Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.643
Filtrar
1.
Pestic Biochem Physiol ; 204: 106061, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277377

RESUMEN

Aphis gossypii Glover is one of the most agriculturally important phloem-feeding economic pests, causing tremendous loss in crop yield annually. The hormesis is an important cause of A. gossypii resistance formation, population resurgence, and re-outbreak. However, whether the hormesises induced by different insecticides interact mutually remain largely unclear. In the study, four-generation A. gossypii experiment found that the 24-h sublethal-dose (LC20) sulfoxaflor treatment on G0 significantly increased the net reproductive rate (R0) and fecundity of G1 and G2 generation A. gossypii, but it did not significantly affect the fecundity of G3 and G4 individuals. Transcriptomic analyses revealed that the insecticide-induced significant up-regulation of pathways ribosome, energy metabolism, and the DNA replication and reparation might be responsible for the enhancement of fecundity in G1 and G2 A. gossypii. Notably, G0 exposure to LC20 sulfoxaflor followed by G1 exposure to LC30 deltamethrin resulted in a stronger reproductive stimulation than sulfoxaflor or deltamethrin exposure alone. Our findings provide valuable reference for optimizing sulfoxaflor application in integrated pest management strategies.


Asunto(s)
Áfidos , Hormesis , Insecticidas , Piridinas , Reproducción , Compuestos de Azufre , Animales , Compuestos de Azufre/toxicidad , Compuestos de Azufre/farmacología , Reproducción/efectos de los fármacos , Áfidos/efectos de los fármacos , Áfidos/genética , Hormesis/efectos de los fármacos , Piridinas/toxicidad , Piridinas/farmacología , Insecticidas/toxicidad , Insecticidas/farmacología , Piretrinas/toxicidad , Nitrilos/toxicidad , Nitrilos/farmacología , Fertilidad/efectos de los fármacos
2.
Pestic Biochem Physiol ; 204: 106107, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277411

RESUMEN

The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.


Asunto(s)
Nitrilos , Varroidae , Animales , Abejas/parasitología , Abejas/efectos de los fármacos , Varroidae/fisiología , Varroidae/efectos de los fármacos , Nitrilos/toxicidad , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Fungicidas Industriales/toxicidad
3.
Aquat Toxicol ; 275: 107071, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236548

RESUMEN

Pesticide exposure and its interaction with other natural stressors can play a role in amphibian population declines because disruptions in stress hormone regulatory mechanisms may inhibit immune responses during metamorphosis. Here, we determined the interactive effects of predation risk and sublethal concentration of two pesticides on immunological and physiological responses in tadpoles of the tropical frog Lithobates taylori. Using mesocosms, we used chronic exposure to three levels of chlorothalonil and ß-endosulfan in the presence or absence of Odonate larvae. Our results show that ß-endosulfan in high concentrations reduced the weight of the tadpoles and increased the neutrophil count and corticosterone (CORT) levels. Larval development was accelerated by high concentrations of chlorothalonil. Also, this pesticide in low and high concentrations increases the absolute values of lymphocytes. Tadpoles exposed to chlorothalonil increased the numbers of monocytes (in low concentrations), and lymphocytes (in high and low concentrations). The interactions of the low concentrations of both pesticides with and without the predator's presence also increased the number of lymphocytes. A combination of pesticides increases the number of lymphocytes in the blood due to synergistic cytotoxicity. This study proves that ß- endosulfan elevates circulating CORT and thus generates physiological stress in tadpoles. Given that both pesticides are widely used within the distribution of L. taylori in Costa Rica, it is likely that tadpoles' development and immune function are altered by pesticide use. In combination with stressors such as emerging diseases and altered precipitation regimes, widespread agrochemical uses likely caused this species enigmatic decline in recent decades.


Asunto(s)
Endosulfano , Larva , Nitrilos , Ranidae , Contaminantes Químicos del Agua , Animales , Nitrilos/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Ranidae/fisiología , Ranidae/inmunología , Endosulfano/toxicidad , Corticosterona/sangre , Conducta Predatoria/efectos de los fármacos
4.
Braz J Biol ; 84: e281418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258721

RESUMEN

Little information is available on the adverse effects of expired pesticides on the environment, so it is essential to characterize the risk of these chemicals to non-target organisms. Therefore, this work aims to estimate and compare the acute toxicity (LD50) of unexpired and expired formulations of malathion, chlorpyrifos, and lambda-cyhalothrin in rats and to determine their residues in the liver and kidneys of treated rats. This is the first study to investigate the toxic effects of expired pesticides on rats. The acute toxicity of expired lambda-cyhalothrin was higher than that of non-expired rats, while the opposite was observed in rats treated with malathion and chlorpyrifos. All formulations tested caused clinical signs of toxicity in the treated rats. The data showed that some expired formulations significantly affected body weight and estimated vital signs compared to non-expired pesticides. The data showed that the highest residues were found in the liver and kidneys of rats treated with both malathion formulations, followed by chlorpyrifos; however, the lowest residues were found in rats treated with lambda-cyhalothrin, which can be referred to as LD50 values of the insecticides tested. The residues detected after the 10th dose gradually decreased at the end of the recovery period, and their losses ranged from 80.0 to 95.4% in the liver and from 92.3 to 99.99% (undetectable). The results show that the toxic effects of expired and non-expired formulations are different. This underlines the need to dispose of expired compounds carefully to prevent their discharge into the ecosystem.


Asunto(s)
Cloropirifos , Insecticidas , Riñón , Hígado , Malatión , Nitrilos , Piretrinas , Animales , Riñón/efectos de los fármacos , Riñón/química , Insecticidas/toxicidad , Hígado/efectos de los fármacos , Cloropirifos/toxicidad , Piretrinas/toxicidad , Malatión/toxicidad , Dosificación Letal Mediana , Nitrilos/toxicidad , Masculino , Ratas Wistar , Pruebas de Toxicidad Aguda , Residuos de Plaguicidas/toxicidad , Ratas
5.
Environ Monit Assess ; 196(10): 925, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264478

RESUMEN

This is the first report on high pesticide tolerance displayed by the microbiota isolated from the sediments of two high-altitude lakes, located in the Singalila National Park, Singalila Ridge of the Himalayas. Given the remote location of these lakes, direct exposure to chemical pesticides is highly unlikely. However, the high tolerance to commonly used pesticides exhibited, i.e. up to 250 mg/ml, suggests repeated exposure and contamination of the lakes. Microbial growth in the presence of varying concentrations of the pesticides, namely, emamectin benzoate, thiamethoxam, quinalphos, deltamethrin, spiromesifen, flubendiamide, monocrotophos, fipronil, fenazaquin and phorate, was tested. Results showed resistance to all pesticides except fenazaquin and fipronil, up to 250 mg/ml. For the latter two, tolerance was displayed up to a concentration of 40 mg/ml. Tolerance may potentially result from the transport and deposition of pesticides from nearby locations, particularly the tea plantations of Darjeeling and Eastern Nepal. This may create great ecological risks as these lakes are an important water source for endemic wildlife of this protected area. They also hold great significance to the religious sentiment of the local tribes who worship these lakes as sacred. The study highlights the need for monitoring pesticide contamination in such pristine high-altitude environments and the mechanisms of long-range pollutant transport.


Asunto(s)
Altitud , Monitoreo del Ambiente , Lagos , Plaguicidas , Contaminantes Químicos del Agua , Lagos/microbiología , Lagos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Nepal , Nitrilos/toxicidad , Microbiota/efectos de los fármacos , Piretrinas , Himalayas , Ivermectina/análogos & derivados
6.
Environ Sci Technol ; 58(35): 15816-15826, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39166926

RESUMEN

Recently, seven dihalohydroxybenzonitriles (diHHBNs) have been determined as concerning nitrogenous aromatic disinfection byproducts (DBPs) in drinking water. Herein, eight new monohalohydroxybenzonitriles (monoHHBNs), including 3-chloro-2-hydroxybenzonitrile, 5-chloro-2-hydroxybenzonitrile, 3-chloro-4-hydroxybenzonitrile, 3-bromo-2-hydroxybenzonitrile, 5-bromo-2-hydroxybenzonitrile, 3-bromo-4-hydroxybenzonitrile, 5-iodo-2-hydroxybenzonitrile, and 3-iodo-4-hydroxybenzonitrile, were detected and identified in drinking water for the first time. Thereafter, the relative concentration-cytotoxicity contribution of each HHBN was calculated based on the acquired occurrence level and cytotoxicity data in this study, the genome-scale cytotoxicity mechanism was explored, and a quantitative structure-activity relationship (QSAR) model was developed. Results indicated that new monoHHBNs were present in drinking water at concentrations of 0.04-1.83 ng/L and exhibited higher cytotoxicity than some other monohalogenated aromatic DBPs. Notably, monoHHBNs showed concentration-cytotoxicity contribution comparable to diHHBNs, which have been previously identified as potential toxicity drivers in drinking water. Transcriptomic analysis revealed immunotoxicity and genotoxicity as dominant cytotoxicity mechanisms for HHBNs in Chinese hamster ovary (CHO-K1) cells, with potential carcinogenic effects. The QSAR model suggested oxidative stress and cellular uptake efficiency as important factors for their cytotoxicity, highlighting the importance of potential iodinated HHBNs in drinking water, such as 3,5-diiodo-2-hydroxybenzonitrile, for future studies. These findings are meaningful for better understanding the health risk and toxicological significance of HHBNs in drinking water.


Asunto(s)
Desinfección , Agua Potable , Agua Potable/química , Animales , Contaminantes Químicos del Agua/toxicidad , Cricetulus , Células CHO , Desinfectantes/toxicidad , Nitrilos/toxicidad , Relación Estructura-Actividad Cuantitativa , Purificación del Agua
7.
Arch Environ Contam Toxicol ; 87(2): 105-113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088044

RESUMEN

Wetlands play a crucial role in providing valuable ecosystem services, including the removal of various pollutants. In agricultural basins, wetlands are exposed to agrochemical loads. This study aims to assess the attenuation effect of the ubiquitous macrophyte Azolla spp. on the toxicity of lambda-cyhalothrin to sensitive aquatic organisms. An indoor mesocosm experiment was conducted to compare the concentration of lambda-cyhalothrin at different time points after pesticide application in vegetated and unvegetated treatments, including a control without pesticide addition. Toxicity tests were performed throughout the experiment on three organisms: a fish (Cnesterodon decemmaculatus), a macroinvertebrate (Hyalella curvispina), and an amphibian (Boana pulchella). The results demonstrated that lambda-cyhalothrin concentration and toxicity in water were significantly lower in the Azolla spp. treatment. Furthermore, the half-life of lambda-cyhalothrin decreased from 1.2 days in the unvegetated treatment to 0.4 days in the vegetated treatment. The vegetated treatment also resulted in a significantly lower mortality rate for both H. curvispina and C. decemmaculatus. However, no mortality was observed in B. pulchella for any of the treatments. Sublethal effects were observed in this organism, such as lateral bending of the tail and impairment of the ability to swim, which were attenuated in the vegetated treatment. We conclude that Azolla spp. can effectively reduce the concentration and toxicity of lambda-cyhalothrin, suggesting its potential use in farm-scale best management practices to mitigate the effects of pesticide loads from adjacent crops.


Asunto(s)
Organismos Acuáticos , Nitrilos , Piretrinas , Contaminantes Químicos del Agua , Piretrinas/toxicidad , Nitrilos/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/efectos de los fármacos , Humedales , Insecticidas/toxicidad , Peces/fisiología , Anfípodos/efectos de los fármacos , Anfípodos/fisiología
8.
Pestic Biochem Physiol ; 203: 106009, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084775

RESUMEN

Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , Nitrilos , Piretrinas , Spodoptera , Animales , Piretrinas/farmacología , Piretrinas/toxicidad , Spodoptera/efectos de los fármacos , Spodoptera/genética , Nitrilos/toxicidad , Nitrilos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Insecticidas/farmacología , Insecticidas/toxicidad , Resistencia a los Insecticidas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Interferencia de ARN , Inactivación Metabólica , Larva/efectos de los fármacos , Larva/genética
9.
J Hazard Mater ; 476: 135176, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029193

RESUMEN

Chlorothalonil (CHT) is a widely used antifungal agent and is reported to be a sensitizer that can cause allergic contact dermatitis (ACD). ACD initiation is associated with various innate immune cell contributions and is usually accompanied by persistent inflammation, which is a potential contributing factor to skin damage. However, detailed information on the mechanisms by which CHT induces skin sensitization and damage is still insufficient. This study focused on investigating the possible sensitization process and mechanism of CHT and the adverse effects of repeated CHT exposure. CHT activates dendritic cells and promotes the proliferation of lymph cells in the skin sensitization phase, causing severe inflammation. Keratinocytes activate the NLRP3 inflammasome pathway to cause inflammation during CHT treatment, and macrophages also secrete inflammatory cytokines. In addition, CHT-induced inflammation triggered skin wrinkles, decreased epidermal thickness and decreased collagen. Cell experiments also showed that repeated exposure to CHT led to cell proliferation inhibition and senescence, and CHT-induced autophagy dysfunction was not only the reason for inflammation but also for senescence. This study defined the possible process through which CHT is involved in the skin sensitization phase and elucidated the mechanism of CHT-induced inflammation in innate immune responses. We also determined that repeated CHT exposure caused persistent inflammation, ultimately leading to skin aging.


Asunto(s)
Queratinocitos , Nitrilos , Envejecimiento de la Piel , Nitrilos/toxicidad , Animales , Envejecimiento de la Piel/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Rutas de Resultados Adversos , Proliferación Celular/efectos de los fármacos , Piel/efectos de los fármacos , Piel/inmunología , Dermatitis Alérgica por Contacto/inmunología , Autofagia/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Fungicidas Industriales/toxicidad , Humanos , Citocinas/metabolismo , Femenino , Inmunidad Innata/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación/inducido químicamente
10.
Environ Geochem Health ; 46(9): 318, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001898

RESUMEN

Bell peppers, a globally significant crop, face infestations from various pests. In a study, bell peppers were treated with deltamethrin, ethion, fenazaquin, and fenpropathrin at recommended and double the doses, repeated twice with a 10-day interval. The QuEChERS method underwent validation for linearity, matrix match, accuracy, and precision in bell pepper matrices for residue analysis. The limit of detection for the tested pesticides on bell peppers was 0.01 mg/L, with a quantification limit of 0.05 mg/L. Recovery studies showed a range of 94.80% to 102.80%. Initial deposits of deltamethrin, ethion, fenazaquin, and fenpropathrin on bell peppers at recommended doses were 0.371, 1.237, 0.617, and 0.640 mg/L, respectively, and at double doses were 0.712, 1.945, 1.221, and 1.189 mg/L, respectively. Safe waiting periods of 10, 11, 10, and 8 days were suggested for deltamethrin, ethion, fenazaquin, and fenpropathrin, respectively. The corresponding half-lives for the pesticides were 1.96, 1.79, 2.06, and 1.69 days, all following first-order dissipation kinetics. Dietary risk assessment indicated Hazard Quotients (HQ) below 1 and Theoretical Maximum Daily Intake (TMDI) below Acceptable Daily Intake (ADI) and Maximum Permissible Intake (MPI) levels. Therefore, at their recommended doses, the pesticides were deemed safe for bell pepper cultivation.


Asunto(s)
Capsicum , Contaminación de Alimentos , Insecticidas , Residuos de Plaguicidas , Piretrinas , Capsicum/química , Residuos de Plaguicidas/análisis , Piretrinas/análisis , Contaminación de Alimentos/análisis , Cinética , Medición de Riesgo , Humanos , Nitrilos/toxicidad , Nitrilos/análisis , Exposición Dietética
11.
Ecotoxicology ; 33(7): 818-829, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990494

RESUMEN

Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.


Asunto(s)
Áfidos , Insecticidas , Nitrilos , Piretrinas , Temperatura , Tiametoxam , Animales , Áfidos/efectos de los fármacos , Áfidos/fisiología , Insecticidas/toxicidad , Piretrinas/toxicidad , Nitrilos/toxicidad , Tiametoxam/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Reproducción/efectos de los fármacos , Hormesis
12.
Environ Pollut ; 358: 124485, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960115

RESUMEN

New mixtures of pesticides are being placed on the market to increase the spectrum of phytosanitary action. Thus, the eco(geno)toxic effects of the new commercial mixture named Platinum Neo, as well as its constituents the neonicotinoid Thiamethoxam and the pyrethroid Lambda-Cyhalothrin, were investigated using the species Daphnia magna, Raphidocelis subcapitata, Danio rerio, and Allium cepa L. The lowest- and no-observed effect concentration (LOEC and NOEC) were measured in ecotoxicological tests. While Thiamethoxam was ecotoxic at ppm level, Lambda-Cyhalothrin and Platinum Neo formulation were ecotoxic at ppb level. The mitotic index (MI), chromosomal aberrations and micronucleus [MN] frequency were measured as indicators of phytogenotoxicity in A. cepa plants exposed for 12 h to the different insecticides and their mixture under different dilutions. There were significant alterations in the MI and MN frequency in comparison with the A. cepa negative control group, with Thiamethoxam, Lambda-Cyhalothrin, and Platinum Neo treatments all significantly reducing MI and increasing MN frequency. Thus, MI reduction was found at 13.7 mg L-1 for Thiamethoxam, 0.8 µg L-1 for Lambda-Cyahalothrin, and 2.7:2 µg L-1 for Platinum Neo, while MN induction was not observed at 14 mg L-1 for Thiamethoxam, 0.8 µg L-1 for Lambda-Cyahalothrin, and 1.4:1 µg L-1 for Platinum Neo. The insecticide eco(geno)toxicity hierarchy was Platinun Neo > Lambda-Cyhalothrin > Thiamethoxam, and the organism sensitivity hierarchy was daphnids > fish > algae > A. cepa. Eco(geno)toxicity studies of new pesticide mixtures can be useful for management, risk assessment, and avoiding impacts of these products on living beings.


Asunto(s)
Daphnia , Insecticidas , Nitrilos , Cebollas , Piretrinas , Tiametoxam , Piretrinas/toxicidad , Tiametoxam/toxicidad , Animales , Insecticidas/toxicidad , Nitrilos/toxicidad , Cebollas/efectos de los fármacos , Daphnia/efectos de los fármacos , Neonicotinoides/toxicidad , Pez Cebra , Tiazoles/toxicidad , Oxazinas/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Nitrocompuestos/toxicidad , Pruebas de Micronúcleos
13.
Environ Res ; 261: 119700, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39074770

RESUMEN

The proliferation of nitrile mixtures has significantly exacerbated environmental pollution. This study employed metagenomic analysis to investigate the short-term effects of nitrile mixtures on soil microbial communities and their metabolic functions. It also examined the responses of indigenous microorganisms and their functional metabolic genes across various land use types to different nitrile stressors. The nitrile compound treatments in this study resulted in an increase in the abundance of Proteobacteria, Actinobacteria, and Firmicutes, while simultaneously reducing overall microbial diversity. The key genes involved in the denitrification process, namely, nirK, nosZ, and hao, were down-regulated, and NO3--N, NO2--N, and NH4+-N concentrations decreased by 7.7%-12.3%, 11.1%-21.3%, and 11.3%-30.9%, respectively. Notably, pond sludge samples exhibited a significant increase in the abundance of nitrogen fixation-related genes nifH, vnfK, vnfH, and vnfG following exposure to nitrile compounds. Furthermore, the fumarase gene fumD, which is responsible for catalyzing fumaric acid into malic acid in the tricarboxylic acid cycle, showed a substantial increase of 7.2-10.6-fold upon nitrile addition. Enzyme genes associated with the catechol pathway, including benB-xylY, dmpB, dmpC, dmpH, and mhpD, displayed increased abundance, whereas genes related to the benzoyl-coenzyme A pathway, such as bcrA, dch, had, oah, and gcdA, were notably reduced. In summary, complex nitrile compounds were found to significantly reduce the species diversity of soil microorganisms. Nitrile-tolerant microorganisms demonstrated the ability to degrade and adapt to nitrile pollutants by enhancing functional enzymes involved in the catechol pathway and fenugreek conversion pathway. This study offers insights into the specific responses of microorganisms to compound nitrile contamination, as well as valuable information for screening nitrile-degrading microorganisms and identifying nitrile metabolic enzymes.


Asunto(s)
Metagenoma , Nitrilos , Microbiología del Suelo , Contaminantes del Suelo , Nitrilos/toxicidad , Contaminantes del Suelo/toxicidad , Metagenoma/efectos de los fármacos , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética
14.
J Hazard Mater ; 476: 135213, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39018602

RESUMEN

Deltamethrin is a classical pyrethroid insecticide that is frequently detected in aquatic environments and organisms. Furthermore, deltamethrin has been detected in samples related to human health and is a potential risk to public health. This study aimed to investigate the mechanism of cardiotoxicity induced by deltamethrin. Zebrafish were exposed to 0.005, 0.05, or 0.5 µg/L deltamethrin for 28 days. The results showed a significant reduction in male reproduction compared to female reproduction. Additionally, the heart rate decreased by 15.75 % in F1 after parental exposure to 0.5 µg/L deltamethrin. To evaluate cardiotoxicity, deltamethrin was administered to the zebrafish embryos. By using miRNA-Seq and bioinformatics analysis, it was discovered that miR-29b functions as a toxic regulator by targeting dnmts. The overexpression of miR-29b and inhibition of dnmts resulted in cardiac abnormalities, such as pericardial edema, bradycardia, and abnormal expression of genes related to the heart. Similar changes in the levels of miR-29b and dnmts were also detected in the gonads of F0 males and F1 embryos, confirming their effects. Overall, the results suggest that deltamethrin may have adverse effects on heart development in early-stage zebrafish and on reproduction in adult zebrafish. Furthermore, epigenetic modifications may threaten the cardiac function of offspring.


Asunto(s)
Cardiotoxicidad , Epigénesis Genética , Insecticidas , MicroARNs , Nitrilos , Piretrinas , Pez Cebra , Animales , Femenino , Masculino , Embrión no Mamífero/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Insecticidas/toxicidad , MicroARNs/genética , Nitrilos/toxicidad , Piretrinas/toxicidad , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
15.
Sci Total Environ ; 946: 174313, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38964406

RESUMEN

Nervous system diseases are a global health problem, and with the increase in the elderly population around the world, their incidence will also increase. Harmful substances in the environment are closely related to the occurrence of nervous system diseases. China is a large agricultural country, and thus the insecticide cyfluthrin has been widely used. Cyfluthrin is neurotoxic, but the mechanism of this injury is not clear. Inflammation is an important mechanism for the occurrence of nervous system diseases. Mitochondria are the main regulators of the inflammatory response, and various cellular responses, including autophagy, directly affect the regulation of inflammatory processes. Mitochondrial damage is related to mitochondrial quality control (MQC) and PTEN-induced kinase 1 (PINK1). As an anti-inflammatory factor, stimulator of interferon genes (STING) participates in the regulation of inflammation. However, the relationship between STING and mitochondria in the process of cyfluthrin-induced nerve injury is unclear. This study established in vivo and in vitro models of cyfluthrin exposure to explore the role of MQC and to clarify the mechanism of action of STING and PINK1. Our results showed that cyfluthrin can increase the reactive oxygen species (ROS) level, resulting in mitochondrial damage and inflammation. In this process, an imbalance in MQC leads to the aggravation of mitochondrial damage, and high STING expression drives the occurrence of inflammation. We established a differential expression model of STING and PINK1 to further determine the underlying mechanism and found that the interaction between STING and PINK1 regulates MQC to affect the levels of mitochondrial damage and inflammation. When STING and PINK1 expression are downregulated, mitochondrial damage and STING-induced inflammation are significantly alleviated. In summary, a synergistic effect between STING and PINK1 on cyfluthrin-induced neuroinflammation may exist, which leads to an imbalance in MQC by inhibiting mitochondrial biogenesis and division/fusion, and PINK1 can reduce STING-driven inflammation.


Asunto(s)
Mitocondrias , Nitrilos , Proteínas Quinasas , Piretrinas , Piretrinas/toxicidad , Mitocondrias/efectos de los fármacos , Animales , Nitrilos/toxicidad , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Enfermedades Neuroinflamatorias/inducido químicamente , Insecticidas/toxicidad , Ratones , Especies Reactivas de Oxígeno/metabolismo , Inflamación/inducido químicamente , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
16.
Pestic Biochem Physiol ; 203: 106008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084774

RESUMEN

Deltamethrin (DLM) is a newer kind of insecticide that is used on pets, livestock, and crops, as well as to combat malaria vectors and household pests. It belongs to the synthetic pyrethroid group and is being promoted as an alternative to organophosphate chemicals due to its persistent and destructive effects. The current study aimed to evaluate the impact of sub-chronic oral exposure to DLM on autoimmune activity in rats. Three groups of male albino rats (15 rats/group) including the control group, the ethanol-treated group (1 ml/rat), and the DLM-treated group (5 mg/kg b.w). Samples of blood were taken from all groups at 4-, 8- and 12-week intervals for the determination of hematological, cytokines, and immunological parameters. T lymphocyte subsets and Treg lymphocytes were determined in serum using flow cytometric acquisition. The results revealed that DLM significantly increased TNF-α, IL-33, IL-6, IL-17, IgG, IgM, WBCs, differential count, and platelets while decreasing Hb concentration and RBCs. Additionally, DLM decreased the number of T-cell subsets (CD3, CD4, CD5, and CD8) and Treg lymphocytes. All of these impacts became more severe over time. It is possible to conclude that the sub-chronic oral exposure to DLM disturbed autoimmune activity through the disturbances in immunological indices, CDs subset Treg lymphocytes.


Asunto(s)
Insecticidas , Nitrilos , Piretrinas , Animales , Piretrinas/toxicidad , Piretrinas/administración & dosificación , Nitrilos/toxicidad , Nitrilos/farmacología , Nitrilos/administración & dosificación , Masculino , Ratas , Insecticidas/toxicidad , Citocinas/sangre , Citocinas/metabolismo , Autoinmunidad/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/sangre , Ratas Wistar
17.
Sci Total Environ ; 948: 174710, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38997031

RESUMEN

The simultaneous or sequential application of pesticides such as triazophos (TRI) and fenvalerate (FEN) in agriculture results in their residues co-existing in the environments. However, the impact of co-exposure to TRI and FEN on the gut-liver axis, along with the underlying mechanisms, remains unclear. Our results showed that exposure to FEN (96 h-LC50 value of 0.096 mg a.i. L-1) was more toxic to adult zebrafish compared to TRI (96 h-LC50 value of 6.75 mg a.i. L-1). Furthermore, the study aimed to reveal the toxic potencies of individual and combined exposure to TRI and FEN on the liver-gut axis in zebrafish (Danio rerio). Our results also indicated that pesticide exposure decreased tight junction molecule expression and increased intestinal inflammatory molecule expression in D. rerio, with co-exposure demonstrating enhanced toxicity. Co-exposure altered gut flora structure and species abundance. RNA-Seq sequencing revealed changes in liver gene expressions, particularly enrichment of P53 signaling. Molecular docking demonstrated FEN's stronger binding to P53 and Caspase3, correlating with its higher toxicity. Liver pathology confirmed exacerbated liver damage by individual and co-exposures, with co-exposure inducing more severe liver injury. qPCR results showed increased pro-apoptotic gene expression and decreased anti-apoptotic gene expression, with co-exposure exhibiting an interactive effect. Overall, this study identifies specific targets and pathways influenced by these pesticides, revealing toxicity mechanisms involving the gut-liver axis, which is crucial for environmental risk assessment of pesticide mixtures.


Asunto(s)
Hígado , Nitrilos , Piretrinas , Triazoles , Contaminantes Químicos del Agua , Pez Cebra , Animales , Piretrinas/toxicidad , Nitrilos/toxicidad , Triazoles/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Organotiofosfatos/toxicidad , Insecticidas/toxicidad , Simulación del Acoplamiento Molecular
18.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062877

RESUMEN

Metal-free, low-cost, organic photocatalytic graphitic carbon nitride (g-C3N4) has become a promising and impressive material in numerous scientific fields due to its unique physical and chemical properties. As a semiconductor with a suitable band gap of ~2.7 eV, g-C3N4 is an active photocatalytic material even after irradiation with visible light. However, information regarding the toxicity of g-C3N4 is not extensively documented and there is not a comprehensive understanding of its potential adverse effects on human health or the environment. In this context, the term "toxicity" can be perceived in both a positive and a negative light, depending on whether it serves as a benefit or poses a potential risk. This review shows the applications of g-C3N4 in sensorics, electrochemistry, photocatalysis, and biomedical approaches while pointing out the potential risks of its toxicity, especially in human and environmental health. Finally, the future perspective of g-C3N4 research is addressed, highlighting the need for a comprehensive understanding of the toxicity of this material to provide safe and effective applications in various fields.


Asunto(s)
Grafito , Compuestos de Nitrógeno , Grafito/química , Grafito/toxicidad , Humanos , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/toxicidad , Catálisis , Animales , Nitrilos/química , Nitrilos/toxicidad , Luz
19.
Chemosphere ; 362: 142887, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025308

RESUMEN

Pieris rapae (Lepidoptera: Pieridae) poses a significant threat to Brassicaceae crops, leading to substantial losses annually. Repeated insecticide applications are widely used to protect crops and increase the resistance of P. rapae. Exploring the biochemical and molecular basis of insecticide tolerance in P. rapae is crucial for achieving effective insect suppuration and implementing resistance control strategies. In our research, emamectin benzoate (EBZ) resistance was developed in P. rapae strain through selective pressure over 15 generations. Moreover, the biochemical mechanisms underlying resistance to EBZ and its potential cross-resistance to other insecticides were studied. Additionally, the expression levels of cytochrome P450 (CYP450) and glutathione-s-transferase (GST) genes in P. rapae were quantitatively assessed upon exposure to EBZ using real-time PCR. Our data exhibited that the LC50 value of susceptible strain (Sus) and EBZ resistance strain (EBZ-R) were 0.009 and 8.09 mg/L, with a resistance ratio (RR) reaching 898.8-fold. The EBZ-R stain displayed notably low cross-resistance to lambda-cyhalothrin, spinetoram, and cypermethrin. However, it demonstrated a moderate level of cross-resistance to deltamethrin. Conversely, no cross-resistance was noted to chlorantraniliprole and indoxacarb. Notably, enzyme inhibitors of detoxification enzymes revealed that piperonyl butoxide (PBO) and diethyl maleate (DEM) enhanced the EBZ toxicity to the resistant strain, indicating the potential involvement of CYP450 and GST in avermectin resistance. A remarkable enhancement in CYP450 and GST activity was observed in the EBZ-R stain. CYP450 and GST genes are upregulated in the EBZ-R stain compared to the Sus strain, which serves as a basis for comprehending the mechanism behind P. rapae resistance to EBZ. The molecular docking analysis demonstrated that EBZ has a high binding affinity with CYP6AE120 and PrGSTS1 with docking energy values of -20.19 and -22.57 kcal/mol, respectively. Our findings offer valuable insights into crafting efficient strategies to monitor and manage resistance in P. rapae populations in Egypt.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Glutatión Transferasa , Resistencia a los Insecticidas , Insecticidas , Ivermectina , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ivermectina/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Piretrinas/toxicidad , Piretrinas/farmacología , Mariposas Diurnas/efectos de los fármacos , Mariposas Diurnas/genética , Nitrilos/toxicidad , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
20.
Sci Total Environ ; 949: 175125, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084359

RESUMEN

Declines in pollinator health are frequently hypothesized to be the combined result of multiple interacting biotic and abiotic stressors; namely, nutritional limitations, pesticide exposure, and infection with pathogens and parasites. Despite this hypothesis, most studies examining stressor interactions have been constrained to two concurrent factors, limiting our understanding of multi-stressor dynamics. Using honey bees as a model, we addressed this gap by studying how variable diet, field-realistic levels of multiple pesticides, and virus infection interact to affect survival, infection intensity, and immune and detoxification gene expression. Although we found evidence that agrochemical exposure (a field-derived mixture of chlorpyrifos and two fungicides) can exacerbate infection and increase virus-induced mortality, this result was nutritionally-dependent, only occurring when bees were provided artificial pollen. Provisioning with naturally-collected polyfloral pollen inverted the effect, reducing virus-induced mortality and suggesting a hormetic response. To test if the response was pesticide specific, we repeated our experiment with a pyrethroid (lambda-cyhalothrin) and a neonicotinoid (thiamethoxam), finding variable results. Finally, to understand the underpinnings of these effects, we measured viral load and expression of important immune and detoxification genes. Together, our results show that multi-stressor interactions are complex and highly context-dependent, but have great potential to affect bee health and physiology.


Asunto(s)
Plaguicidas , Abejas/fisiología , Abejas/virología , Abejas/efectos de los fármacos , Animales , Plaguicidas/toxicidad , Nitrilos/toxicidad , Insecticidas/toxicidad , Cloropirifos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA