Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.015
Filtrar
1.
Front Immunol ; 15: 1423784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238645

RESUMEN

Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.


Asunto(s)
Comunicación Celular , Nefropatías Diabéticas , Exosomas , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Humanos , Animales , Exosomas/metabolismo
2.
Int J Med Sci ; 21(11): 2201-2207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239549

RESUMEN

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, whose complex etiology involves a genetic component. Growth arrest-specific 5 (GAS5), a long noncoding RNA (lncRNA) gene, has been recently shown to regulate renal fibrosis. Here, we aimed to explore the potential role of GAS5 gene polymorphisms in the predisposition to DKD. One single-nucleotide (rs55829688) and one insertion/deletion polymorphism (rs145204276) of GAS5 gene were surveyed in 778 DKD cases and 788 DKD-free diabetic controls. We demonstrated that diabetic subjects who are heterozygous at rs55829688 (TC; AOR, 1.737; 95% CI, 1.028-2.937; p=0.039) are more susceptible to advanced DKD but not early-staged DKD, as compared to diabetic subjects who are homozygous for the major allele of rs55829688 (TT). Carriers of at least one minor allele (C) of rs55829688 (TC and CC; AOR, 1.317; 95% CI, 1.023-1.696; p=0.033) more frequently suffer from advanced DKD than do those homozygotes for the major allele (TT). Furthermore, in comparison to those who do not carry the minor allele of rs55829688 (TT), advanced DKD patients possessing at least one minor allele of rs55829688 (TC and CC) exhibited a lower glomerular filtration rate, revealing an impact of rs55829688 on renal co-morbidities of diabetes. In conclusion, our data indicate an association of GAS5 gene polymorphisms with the progression of DKD.


Asunto(s)
Nefropatías Diabéticas , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Masculino , Persona de Mediana Edad , Femenino , Anciano , Estudios de Casos y Controles , Alelos , Adulto , Estudios de Asociación Genética
3.
Nat Commun ; 15(1): 7963, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261453

RESUMEN

Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin ß1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin ß1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin ß1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.


Asunto(s)
Senescencia Celular , Nefropatías Diabéticas , Factor XII , Integrina beta1 , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Animales , Femenino , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Factor XII/metabolismo , Factor XII/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Transducción de Señal
4.
Nat Commun ; 15(1): 8038, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271683

RESUMEN

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.


Asunto(s)
Nefropatías Diabéticas , Túbulos Renales Proximales , Factor 6 Similar a Kruppel , Podocitos , Transducción de Señal , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Podocitos/metabolismo , Podocitos/patología , Animales , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , Humanos , Ratones , Factor 6 Similar a Kruppel/metabolismo , Factor 6 Similar a Kruppel/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
5.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273385

RESUMEN

The aim of our study was to investigate an association between polymorphisms of either the VEGF (vascular endothelial growth factor) gene (rs6921438) or the KDR (kinase insert domain receptor) gene (rs2071559, rs2305948) and DN (diabetic nephropathy) in Caucasians with T2DM (type 2 diabetes mellitus). The second aim was to investigate the effect of either the VEGF gene (rs6921438) or the KDR gene (rs2071559, rs2305948) on the immune expression of either VEGF or KDR in the renal tissues of T2DM subjects (to test the functional significance of tested polymorphisms). The study included 897 Caucasians with T2DM for at least ten years (344 patients with DN and 553 patients without DN). Each subject was genotyped and analyzed for KDR (rs1617640, rs2305948) and VEGF (rs6921438) polymorphisms. Kidney tissue samples taken from 15 subjects with T2DM (autopsy material) were immunohistochemically stained for the expression of VEGF and KDR. We found that the rs2071559 KDR gene was associated with an increased risk of DN. In addition, the GG genotype of the rs6921438 VEGF gene had a protective effect. We found a significantly higher numerical area density of VEGF-positive cells in T2DM subjects with the A allele of the rs6921438-VEGF compared to the homozygotes for wild type G allele (7.0 ± 2.4/0.1 mm2 vs. 1.24 ± 0.5/0.1 mm2, respectively; p < 0.001). Moreover, a significantly higher numerical area density of KDR-positive cells was found in T2DM subjects with the C allele of rs2071559 (CC + CT genotypes) compared to the homozygotes for wild type T allele (9.7± 3.2/0.1 mm2 vs. 1.14 ± 0.5/0.1 mm2, respectively; p < 0.001) To conclude, our study showed that the presence of the C allele of the rs2071559 KDR gene was associated with a higher risk of DN, while the G allele of the rs6921438-VEGF conferred protection against DN in Slovenian T2DM subjects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Población Blanca , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Factor A de Crecimiento Endotelial Vascular/genética , Femenino , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Persona de Mediana Edad , Población Blanca/genética , Anciano , Genotipo , Frecuencia de los Genes , Alelos
6.
BMC Nephrol ; 25(1): 297, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251943

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS: The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS: HG induced an increase in the expression of P4HB and TGFß, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. CONCLUSION: P4HB regulated the TGFß/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Fibrosis , Glucosa , Túbulos Renales , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Humanos , Proteína smad3/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/farmacología , Glucosa/toxicidad , Glucosa/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Factor de Crecimiento Transformador beta/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Línea Celular , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Especies Reactivas de Oxígeno/metabolismo
7.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273100

RESUMEN

Autophagy is the primary intracellular degradation system, and it plays an important role in many biological and pathological processes. Studies of autophagy involvement in developmental processes are important for understanding various processes. Among them are fibrosis, degenerative diseases, cancer development, and metastasis formation. Diabetic kidney disease is one of the main causes of chronic kidney disease and end-stage renal failure. The aim of this study was to investigate the immunohistochemical expression patterns of LC3B, LAMP2A, and GRP78 during different developmental stages of early-developing human kidneys and in samples from patients with type II diabetes mellitus. During the 7/8th DW, moderate expression of LC3B and LAMP2A and strong expression of GRP78 were found in the mesonephric glomeruli and tubules. In the 9/10th DW, the expression of LC3B and LAMP2A was even more pronounced in the mesonephric tubules. LC3B, LAMP2A, and GRP78 immunoreactivity was also found in the paramesonephric and mesonephric ducts and was stronger in the 9/10th DW compared with the 7/8th DW. In addition, the expression of LC3B, LAMP2A, and GRP78 also appeared in the mesenchyme surrounding the paramesonephric duct in the 9/10th DW. In the 15/16th DW, the expression of LC3B in the glomeruli was weak, that of LAMP2A was moderate, and that of GRP78 was strong. In the tubuli, the expression of LC3B was moderate, while the expression of LAMP2A and GRP78 was strong. The strongest expression of LC3B, LAMP2A, and GRP78 was observed in the renal medullary structures, including developing blood vessels. In postnatal human kidneys, the most extensive LC3B, LAMP2A, and GRP78 expression in the cortex was found in the epithelium of the proximal convoluted tubules, with weak to moderate expression in the glomeruli. The medullary expression of LC3B was weak, but the expression of LAMP2A and GRP78 was the strongest in the medullary tubular structures. Significantly lower expression of LC3B was found in the glomeruli of the diabetic patients in comparison with the nondiabetic patients, but there was no difference in the expression of LC3B in the tubule-interstitial compartment. The expression of LAMP2A was significantly higher in the tubule-interstitial compartments of the diabetic patients in comparison with the nondiabetic patients, while its expression did not differ in the glomeruli. Extensive expression of GRP78 was found in the glomeruli and the tubule-interstitial compartments, but there was no difference in the expression between the two groups of patients. These data give us new information about the expression of LC3B, LAMP2A, and GRP78 during embryonic, fetal, and early postnatal development. The spatiotemporal expression of LC3B, LAMP2A, and GRP78 indicates the important role of autophagy during the early stages of renal development. In addition, our data suggest a disturbance in autophagy processes in the glomeruli and tubuli of diabetic kidneys as an important factor in the pathogenesis of diabetic kidney disease.


Asunto(s)
Autofagia , Nefropatías Diabéticas , Chaperón BiP del Retículo Endoplásmico , Riñón , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas Asociadas a Microtúbulos , Humanos , Chaperón BiP del Retículo Endoplásmico/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Riñón/metabolismo , Riñón/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Biomarcadores/metabolismo , Femenino , Masculino , Proteínas de Choque Térmico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología
8.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R410-R422, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39133777

RESUMEN

Inflammation and fibrosis play important roles in diabetic kidney disease (DKD). Previous studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists had renal protective effects. However, the mechanisms are not clear. The present study explored the effect of liraglutide (LR), a GLP-1R agonist, on the downregulation of glomerular inflammation and fibrosis in DKD by regulating the Toll-like receptor (TLR)4/myeloid differentiation marker 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in mesangial cells (MCs). In vitro, rat MCs were cultured in high glucose (HG). We found that liraglutide treatment significantly reduced the HG-mediated activation of the TLR4/MYD88/NF-κB signaling pathway, extracellular matrix (ECM)-related proteins, and inflammatory factors. A combination of TLR4 inhibitor (TAK242) and liraglutide did not synergistically inhibit inflammatory factors and ECM proteins. Furthermore, in the presence of TLR4 siRNA, liraglutide significantly blunted HG-induced expression of fibronectin protein and inflammatory factors. Importantly, TLR4 selective agonist LPS or TLR4 overexpression eliminated the improvement effects of liraglutide on the HG-induced response. In vivo, administration of liraglutide for 8 wk significantly improved the glomerular damage in streptozotocin-induced diabetic mice and reduced the expression of TLR4/MYD88/NF-κB signaling proteins, ECM protein, and inflammatory factors in renal cortex. TLR4-/- diabetic mice showed significant amelioration in urine protein excretion rate, glomerular pathological damage, inflammation, and fibrosis. Liraglutide attenuated glomerular hypertrophy, renal fibrosis, and inflammatory response in TLR4-/- diabetic mice. Taken together, our findings suggest that TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory response and ECM protein proliferation in DKD. Liraglutide alleviates inflammation and fibrosis by downregulating the TLR4/MYD88/NF-κB signaling pathway in MCs.NEW & NOTEWORTHY Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has renoprotective effect in diabetic kidney disease (DKD). In DKD, TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory responses and extracellular matrix (ECM) protein proliferation. Liraglutide attenuates renal inflammation and overexpression of ECM proteins by inhibiting TLR4/MYD88/NF-κB signaling pathway. Therefore, we have identified a new mechanism that contributes to the renal protection of GLP-1RA, thus helping to design innovative treatment strategies for diabetic patients with various complications.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Fibrosis , Liraglutida , Factor 88 de Diferenciación Mieloide , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratas , Regulación hacia Abajo/efectos de los fármacos , Ratas Sprague-Dawley , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones Noqueados , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
9.
Sci Rep ; 14(1): 20251, 2024 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215017

RESUMEN

Monosodium urate (MSU) crystallisation deposited in local tissues and organs induce inflammatory reactions, resulting in diseases such as gout. MSU has been recognized as a common and prevalent pathology in various clinical conditions. In this study, we investigated the role of MSU in the pathogenesis of diabetic kidney disease (DKD). We induced renal injury in diabetic kidney disease mice using streptozotocin (STZ) and assessed renal histopathological damage using Masson's trichrome staining and Collagen III immunofluorescence staining. We measured the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and uric acid (UA) using ELISA. Protein expression levels of NLRP3, p-NF-κB, SHP2, p-STAT3, and p-ERK1/2 were analyzed by Western blot. To further investigate the role of MSU in diabetic kidney disease, we conducted in vitro experiments. In our in vivo experiments, we found that compared to the Model group, there was a significant increase in interstitial fibrosis in the kidneys of mice after treatment with MSU, accompanied by elevated levels of MDA, SOD, and UA. Furthermore, the protein expression of NLRP3, p-NF-NB, SHP2, p-STAT3, and p-ERK1/2 was upregulated. In our subsequent studies on mouse fibroblasts (L929 cells), we discovered that high glucose, MSU, and TGF-ß could promote the expression of P22, GP91, NLRP3, NF-κB, p-NF-κB, p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins. Additionally, we found that SHP2 could counteract the upregulation trend induced by MSU on the expression of p-SHP2, p-EGFR, p-STAT3, and Collagen-III proteins, and inhibitors YQ128, NAC, and Cetuximab exhibited similar effects. Furthermore, immunofluorescence results indicated that SHP2 could inhibit the expression of the fibrosis marker α-SMA in L929 cells. These findings suggest that MSU can promote renal fibroblast SHP2 expression, induce oxidative stress, activate the NLRP3/NF-κB pathway, and enhance diabetic kidney disease fibroblast proliferation through the TGFß/STAT3/ERK1/2 signaling pathway, leading to renal fibrosis.


Asunto(s)
Proliferación Celular , Nefropatías Diabéticas , Fibroblastos , Fibrosis , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Masculino , Ratones , Cristalización , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ácido Úrico/metabolismo
10.
Biomolecules ; 14(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199356

RESUMEN

Background: Telocytes are interstitial stromal cells identified in various human organs, including the kidney. Their presence and role in human diabetic kidney disease remain unknown. Methods: To identify and localize telocytes in glomerular and tubule-interstitial compartments, both normal and diabetic human renal tissues were examined using immunohistochemistry, immunofluorescence, and transmission electron microscopy. Results: Renal telocytes are elongated interstitial cells with long, thin telopodes, showing alternating thin and thick segments. They expressed CD34, Nestin, α-SMA, and Vimentin markers. Occasionally, c-Kit expression was observed in some rounded and spindle cells, while no positivity was detected for PDGFR-ß and NG2. Telocytes were identified around Bowman's capsule, tubules, and peritubular capillaries in both normal and diabetic conditions. In diabetic renal samples, there was a significant increase in α-SMA expressing telocytes, leading to periglomerular fibrosis. These telocytes also exhibited a synthetic phenotype with proteoglycan deposition in the extracellular matrix and, in some cases, showed pre-adipocytic differentiation. Conclusions: Telocytes were identified in normal and diabetic human kidneys. These cells form an elastic mechanical scaffold in the interstitium and are present in all renal cortical compartments. In diabetic samples, their increased α-SMA expression and synthetic phenotype suggest their potential role in the pathogenesis of diabetic nephropathy.


Asunto(s)
Antígenos CD34 , Nefropatías Diabéticas , Telocitos , Vimentina , Humanos , Telocitos/metabolismo , Telocitos/patología , Telocitos/ultraestructura , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Antígenos CD34/metabolismo , Vimentina/metabolismo , Riñón/metabolismo , Riñón/patología , Inmunohistoquímica , Actinas/metabolismo , Nestina/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Microscopía Electrónica de Transmisión , Anciano
11.
J Ethnopharmacol ; 335: 118650, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094755

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Linggui-Zhugan (LGZG) comprises four herbs and is a classic formula in traditional Chinese medicine. There is strong clinical evidence of its pleiotropic effects in the prevention of diabetes and its related complications. Although several classes of drugs are currently available for clinical management of diabetic kidney disease (DKD), tight glycemic and/or hypertension control may not prevent disease progression. This study evaluated the therapeutic effect of the ethnopharmacological agent LGZG on DKD. AIM OF THE STUDY: This study aimed to investigate the effects of LGZG formula with standard quality control on experimental DKD and its related metabolic disorders in animal model. Meanwhile, the present study aimed to investigate regulatory effects of LGZG on renal proteinase 3 (PR3) to reveal mechanisms underlying renoprotective benefits of LGZG. MATERIALS AND METHODS: LGZG decoction was fingerprinted by high-performance liquid chromatography for quality control. An experimental model of DKD was induced in C57 BL/6J mice by a combination of high-fat diet feeding, uninephrectomy, and intraperitoneal injection of streptozocin. The LGZG decoction was administrated by daily oral gavage. RESULTS: Treatment with LGZG formula significantly attenuated DKD-like traits (including severe albuminuria, mesangial matrix expansion, and podocyte loss) and metabolic dysfunction (disordered body composition and dyslipidemia) in mice. RNA sequencing data revealed a close association of LGZG treatment with marked modulation of signaling pathways related to podocyte injury and cell apoptosis. Mechanistically, LGZG suppressed the DKD-triggered increase in renal PR3 and podocyte apoptosis. In-vitro incubation of mouse immortalized podocytes with LGZG-medicated serum attenuated PR3-mediated apoptosis. CONCLUSION: Our data demonstrated that the LGZG formula protected against DKD in mice and was closely associated with its inhibitory effects on PR3-mediated podocyte apoptosis.


Asunto(s)
Apoptosis , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Podocitos , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/patología , Podocitos/efectos de los fármacos , Podocitos/patología , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones
12.
PLoS One ; 19(8): e0309338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190657

RESUMEN

PURPOSE: This study comprises an investigation of the role of meteorin-like (Metrnl) in an experimental model of diabetic kidney disease (DKD). METHODS: Twenty-four db/db mice were randomly assigned to one of the following groups: DKD, DKD + Metrnl-/-, and DKD + Metrnl+/+. Plasma Metrnl concentrations were measured using ELISA. Kidney tissues were examined via western blotting, qRT-PCR, and immunohistochemistry to determine the expression levels of inflammatory factors. Electron microscopy was employed to observe stained kidney sections. RESULTS: Compared with the NC group, FBG, BW, and UACR were elevated in the DKD and Metrnl-/- groups, with severe renal pathological injury, decreased serum Metrnl concentration, decreased renal Metrnl expression, and increased expression levels of TNF-α, TGF-ß1, TGF-R1, pSmad2, pSmad3, and α-SMA. In contrast, the Metrnl+/+ group showed decreased FBG and UACR, BUN, TC and TG, increased HDL-C and serum Metrnl concentration, increased renal Metrnl expression, and decreased expression of TNF-α, TGF-ß1, TGF-R1, pSmad2, pSmad3, and α-SMA, compared to the DKD and Metrnl-/- groups. A Pearson bivariate correlation analysis revealed a negative correlation between UACR and Metrnl, and a positive correlation between UACR and TGF-ß1. CONCLUSION: Upregulation of renal Metrnl expression can improve renal injury by downregulating the expression of molecules in the TGF-ß1/Smads signaling pathway in the renal tissues of type 2 diabetic mice; and by reducing the production of fibrotic molecules such as α-SMA.


Asunto(s)
Nefropatías Diabéticas , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Regulación hacia Arriba , Animales , Masculino , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética
13.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201671

RESUMEN

Diabetic nephropathy, a leading cause of end-stage renal disease, accounts for significant morbidity and mortality. It is characterized by microinflammation in the glomeruli and myofibroblast activation in the tubulointerstitium. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is shown to possess anti-inflammatory and anti-fibrotic properties, implying its renal-protective potential. This study investigates which type of component can reduce the damage caused by diabetic nephropathy in a single setting. The ethyl acetate (EtOAc) layer was demonstrated to provoke peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ activities in renal mesangial cells by dual luciferase reporter assay. In a high glucose (HG)-cultured mesangial cell model, the EtOAc layer substantially inhibited HG-induced elevations of interleukin-1ß, transforming growth factor-ß1 (TGF-ß1), and fibronectin, whereas down-regulated PPAR-γ was restored. In addition, among the extracts of S. miltiorrhiza, the EtOAc layer effectively mitigated TGF-ß1-stimulated myofibroblast activation. The EtOAc layer also showed a potent ability to attenuate renal hypertrophy, proteinuria, and fibrotic severity by repressing diabetes-induced proinflammatory factor, extracellular matrix accumulation, and PPAR-γ reduction in the STZ-induced diabetes mouse model. Our findings, both in vitro and in vivo, indicate the potential of the EtOAc layer from S. miltiorrhiza for future drug development targeting diabetic nephropathy.


Asunto(s)
Acetatos , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Fibrosis , PPAR gamma , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , PPAR gamma/metabolismo , Acetatos/química , Acetatos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Fibronectinas/metabolismo , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucosa/metabolismo
14.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201721

RESUMEN

Cell deaths maintain the normal function of tissues and organs. In pathological conditions, the abnormal activation or disruption of cell death often leads to pathophysiological effects. Diabetic kidney disease (DKD), a significant microvascular complication of diabetes, is linked to high mortality and morbidity rates, imposing a substantial burden on global healthcare systems and economies. Loss and detachment of podocytes are key pathological changes in the progression of DKD. This review explores the potential mechanisms of apoptosis, necrosis, autophagy, pyroptosis, ferroptosis, cuproptosis, and podoptosis in podocytes, focusing on how different cell death modes contribute to the progression of DKD. It recognizes the limitations of current research and presents the latest basic and clinical research studies targeting podocyte death pathways in DKD. Lastly, it focuses on the future of targeting podocyte cell death to treat DKD, with the intention of inspiring further research and the development of therapeutic strategies.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Humanos , Podocitos/metabolismo , Podocitos/patología , Animales , Apoptosis , Autofagia , Muerte Celular
15.
Physiol Rep ; 12(15): e16179, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107084

RESUMEN

Diabetic kidney disease (DKD) is a devastating kidney disease and lacks effective therapeutic interventions. The present study was aimed to determine whether reconstituted high-density lipoprotein (rHDL) ameliorated renal injury in eNOS-/- dbdb mice, a mouse model of DKD. Three groups of mice, wild type C57BLKS/J (non-diabetes), eNOS-/- dbdb (diabetes), and eNOS-/- dbdb treated with rHDL (diabetes+rHDL) with both males and females were used. The rHDL nanoparticles were administered to eNOS-/- dbdb mice at Week 16 at 5 µg/g body weight in ~100 µL of saline solution twice per week for 4 weeks via retroorbital injection. We found that rHDL treatment significantly blunted progression of albuminuria and GFR decline observed in DKD mice. Histological examinations showed that the rHDLs significantly alleviated glomerular injury and renal fibrosis, and inhibited podocyte loss. Western blots and immunohistochemical examinations showed that increased protein abundances of fibronectin and collagen IV in the renal cortex of eNOS-/- dbdb mice were significantly reduced by the rHDLs. Taken together, the present study suggests a renoprotective effect of rHDLs on DKD.


Asunto(s)
Nefropatías Diabéticas , Lipoproteínas HDL , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Ratones , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Lipoproteínas HDL/farmacología , Femenino , Ratones Noqueados , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Albuminuria , Fibronectinas/metabolismo , Fibronectinas/genética , Fibrosis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico
16.
Ultrastruct Pathol ; 48(5): 338-350, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39087752

RESUMEN

Diabetes mellitus is a common metabolic disorder. It is associated with serious life-threatening complications if not properly managed. The current study aimed at investigating the possible protective role of propolis on streptozotocin-induced diabetic nephropathy. A diabetic rat model was induced by a single intraperitoneal injection of 55 mg/kg streptozotocin. After 4 days, the diabetic rats received oral propolis (300 mg/kg/day) via gastric gavage for 28 days. Biochemical, histopathological and ultrastructural evaluations were performed. The results showed that: streptozotocin-induced diabetes was associated with a marked decrease in the serum high-density lipoproteins and antioxidant enzymes. However, a significant elevation in the levels of serum creatinine, blood urea nitrogen, uric acid, cholesterol, triglycerides and low-density lipoproteins was detected. Furthermore, streptozotocin treatment induced histopathological alterations of the renal cortex; in the form of distorted glomerular capillaries, widened Bowman's space and signs of epithelial tubular degeneration. Ultra-structurally, thickening and irregularity of the glomerular basement membrane and podocytes foot processes effacement were observed. The tubular epithelial cells showed swollen vacuolated mitochondria, scarce basal infoldings and loss of microvilli. Conversely, propolis partially restored the normal lipid profile, antioxidant biomarkers and renal cortical morphology. Propolis exhibited a sort of renoprotection through hypoglycemic, anti-hyperlipidemic and antioxidant effects.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Própolis , Animales , Própolis/farmacología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Diabetes Mellitus Experimental/complicaciones , Ratas , Masculino , Estreptozocina , Antioxidantes/farmacología , Riñón/patología , Riñón/efectos de los fármacos , Riñón/ultraestructura , Ratas Wistar , Hipoglucemiantes/farmacología
17.
Eur J Pharmacol ; 982: 176915, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154822

RESUMEN

Reactive oxygen species production might be prevented by xanthine oxidoreductase (XOR) inhibitors, which can cause glomerulosclerosis. We aimed to investigate whether topiroxostat, an XOR inhibitor, prevents diabetic kidney disease development in mice. Six-week-old control Institute of Cancer Research (ICR) mice and type 2 diabetic Nagoya Shibata Yasuda (NSY) mice were divided into the ICR group (ICR mice which received a lard-containing high-fat diet [HFD] based on the AIN-93G diet), NSY control group (NSY mice which received the same aforementioned diet), and NSY + topiroxostat group (NSY mice which received the same aforementioned diet with addition of 0.0012% topiroxostat). After 20 weeks, plasma biomarkers, XOR activity and oxidative stress levels, which were assessed using malondialdehyde (MDA), were measured through enzyme-linked immunosorbent assay or enzymatic methods. Renal pathology was evaluated using periodic acid-Schiff staining. Redox gene and protein expression were determined using RT-qPCR and western blotting, respectively. Plasma XOR activity was lower in NSY mice treated with topiroxostat than those without. Plasma cystatin C and creatinine levels did not differ between the ICR and NSY control groups or between the NSY control and NSY + topiroxostat groups. The NSY + topiroxostat group showed a smaller mesangial area than the NSY control group. The mRNA expression of Sod3, Prdx1, Gpx2, and Gpx3 was higher in the NSY + topiroxostat group than in the NSY control group. Renal MDA levels were lower in the NSY + topiroxostat group than in the NSY control group. Topiroxostat can reduce glomerulosclerosis, and the reduction is associated with renal oxidative markers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Estrés Oxidativo/efectos de los fármacos , Xantina Deshidrogenasa/metabolismo , Xantina Deshidrogenasa/antagonistas & inhibidores , Xantina Deshidrogenasa/genética , Ratones Endogámicos ICR , Piridinas/farmacología , Piridinas/uso terapéutico , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Biomarcadores/sangre , Nitrilos
18.
Cell Rep Methods ; 4(8): 100838, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127044

RESUMEN

Tissues are organized into anatomical and functional units at different scales. New technologies for high-dimensional molecular profiling in situ have enabled the characterization of structure-function relationships in increasing molecular detail. However, it remains a challenge to consistently identify key functional units across experiments, tissues, and disease contexts, a task that demands extensive manual annotation. Here, we present spatial cellular graph partitioning (SCGP), a flexible method for the unsupervised annotation of tissue structures. We further present a reference-query extension pipeline, SCGP-Extension, that generalizes reference tissue structure labels to previously unseen samples, performing data integration and tissue structure discovery. Our experiments demonstrate reliable, robust partitioning of spatial data in a wide variety of contexts and best-in-class accuracy in identifying expertly annotated structures. Downstream analysis on SCGP-identified tissue structures reveals disease-relevant insights regarding diabetic kidney disease, skin disorder, and neoplastic diseases, underscoring its potential to drive biological insight and discovery from spatial datasets.


Asunto(s)
Biología Computacional , Humanos , Animales , Biología Computacional/métodos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Enfermedades de la Piel/genética , Enfermedades de la Piel/patología
19.
Int Immunopharmacol ; 141: 112794, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137626

RESUMEN

In China, the Astragalus membranaceus root is used to treat chronic kidney disease. Astragaloside IV (AS-IV), the primary bioactive compound, exhibits anti-inflammatory and antioxidative properties; however, its renoprotective mechanism in diabetic kidney disease (DKD) remains unclear. The study aimed to investigate the protective effects of AS-IV on DKD revealing the underlying mechanisms. We established an early diabetic rat model by feeding a high-fat diet and administering low-dose streptozotocin. Twelve weeks post-treatment, renal function was evaluated using functional assays, histological analyses, immunohistochemistry, western blotting, and transmission electron microscopy. HK-2 cells exposed to high glucose conditions were used to examine the effect of AS-IV on oxidative stress, iron levels, reactive oxygen species (ROS), and lipid peroxidation. Network pharmacology, proteomics, molecular docking, and molecular dynamics simulation techniques were employed to elucidate the role of AS-IV in DKD. The results revealed that AS-IV effectively enhanced renal function and mitigated disease pathology, oxidative stress, and ferroptosis markers in DKD rats. In HK-2 cells, AS-IV lowered the levels of lipid peroxides, Fe2+, and glutathione, indicating the repair of ferroptosis-related mitochondrial damage. AS-IV reduced mitochondrial ROS while enhancing mitochondrial membrane potential and ATP production, indicating its role in combating mitochondrial dysfunction. Overall, in silico analyses revealed that AS-IV interacts with HMOX1, FTH1, and TFR1 proteins, supporting its efficacy in alleviating renal injury by targeting mitochondrial dysfunction and ferroptosis. AS-IV may play a renoprotective role by regulating mitochondrial dysfunction and inhibiting. HMOX1/FTH1/TFR1-induced ferroptosis. Accordingly, AS-IV could be developed for the clinical treatment of DKD-related renal injury.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Células Epiteliales , Ferroptosis , Túbulos Renales , Mitocondrias , Saponinas , Triterpenos , Animales , Ferroptosis/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Línea Celular , Túbulos Renales/patología , Túbulos Renales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Ratas Sprague-Dawley , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular
20.
Metabolism ; 159: 155982, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089491

RESUMEN

BACKGROUND: Receptor-interacting protein kinase (RIPK)3 is an essential molecule for necroptosis and its role in kidney fibrosis has been investigated using various kidney injury models. However, the relevance and the underlying mechanisms of RIPK3 to podocyte injury in albuminuric diabetic kidney disease (DKD) remain unclear. Here, we investigated the role of RIPK3 in glomerular injury of DKD. METHODS: We analyzed RIPK3 expression levels in the kidneys of patients with biopsy-proven DKD and animal models of DKD. Additionally, to confirm the clinical significance of circulating RIPK3, RIPK3 was measured by ELISA in plasma obtained from a prospective observational cohort of patients with type 2 diabetes, and estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR), which are indicators of renal function, were followed up during the observation period. To investigate the role of RIPK3 in glomerular damage in DKD, we induced a DKD model using a high-fat diet in Ripk3 knockout and wild-type mice. To assess whether mitochondrial dysfunction and albuminuria in DKD take a Ripk3-dependent pathway, we used single-cell RNA sequencing of kidney cortex and immortalized podocytes treated with high glucose or overexpressing RIPK3. RESULTS: RIPK3 expression was increased in podocytes of diabetic glomeruli with increased albuminuria and decreased podocyte numbers. Plasma RIPK3 levels were significantly elevated in albuminuric diabetic patients than in non-diabetic controls (p = 0.002) and non-albuminuric diabetic patients (p = 0.046). The participants in the highest tertile of plasma RIPK3 had a higher incidence of renal progression (hazard ratio [HR] 2.29 [1.05-4.98]) and incident chronic kidney disease (HR 4.08 [1.10-15.13]). Ripk3 knockout improved albuminuria, podocyte loss, and renal ultrastructure in DKD mice. Increased mitochondrial fragmentation, upregulated mitochondrial fission-related proteins such as phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (Drp1), and mitochondrial ROS were decreased in podocytes of Ripk3 knockout DKD mice. In cultured podocytes, RIPK3 inhibition attenuated mitochondrial fission and mitochondrial dysfunction by decreasing p-mixed lineage kinase domain-like protein (MLKL), PGAM5, and p-Drp1 S616 and mitochondrial translocation of Drp1. CONCLUSIONS: The study demonstrates that RIPK3 reflects deterioration of renal function of DKD. In addition, RIPK3 induces diabetic podocytopathy by regulating mitochondrial fission via PGAM5-Drp1 signaling through MLKL. Inhibition of RIPK3 might be a promising therapeutic option for treating DKD.


Asunto(s)
Albuminuria , Nefropatías Diabéticas , Mitocondrias , Podocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal , Animales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Albuminuria/genética , Albuminuria/metabolismo , Ratones , Podocitos/metabolismo , Podocitos/patología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Masculino , Dinaminas/genética , Dinaminas/metabolismo , Ratones Noqueados , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Ratones Endogámicos C57BL , Femenino , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA