SND1 and protect the latter from degradation. Rescue experiments demonstrated that such interaction-induced increased in SND1 levels in bladder cancer cells enabled the protein to pump its endonuclease activity, leading to the degradation of tumor-suppressing MicroRNAs (miRNAs) including miR-126-3p, the suppressor of Disintegrin And Metalloproteinase Domain-Containing Protein 9 (ADAM9), ultimately driving cells into a highly migrative and invasive state. In summary, our study is the first to highlight the upregulation of hsa_circ_0001583 in bladder cancer and its role in downregulating miR-126-3p by binding to and stabilizing the SND1 protein, thereby promoting bladder cancer cell migration and invasion. This study adds hsa_circ_0001583 to the pool of bladder cancer metastasis biomarkers and therapeutic targets.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Nucleasa Microcócica/genética , Nucleasa Microcócica/metabolismo , Dominio Tudor , Biomarcadores de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Proliferación Celular , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo
15.
Bioorg Chem ; 144: 107133, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278047

RESUMEN

The staphylococcal nuclease also referred as micrococcal nuclease (MNase) is a key drug target as the enzyme degrades the neutrophil extracellular trap (NET) and empowers the pathogen to subvert the host innate immune system. To this end, the current study presents a critical evaluation of MNase inhibition rendered by benzimidazole-based ligands (C1 and C2) and probes its therapeutic implications. A nuclease assay indicated that MNase inhibition rendered by C1 and C2 was âˆ¼ 55 % and âˆ¼ 72 %, respectively, at the highest tested concentration of 10 µM. Studies on enzyme kinetics revealed that C2 rendered non-competitive inhibition and significantly reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of âˆ¼ 1122 nM. In CD spectroscopy, a notable perturbation in the ß-sheet content of MNase was observed in presence of C2. Fluorescence-microscope analysis indicated that MNase inhibition by C2 could restore entrapment of methicillin-resistant Staphylococcus aureus (MRSA) in calf-thymus DNA (CT-DNA). Flow cytometry and confocal microscope analysis revealed that uptake of DNA-entrapped MRSA by activated THP-1 cells was reinstated by MNase inhibition rendered by C2. Inhibition of nuclease by the non-toxic ligand C2 holds therapeutic prospect as it has the potential to bolster the DNA-mediated entrapment machinery and mitigate MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nucleasa Microcócica/análisis , Nucleasa Microcócica/química , Nucleasa Microcócica/metabolismo , Ligandos , ADN/química , Macrófagos/metabolismo , Bencimidazoles/farmacología
16.
Nucleic Acids Res ; 52(4): 1575-1590, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38296834

RESUMEN

Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.


Asunto(s)
ADN Catalítico , ADN de Forma Z , G-Cuádruplex , Animales , Ratones , ADN Catalítico/metabolismo , Desoxirribonucleasa I/metabolismo , Nucleasa Microcócica/genética , Cloruro de Sodio , Hemina , ADN Bacteriano/metabolismo , Biopelículas , Staphylococcus/genética , ADN , Polisacáridos , Peroxidasa/metabolismo , Mamíferos/genética
17.
J Vis Exp ; (201)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37982508

RESUMEN

Three-dimensional (3D) chromosome organization is a major factor in genome regulation and cell-type specification. For example, cis-regulatory elements, known as enhancers, are thought to regulate the activity of distal promoters via interaction in 3D space. Genome-wide chromosome conformation capture (3C)-technologies, such as Hi-C, have transformed our understanding of how genomes are organized in cells. The current understanding of 3D genome organization is limited by the resolution with which the topological organization of chromosomes in 3D space can be resolved. Micro-C-XL measures chromosome folding with resolution at the level of the nucleosome, the basic unit of chromatin, by utilizing micrococcal nuclease (MNase) to fragment genomes during the chromosome conformation capture protocol. This results in an improved signal-to-noise ratio in the measurements, thus facilitating the better detection of insulation sites and chromosome loops compared to other genome-wide 3D technologies. A visually supported, detailed, step-by-step protocol for preparing high-quality Micro-C-XL samples from mammalian cells is presented in this article.


Asunto(s)
Cromatina , Nucleosomas , Animales , Cromatina/genética , Mamíferos , Nucleasa Microcócica , Regiones Promotoras Genéticas
18.
PLoS One ; 18(11): e0293809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37988351

RESUMEN

In Trypanosoma cruzi DNA is packaged into chromatin by octamers of histone proteins that form nucleosomes. Transcription of protein coding genes in trypanosomes is constitutive producing polycistronic units and gene expression is primarily regulated post-transcriptionally. However, chromatin organization influences DNA dependent processes. Hence, determining nucleosome position is of uppermost importance to understand the peculiarities found in trypanosomes. To map nucleosomes genome-wide in several organisms, digestion of chromatin with micrococcal nuclease followed by deep sequencing has been applied. Nonetheless, the special requirements for cell manipulation and the uniqueness of the chromatin organization in trypanosomes entails a customized analytical approach. In this work, we adjusted this broadly used method to the hybrid reference strain, CL Brener. Particularly, we implemented an exhaustive and thorough computational workflow to overcome the difficulties imposed by this complex genome. We tested the performance of two aligners, Bowtie2 and HISAT2, and discuss their advantages and caveats. Specifically, we highlight the relevance of using the whole genome as a reference instead of the commonly used Esmeraldo-like haplotype to avoid spurious alignments. Additionally, we show that using the whole genome refines the average nucleosome representation, but also the quality of mapping for every region represented. Moreover, we show that the average nucleosome organization around trans-splicing acceptor site described before, is not just an average since the same chromatin pattern is detected for most of the represented regions. In addition, we extended the study to a non-hybrid strain applying the experimental and analytical approach to Sylvio-X10 strain. Furthermore, we provide a source code for the construction of 2D plots and heatmaps which are easy to adapt to any T. cruzi strain.


Asunto(s)
Nucleosomas , Trypanosoma , Nucleosomas/genética , Cromatina/genética , Histonas/genética , Trypanosoma/genética , ADN , Nucleasa Microcócica/metabolismo
19.
ACS Appl Mater Interfaces ; 15(31): 37174-37183, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525332

RESUMEN

Periprosthetic infections are one of the most serious complications in orthopedic surgeries, and those caused by Staphylococcus aureus (S. aureus) are particularly hard to treat due to their tendency to form biofilms on implants and their notorious ability to invade the surrounding bones. The existing prophylactic local antibiotic deliveries involve excessive drug loading doses that could risk the development of drug resistance strains. Utilizing an oligonucleotide linker sensitive to micrococcal nuclease (MN) cleavage, we previously developed an implant coating capable of releasing covalently tethered vancomycin, triggered by S. aureus-secreted MN, to prevent periprosthetic infections in the mouse intramedullary (IM) canal. To further engineer this exciting platform to meet broader clinical needs, here, we chemically modified the oligonucleotide linker by a combination of 2'-O-methylation and phosphorothioate modification to achieve additional modulation of its stability/sensitivity to MN and the kinetics of MN-triggered on-demand release. We found that when all phosphodiester bonds within the oligonucleotide linker 5'-carboxy-mCmGTTmCmG-3-acrydite, except for the one between TT, were replaced by phosphorothioate, the oligonucleotide (6PS) stability significantly increased and enabled the most sustained release of tethered vancomycin from the coating. By contrast, when only the peripheral phosphodiester bonds at the 5'- and 3'-ends were replaced by phosphorothioate, the resulting oligonucleotide (2PS) linker was cleaved by MN more rapidly than that without any PS modifications (0PS). Using a rat femoral canal periprosthetic infection model where 1000 CFU S. aureus was inoculated at the time of IM pin insertion, we showed that the prophylactic implant coating containing either 0PS- or 2PS-modified oligonucleotide linker effectively eradicated the bacteria by enabling the rapid on-demand release of vancomycin. No bacteria were detected from the explanted pins, and no signs of cortical bone changes were detected in these treatment groups throughout the 3 month follow-ups. With an antibiotic tethering dose significantly lower than conventional antibiotic-bearing bone cements, these coatings also exhibited excellent biocompatibility. These chemically modified oligonucleotides could help tailor prophylactic anti-infective coating strategies to meet a range of clinical challenges where the risks for S. aureus prosthetic infections range from transient to long-lasting.


Asunto(s)
Infecciones Estafilocócicas , Vancomicina , Ratas , Ratones , Animales , Vancomicina/química , Nucleasa Microcócica/farmacología , Staphylococcus aureus , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control
20.
PeerJ ; 11: e15520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361042

RESUMEN

The mammalian spermatozoon has a unique chromatin structure in which the majority of histones are replaced by protamines during spermatogenesis and a small fraction of nucleosomes are retained at specific locations of the genome. The sperm's chromatin structure remains unresolved in most animal species, including the pig. However, mapping the genomic locations of retained nucleosomes in sperm could help understanding the molecular basis of both sperm development and function as well as embryo development. This information could then be useful to identify molecular markers for sperm quality and fertility traits. Here, micrococcal nuclease digestion coupled with high throughput sequencing was performed on pig sperm to map the genomic location of mono- and sub-nucleosomal chromatin fractions in relation to a set of diverse functional elements of the genome, some of which were related to semen quality and early embryogenesis. In particular, the investigated elements were promoters, the different sections of the gene body, coding and non-coding RNAs present in the pig sperm, potential transcription factor binding sites, genomic regions associated to semen quality traits and repeat elements. The analysis yielded 25,293 and 4,239 peaks in the mono- and sub-nucleosomal fractions, covering 0.3% and 0.02% of the porcine genome, respectively. A cross-species comparison revealed positional conservation of the nucleosome retention in sperm between the pig data and a human dataset that found nucleosome enrichment in genomic regions of importance in development. Both gene ontology analysis of the genes mapping nearby the mono-nucleosomal peaks and the identification of putative transcription factor binding motifs within the mono- and the sub- nucleosomal peaks showed enrichment for processes related to sperm function and embryo development. There was significant motif enrichment for Znf263, which in humans was suggested to be a key regulator of genes with paternal preferential expression during early embryogenesis. Moreover, enriched positional intersection was found in the genome between the mono-nucleosomal peaks and both the RNAs present in pig sperm and the RNAs related to sperm quality. There was no co-location between GWAS hits for semen quality in swine and the nucleosomal sites. Finally, the data evidenced depletion of mono-nucleosomes in long interspersed nuclear elements and enrichment of sub-nucleosomes in short interspersed repeat elements.These results suggest that retained nucleosomes in sperm could both mark regulatory elements or genes expressed during spermatogenesis linked to semen quality and fertility and act as transcriptional guides during early embryogenesis. The results of this study support the undertaking of ambitious research using a larger number of samples to robustly assess the positional relationship between histone retention in sperm and the reproductive ability of boars.


Asunto(s)
Histonas , Nucleosomas , Masculino , Animales , Porcinos/genética , Humanos , Histonas/genética , Nucleosomas/genética , Nucleasa Microcócica/genética , Análisis de Semen , Semen/metabolismo , Cromatina/genética , Espermatozoides/metabolismo , Factores de Transcripción/genética , Genómica , Desarrollo Embrionario/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA