Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Oncol ; 40(8): 213, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358701

RESUMEN

Cancer cells require continuous synthesis of nucleotides for their uncontrolled proliferation. Deoxy thymidylate kinase (DTYMK) belongs to the thymidylate kinase family and is concerned with pyrimidine metabolism. DTYMK catalyzes the ATP-based conversion of deoxy-TMP to deoxy-TDP in both de novo and salvage pathways. Different studies demonstrated that DTYMK was increased in various types of cancers such as hepatocellular carcinoma, colon cancer, lung cancer, etc. Increased level of DTYMK was associated with poorer survival and prognosis, stage, grade and size of tumor, cell proliferation, colony formation, enhanced sensitivity to chemotherapy drugs, migration. Some studies were showed that knockdown of DTYMK reduced the signaling pathway of PI3K/AKT and downregulated expression of CART, MAPKAPK2, AKT1 and NRF1. Moreover, some microRNAs could suppress DTYMK expressions. On the other hand based on the TIMER database, the infiltration of macrophages, dendritic cells, neutrophils, B cells, CD4+ T cell and CD8+ T cell is affected by DTYMK. In the present review, we describe the genomic location, protein structure and isoforms of DTYMK and focus on its role in cancer development.


Asunto(s)
Neoplasias Pulmonares , Fosfatidilinositol 3-Quinasas , Humanos , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/uso terapéutico , Neoplasias Pulmonares/patología , Transducción de Señal
2.
Crit Rev Eukaryot Gene Expr ; 26(1): 11-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27278881

RESUMEN

Molecular targeted therapy is an important, novel approach in the treatment of cancer because it interferes with certain molecules involved in carcinogenesis and tumor growth. Examples include monoclonal antibodies, microvesicles, and suicide genes. Several studies have focused on targeted therapies in prostate cancer, which is a serious cause of cancer death in men. We hypothesize that antibody-coated microvesicles can deliver thymidylate kinase, a suicide protein, to prostate cancer cells, potentiating them to death following azidothymidine (AZT) treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida/métodos , Nucleósido-Fosfato Quinasa/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Masculino , Nucleósido-Fosfato Quinasa/farmacología , Nucleósido-Fosfato Quinasa/uso terapéutico
3.
Methods Mol Biol ; 1317: 55-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26072401

RESUMEN

Suicide gene therapy of cancer (SGTC) entails the introduction of a cDNA sequence into tumor cells whose polypeptide product is capable of either directly activating apoptotic pathways itself or facilitating the activation of pharmacologic agents that do so. The latter class of SGTC approaches is of the greater utility in cancer therapy owing to the ability of some small, activated cytotoxic compounds to diffuse from their site of activation into neighboring malignant cells, where they can also mediate destruction. This phenomenon, termed "bystander killing", can be highly advantageous in driving significant tumor regression in vivo without the requirement of transduction of each and every tumor cell with the suicide gene. We have developed a robust suicide gene therapy enzyme/prodrug system based on an engineered variant of the human thymidylate kinase (TMPK), which has been endowed with the ability to drive azidothymidine (AZT) activation. Delivery of this suicide gene sequence into tumors by means of recombinant lentivirus-mediated transduction embodies an SGTC strategy that successfully employs bystander cell killing as a mechanism to achieve significant ablation of solid tumors in vivo. Thus, this engineered TMPK/AZT suicide gene therapy axis holds great promise for clinical application in the treatment of inoperable solid tumors in the neoadjuvant setting. Here we present detailed procedures for the preparation of recombinant TMPK-based lentivirus, transduction of target cells, and various approaches for the evaluation of bystander cell killing effects in SGCT in both in vitro and in vivo models.


Asunto(s)
Efecto Espectador/efectos de los fármacos , Genes Transgénicos Suicidas , Terapia Genética/métodos , Neoplasias/genética , Neoplasias/terapia , Nucleósido-Fosfato Quinasa/genética , Profármacos/farmacología , Zidovudina/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Colorimetría , Expresión Génica , Ingeniería Genética , Células HEK293 , Humanos , Lentivirus/metabolismo , Masculino , Ratones Endogámicos NOD , Ratones SCID , Nucleósido-Fosfato Quinasa/uso terapéutico , Proteínas Recombinantes/metabolismo , Transducción Genética , Transgenes
4.
Neoplasia ; 11(7): 637-50, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19568409

RESUMEN

Gemcitabine is a first-line agent for advanced pancreatic cancer therapy. However, its efficacy is often limited by its poor intracellular metabolism and chemoresistance. To exert its antitumor activity, gemcitabine requires to be converted to its active triphosphate form. Thus, our aim was to improve gemcitabine activation using gene-directed enzyme prodrug therapy based on gemcitabine association with the deoxycytidine kinase::uridine monophosphate kinase fusion gene (dCK::UMK) and small interference RNA directed against ribonucleotide reductase (RRM2) and thymidylate synthase (TS). In vitro, cytotoxicity was assessed by 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide and [(3)H]thymidine assays. Apoptosis-related gene expression and activity were analyzed by reverse transcription-polymerase chain reaction, Western blot, and ELISA. For in vivo studies, the treatment efficacy was evaluated on subcutaneous and orthotopic pancreatic tumor models. Our data indicated that cell exposure to gemcitabine induced a down-regulation of dCK expression and up-regulation of TS and RR expression in Panc1-resistant cells when compared with BxPc3- and HA-hpc2-sensitive cells. The combination of TS/RRM2 small interference RNA with Ad-dCK::UMK induced a 40-fold decrease of gemcitabine IC(50) in Panc1 cells. This strong sensitization was associated to apoptosis induction with a remarkable increase in TRAIL expression and a diminution of gemcitabine-induced nuclear factor-kappaB activity. In vivo, the gemcitabine-based tritherapy strongly reduced tumor volumes and significantly prolonged mice survival. Moreover, we observed an obvious increase of apoptosis and decrease of cell proliferation in tumors receiving the tritherapy regimens. Together, these findings suggest that simultaneous TS/RRM2-gene silencing and dCK::UMK gene overexpression markedly improved gemcitabine's therapeutic activity. Clearly, this combined strategy warrants further investigation.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Desoxicitidina/análogos & derivados , Terapia Genética/métodos , Neoplasias Pancreáticas/terapia , Proteínas Recombinantes de Fusión/uso terapéutico , Adenoviridae/genética , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina Quinasa/genética , Desoxicitidina Quinasa/uso terapéutico , Ensayo de Inmunoadsorción Enzimática , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Vectores Genéticos , Humanos , Ratones , Ratones Desnudos , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/uso terapéutico , Profármacos/administración & dosificación , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Recombinantes de Fusión/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleósido Difosfato Reductasa/genética , Timidilato Sintasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
5.
Chembiochem ; 4(2-3): 143-6, 2003 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-12616626

RESUMEN

The use of nucleoside analogues in anticancer and antiviral treatments is often impaired by the slow intracellular activation of these drugs. This problem can be addressed by the modulation of rate-limiting enzymes in the activation pathways of the nucleoside analogues. Therapeutic strategies based on the combination of optimized activating enzymes and established nucleoside drugs promise significant improvements to traditional chemotherapy.


Asunto(s)
Nucleósidos/síntesis química , Nucleósidos/uso terapéutico , Fosfotransferasas/síntesis química , Profármacos/síntesis química , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Nucleósido-Fosfato Quinasa/uso terapéutico , Profármacos/metabolismo , Profármacos/uso terapéutico , Ingeniería de Proteínas/tendencias , Relación Estructura-Actividad , Zidovudina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA