RESUMEN
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Asunto(s)
Oro , Nanopartículas del Metal , Enfermedades Neurodegenerativas , alfa-Sinucleína , Proteínas tau , Humanos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Proteínas tau/metabolismo , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/diagnóstico , Sistemas de Liberación de Medicamentos/métodos , BiomarcadoresRESUMEN
Balanoposthitis can affect men in immunocompromised situations, such as HIV infection and diabetes. The main associated microorganism is Candida albicans, which can cause local lesions, such as the development of skin cracks associated with itching. As an alternative to conventional treatment, there is a growing interest in the photodynamic inactivation (PDI). It has been shown that the association of photosensitizers with metallic nanoparticles may improve the effectiveness of PDI via plasmonic effect. We have recently shown that the association of methylene blue (MB), a very known photosensitizer, with silver prismatic nanoplatelets (AgNPrs) improved PDI of a resistant strain of Staphylococcus aureus. To further investigate the experimental conditions involved in PDI improvement, in the present study, we studied the effect of MB concentration associated with AgNPrs exploring spectral analysis, zeta potential measurements, and biological assays, testing the conjugated system against C. albicans isolated from a resistant strain of balanoposthitis. The AgNPrs were synthesized through silver anisotropic seed growth induced by the anionic stabilizing agent poly(sodium 4-styrenesulfonate) and showed a plasmon band fully overlapping the MB absorption band. MB and AgNPrs were conjugated through electrostatic association and three different MB concentrations were tested in the nanosystems. Inactivation using red LED light (660 nm) showed a dose dependency in respect to the MB concentration in the conjugates. Using the highest MB concentration (100 µmolâ L-1) with AgNPr, it was possible to completely inactivate the microorganisms upon a 2 min irradiation exposure. Analyzing optical changes in the conjugates we suggest that these results indicate that AgNPrs are enhancers of MB photodynamic action probably by a combined mechanism of plasmonic effect and reduction of MB dimerization. Therefore, MBAgNPrs can be considered a suitable choice to be applied in PDI of resistant microorganisms.
Asunto(s)
Candida albicans , Azul de Metileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Plata , Candida albicans/efectos de los fármacos , Azul de Metileno/farmacología , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Plata/farmacología , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Balanitis/tratamiento farmacológico , Balanitis/microbiología , HumanosRESUMEN
BACKGROUND: Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS: The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS: A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION: MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.
Asunto(s)
Leishmaniasis Cutánea , Nanopartículas del Metal , Animales , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Plata/química , Plata/farmacologíaRESUMEN
Corynebacterium pseudotuberculosis is a gram-positive bacterium and is the etiologic agent of caseous lymphadenitis (CL) in small ruminants. This disease is characterized by the development of encapsulated granulomas in visceral and superficial lymph nodes, and its clinical treatment is refractory to antibiotic therapy. An important virulence factor of the Corynebacterium genus is the ability to produce biofilm; however, little is known about the characteristics of the biofilm produced by C. pseudotuberculosis and its resistance to antimicrobials. Silver nanoparticles (AgNPs) are considered as promising antimicrobial agents, and are known to have several advantages, such as a broad-spectrum activity, low resistance induction potential, and antibiofilm activity. Therefore, we evaluate herein the activity of AgNPs in C. pseudotuberculosis, through the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity, and visualization of AgNP-treated and AgNP-untreated biofilm through scanning electron microscopy. The AgNPs were able to completely inhibit bacterial growth and inactivate C. pseudotuberculosis at concentrations ranging from 0.08 to 0.312 mg/mL. The AgNPs reduced the formation of biofilm in reference strains and clinical isolates of C. pseudotuberculosis, with interference values greater than 80% at a concentration of 4 mg/mL, controlling the change between the planktonic and biofilm-associated forms, and preventing fixation and colonization. Scanning electron microscopy images showed a significant disruptive activity of AgNP on the consolidated biofilms. The results of this study demonstrate the potential of AgNPs as an effective therapeutic agent against CL.
Asunto(s)
Antiinfecciosos , Infecciones por Corynebacterium , Corynebacterium pseudotuberculosis , Linfadenitis , Nanopartículas del Metal , Humanos , Plata/farmacología , Nanopartículas del Metal/uso terapéutico , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Infecciones por Corynebacterium/tratamiento farmacológico , Linfadenitis/tratamiento farmacológico , BiopelículasRESUMEN
Background: Nanotechnology has revolutionized medicine, especially in oncological treatments. Gold nanoparticles (AuNPs) stand out as an innovative alternative due to their biocompatibility, potential for surface modification, and effectiveness in radiotherapeutic techniques. Given that prostate cancer ranks as one of the leading malignancies among men, there's a pressing need to investigate new therapeutic approaches. Methods: AuNPs coated with bovine serum albumin (BSA) were synthesized and their cytotoxicity was assessed against prostate tumor cell lines (LNCaP and PC-3), healthy prostate cells (RWPE-1), and endothelial control cells (HUVEC) using the MTS/PMS assay. For in vivo studies, BALB/C Nude mice were employed to gauge the therapeutic efficacy, biodistribution, and hematological implications post-treatment with BSA-coated AuNPs. Results: The BSA-coated AuNPs exhibited cytotoxic potential against PC-3 and LNCaP lines, while interactions with RWPE-1 and HUVEC remain subjects for further scrutiny. Within animal models, a diverse therapeutic response was observed, with certain instances indicating complete tumor regression. Biodistribution data emphasized the nanoparticles' affinity towards particular organs, and the majority of hematological indicators aligned with normative standards. Conclusions: BSA-coated AuNPs manifest substantial promise as therapeutic tools in treating prostate cancer. The present research not only accentuates the nanoparticles' efficacy but also stresses the imperative of optimization to ascertain both selectivity and safety. Such findings illuminate a promising trajectory for avant-garde therapeutic modalities, holding substantial implications for public health advancements.
Asunto(s)
Nanopartículas del Metal , Neoplasias de la Próstata , Masculino , Animales , Ratones , Humanos , Oro/farmacología , Próstata/metabolismo , Albúmina Sérica Bovina/metabolismo , Distribución Tisular , Ratones Desnudos , Nanopartículas del Metal/uso terapéutico , Ratones Endogámicos BALB C , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , RadioisótoposRESUMEN
Inflammation is associated with a series of diseases like cancer, cardiovascular disease and infection, and phosphorylation/dephosphorylation modification of proteins are important in inflammation regulation. Here we designed and synthesized a novel Brazilin-Ce nanoparticle (BX-Ce NPs) using Brazilin, which has been used for anti-inflammation in cardiovascular diseases but with narrow therapeutic window, and Cerium (IV), a lanthanide which has the general activity in catalyzing the hydrolysis of phosphoester bonds, to conferring de/anti-phosphorylation of IKKß. We found that BX-Ce NPs specifically bound to Asn225 and Lys428 of IKKß and inhibited its phosphorylation at Ser181, contributing to appreciably anti-inflammatory effect in cellulo (IC50 = 2.5 µM). In vivo mouse models of myocardial infarction and sepsis also showed that the BX-Ce NPs significantly ameliorated myocardial injury and improved survival in mice with experimental sepsis through downregulating phosphorylation of IKKß. These findings provided insights for developing metal nanoparticles for guided ion interfere therapy, particularly synergistically target de/anti-phosphorylation as promising therapeutic agents for inflammation and related diseases.
Asunto(s)
Benzopiranos , Cerio , Nanopartículas del Metal , Nanopartículas , Sepsis , Ratones , Animales , Fosforilación , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/uso terapéutico , Inflamación/tratamiento farmacológico , Nanopartículas/química , Nanopartículas del Metal/uso terapéutico , Cerio/químicaRESUMEN
Infectious diseases are the leading cause of death worldwide. Thus, nanotechnology provides an excellent opportunity to treat drug-resistant microbial infections. Numerous antibiotics have been used to inhibit the growth and kill of microbes, but the development of resistance and the emergence of side effects have severely limited the use of these agents. Due to the development of the nanotechnology, nanoparticles are widely used as antimicrobials. Silver and chitosan nanoparticles have antifungal, antiviral and antibacterial properties, and many studies confirm the antifungal properties of silver nanoparticles. Nowadays, the use of nanoparticles in the diagnosis and treatment of infectious diseases has developed due to less side effects and also the help of these particles in effective drug delivery to the target tissue. Liposomes are also used as carriers of drug delivery, genes, and modeling of cell membranes in both animals and humans. The ability of these liposomes to encapsulate large amounts of drugs, minimize unwanted side effects, high effectiveness and low toxicity has attracted the interest of researchers. This review article examines recent efforts by researchers to identify and treat infectious diseases using antimicrobial nanoparticles and drug nano-carriers.
Asunto(s)
Enfermedades Transmisibles , Nanopartículas del Metal , Animales , Humanos , Antibacterianos , Antifúngicos , Liposomas/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Plata , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/tratamiento farmacológicoRESUMEN
BACKGROUND: Acrylic resins used in dental and biomedical applications do not have antimicrobial properties, their surface is susceptible to colonization of microorganisms. OBJECTIVE: The aim of this study was to evaluate the antibiofilm properties of silver nanoparticles (AgNPs) deposited in a polymethyl methacrylate (PMMA) surface against a Staphylococcus aureus biofilm. METHODS: The PMMA was impregnated with AgNPs by using the in-situ polymerization method. To determine the solubility of the incorporated silver (Ag+) atomic absorption spectrophotometry was used (AAS) at 24 h, 48 h, 7 days, and 30 days. Thirty specimens of PMMA with AgNPs and without NP (control group) were assembled in the CDC Biofilm Bioreactor system with a cell suspension of S. aureus. The specimens were removed at 6, 12, 24, 48, and 72 h to determine the viability profile and quantify the Arbitrary Fluorescence Units (AFU). RESULTS: The AgNPs showed an irregular and quasispherical shape with an average size of 25 nm. AAS analysis demonstrated a low solubility of Ag+. The formation of the S. aureus biofilm increased as the evaluation periods continued up to 72 h. The experimental group showed poor growth, and a decrease in the intensity of the fluorescence demonstrated a statistically significant inhibition of the formation of the biofilm (P < 0.05) in relation to the control group at 6, 12, 24, 48, and 72 h. CONCLUSION: AgNPs incorporated into PMMA decreased the growth and maturation of S. aureus biofilm.
Asunto(s)
Nanopartículas del Metal , Polimetil Metacrilato , Plata/farmacología , Staphylococcus aureus , Nanopartículas del Metal/uso terapéutico , Biopelículas , Antibacterianos/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Nanotechnology is an emerging and expanding technology worldwide. The manipulation of materials on a nanometric scale generates new products with unique properties called nanomaterials. Due to its significant expansion, nanotechnology has been applied in several fields of study, including developing materials for biomedical applications, i.e., nanomedicine. The use of nanomaterials, including nanoparticles, in nanomedicine, is promising and has been associated with pharmacokinetics, bioavailability, and therapeutic advantages. In this regard, it is worth mentioning the Gold Nanoparticles (AuNPs). AuNPs' biomedical application is extensively investigated due to their high biocompatibility, simple preparation, catalytic, and redox properties. Experimental studies have pointed out critical therapeutic actions related to AuNPs in different pathophysiological contexts, mainly due to their anti-inflammatory and antioxidant effects. Thus, in this review, we will discuss the main experimental findings related to the therapeutic properties of AuNPs in metabolic, neurodegenerative diseases, and ultimately brain dysfunctions related to metabolic diseases.
Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Nanomedicina , EncéfaloRESUMEN
Extensive burns represent a significant challenge in biomedicine due to the multiple systemic and localized complications resulting from the major skin barrier loss. The functionalization of xenografts with nanostructured antibacterial agents proposes a fast and accessible application to restore barrier function and prevent localized bacterial contamination. Based on this, the objective of this work was to functionalize a xenograft by electrospray deposition with silver nanoparticles (AgNPs) and to evaluate its antibiofilm and cytotoxic effects on human fibroblasts. Initially, AgNPs were synthesized by a green microwave route with sizes of 2.1, 6.8, and 12.2 nm and concentrations of 0.055, 0.167, and 0.500 M, respectively. The AgNPs showed a size relationship directly proportional to the concentration of AgNO3, with a spherical and homogeneous distribution determined by high-resolution transmission electron microscopy. The surface functionalization of radiosterilized porcine skin (RPS) via electrospray deposition with the three AgNP concentrations (0.055, 0.167, and 0.500 M) in the epidermis and the dermis showed a uniform distribution on both surfaces by energy-dispersive X-ray spectroscopy. The antibiofilm assays of clinical multidrug-resistant Pseudomonas aeruginosa showed significant effects at the concentrations of 0.167 and 0.500 M, with a log reduction of 1.3 and 2.6, respectively. Additionally, viability experiments with human dermal fibroblasts (HDF) exposed to AgNPs released from functionalized porcine skin showed favorable tolerance, with retention of viability more significant than 90% for concentrations of 0.05 and 0.167 M after 24 h exposure. Antibacterial activity combined with excellent biocompatibility makes this biomaterial a candidate for antibacterial protection by inhibiting bacterial biofilms in deep burns during early stages of development.
Asunto(s)
Quemaduras , Nanopartículas del Metal , Humanos , Porcinos , Plata/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Biopelículas , Bacterias , Quemaduras/tratamiento farmacológicoRESUMEN
Canine distemper is caused by canine distemper virus (CDV), a multisystemic infectious disease with a high morbidity and mortality rate in dogs. Nanotechnology represents a development opportunity for new molecules with antiviral effects that may become effective treatments in veterinary medicine. This study evaluated the efficacy and safety of silver nanoparticles (AgNPs) in 207 CDV, naturally infected, mixed-breed dogs exhibiting clinical signs of the non-neurological and neurological phases of the disease. Group 1a included 52 dogs (experimental group) diagnosed with non-neurologic distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 1b included 46 dogs (control group) diagnosed with non-neurological distemper treated with supportive therapy only. Group 2a included 58 dogs with clinical signs of neurological distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 2b included 51 dogs (control group) diagnosed with clinical signs of neurological distemper treated with supportive therapy only. Efficacy was measured by the difference in survival rates: in Group 1a, the survival rate was 44/52 (84.6%), versus 7/46 in Group 1b (15.2%), while both showed clinical signs of non-neurological distemper. The survival rate of dogs with clinical signs of neurological distemper in Group 2a (38/58; 65.6%) was significantly higher than those in Control Group 2b (0/51; 0%). No adverse reactions were detected in experimental groups treated with AgNPs. AgNPs significantly improved survival in dogs with clinical signs of neurological and non-neurological distemper. The use of AgNPs in the treatment of neurological distemper led to a drastic increase in the proportion of dogs recovered without sequels compared to dogs treated without AgNPs. The evidence demonstrates that AgNP therapy can be considered as a targeted treatment in dogs severely affected by canine distemper virus.
Asunto(s)
Virus del Moquillo Canino , Moquillo , Nanopartículas del Metal , Animales , Perros , Nanopartículas del Metal/uso terapéutico , Plata/uso terapéuticoRESUMEN
Toxoplasma gondii, a protozoan parasite, is responsible for toxoplasmosis. The available therapy for patients with toxoplasmosis involves a combination of pyrimethamine and sulfadiazine, which have several adverse effects, including bone marrow suppression, megaloblastic anemia, leukopenia, and granulocytopenia. The development of therapeutic alternatives is essential for the management of toxoplasmosis, emphasizing the recent advances in nanomedicine. This study aimed to evaluate the in vitro effects of biogenic silver nanoparticles (AgNp-Bio) on tachyzoite forms and Leydig cells infected with T. gondii. We observed that the AgNp-Bio reduced the viability of the tachyzoites and did not exhibit cytotoxicity against Leydig cells at low concentrations. Additionally, treatment with AgNp-Bio reduced the rate of infection and proliferation of the parasite, and lowered the testosterone levels in the infected cells. It increased the levels of IL-6 and TNF-α and reduced the levels of IL- 10. Among the morphological and ultrastructural changes, AgNp-Bio induced a reduction in the number of intracellular tachyzoites and caused changes in the tachyzoites with accumulation of autophagic vacuoles and a decrease in the number of tachyzoites inside the parasitophorous vacuoles. Collectively, our data demonstrate that the AgNp-Bio affect T. gondii tachyzoites by activating microbicidal and inflammatory mechanisms and could be a potential alternative treatment for toxoplasmosis.
Asunto(s)
Nanopartículas del Metal , Toxoplasma , Toxoplasmosis , Humanos , Interleucina-6 , Células Intersticiales del Testículo , Masculino , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Testosterona , Factor de Necrosis Tumoral alfaRESUMEN
Functionalized platinum nanoparticles have been of considerable interest in recent research due to their properties and applications, among which they stand out as therapeutic agents. The functionalization of the surfaces of nanoparticles can overcome the limits of medicine by increasing selectivity and thereby reducing the side effects of conventional drugs. With the constant development of nanotechnology in the biomedical field, functionalized platinum nanoparticles have been used to diagnose and treat diseases such as cancer and infections caused by pathogens. This review reports on physical, chemical, and biological methods of obtaining platinum nanoparticles and the advantages and disadvantages of their synthesis. Additionally, applications in the biomedical field that can be utilized once the surfaces of nanoparticles have been functionalized with different bioactive molecules are discussed, among which antibodies, biodegradable polymers, and biomolecules stand out.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanomedicina , Nanopartículas/química , Nanotecnología , Platino (Metal)/química , PolímerosRESUMEN
Background and Objectives: Streptococcus mutans (S. mutans) is the main microorganism associated with the presence of dental caries and specific serotypes of this bacteria have been related to several systemic diseases limiting general health. In orthodontics, white spot lesions (WSL), represent a great challenge for clinicians due to the great fluctuation of their prevalence and incidence during conventional orthodontic treatments. Although silver nanoparticles (AgNP) have been demonstrated to have great antimicrobial properties in several microorganisms, including S. mutans bacteria, there is no available information about anti adherence and antimicrobial properties of AgNP exposed to two of the most relevant serotypes of S. mutans adhered on orthodontic materials used for conventional therapeutics. The objective of this study was to determine anti-adherence and antimicrobial levels of AgNP against serotypes c and k of S. mutans on conventional orthodontic appliances. Materials and Methods: An AgNP solution was prepared and characterized using dispersion light scattering (DLS) and transmission electron microscopy (TEM). Antimicrobial and anti-adherence activities of AgNP were determined using minimal inhibitory concentrations (MIC) and bacterial adherence testing against serotypes c and k of S. mutans clinically isolated and confirmed by PCR assay. Results: The prepared AgNP had spherical shapes with a good size distribution (29.3 ± 0.7 nm) with negative and well-defined electrical charges (−36.5 ± 5.7 mV). AgNP had good bacterial growth (55.7 ± 19.3 µg/mL for serotype c, and 111.4 ± 38.6 µg/mL for serotype k) and adherence inhibitions for all bacterial strains and orthodontic wires (p < 0.05). The serotype k showed statistically the highest microbial adherence (p < 0.05). The SS wires promoted more bacterial adhesion (149.0 ± 253.6 UFC/mL × 104) than CuNiTi (3.3 ± 6.0 UFC/mL × 104) and NiTi (101.1 ± 108.5 UFC/mL × 104) arches. SEM analysis suggests CuNiTi wires demonstrated better topographical conditions for bacterial adherence while AFM evaluation determined cell wall irregularities in bacterial cells exposed to AgNP. Conclusions: This study suggests the widespread use of AgNP as a potential anti-adherent and antimicrobial agent for the prevention of WSL during conventional orthodontic therapies and, collaterally, other systemic diseases.
Asunto(s)
Antiinfecciosos , Caries Dental , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Caries Dental/tratamiento farmacológico , Humanos , Nanopartículas del Metal/uso terapéutico , Aparatos Ortodóncicos , Serogrupo , Plata/farmacología , Plata/uso terapéutico , Streptococcus mutansRESUMEN
The spontaneous interaction between human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) and non-functionalized gold nanoparticles (nfGNPs) interferes with the nfGNPs' salt-induced aggregation, inhibiting the red-blue color shift in the presence of NaCl. Electron microscopy and competition studies showed that color-shift inhibition is a consequence of direct nfGNP-VLP interaction and, thus, may produce a negative impact on the virus entry cell process. Here, an in vitro infection system based on the HPV16 pseudovirus (PsV) was used to stimulate the natural infection process in vitro. PsVs carry a pseudogenome with a reporter gene, resulting in a fluorescent signal when PsVs infect a cell, allowing quantification of the viral infection process. Aggregation assays showed that nfGNP-treated PsVs also inhibit color shift in the presence of NaCl. High-resolution microscopy confirmed nfGNP-PsV complex formation. In addition, PsVs can interact with silver nanoparticles, suggesting a generalized interaction of metallic nanoparticles with HPV16 capsids. The treatment of PsVs with nfGNPs produced viral infection inhibition at a higher level than heparin, the canonical inhibitor of HPV infection. Thus, nfGNPs can efficiently interfere with the HPV16 cell entry process and may represent a potential active component in prophylactic formulations to reduce the risk of HPV infection.
Asunto(s)
Nanopartículas del Metal , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Proteínas de la Cápside/genética , Oro/farmacología , Oro/uso terapéutico , Papillomavirus Humano 16/genética , Humanos , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/virología , Infecciones por Papillomavirus/prevención & control , Plata , Cloruro de Sodio/farmacologíaRESUMEN
The discovery of antibiotics in the twentieth century made it possible to treat bacterial infections and revolutionized modern medicine. However, gradually, it is possible to perceive a decrease in the effectiveness of antimicrobial agents against pathogenic isolates, which, together with the low investment in the discovery and/or development of new antibiotics by large pharmaceutical companies since the 1960s, makes it increasingly difficult to treatment of infections caused by these microorganisms. The search for strategies capable of potentiating the effect of existing drugs through the development of new therapeutic approaches, which also have the potential to circumvent bacterial resistance to antibiotics, has become indispensable. In this context, metallic nanoparticles stand out, as they could be used to act synergistically with drugs. Thus, the objective of this review was to present the latest information on the synergistic activity of antibiotics with metallic nanoparticles, pointing out this association as a promising alternative for the preservation of bacterial sensitivity to these drugs. The different metallic nanoparticles can present different benefits in the treatment of bacterial infections, with this being able to potentiate the bacterial activity of antibiotics that are widely used in the clinic, being able to increase the susceptibility in multiresistant microorganisms. KEY POINTS: ⢠Metallic nanoparticles increased the antimicrobial action of drugs; ⢠Metallic nanoparticles compromise the action of bacterial efflux pumps; ⢠Biofilm formation was inhibited after treatment with metallic nanoparticles.
Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Nanopartículas del Metal/uso terapéuticoRESUMEN
Leishmaniasis, a cutaneous, mucocutaneous, or visceral parasitic disease caused by the protozoa of the genus Leishmania, is responsible for approximately 20-40 thousand deaths annually, with Brazil, India, and certain countries in Africa being the most affected. In addition to the parasite's ability to evade the host's immune system, the incidence of vectors, genetics of different hosts, and several deaths are attributed to the limited conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutic strategies remains warranted. Metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have shown promising therapeutic tools since they are easily prepared and chemically modified, have a broad spectrum of action and low toxicity, and can generate reactive oxygen species and other immune responses. This review explores the progress of the use of metallic nanoparticles as new tools in the treatment of leishmaniasis and discusses the gaps in knowledge hindering the development of a safe and effective therapeutic intervention against these infections.
Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis Cutánea , Leishmaniasis , Nanopartículas del Metal , Antiprotozoarios/uso terapéutico , Humanos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Nanopartículas del Metal/uso terapéutico , Plata/uso terapéuticoRESUMEN
The rapid development of nanomedicine has created a high demand for silver, copper and copper oxide nanoparticles. Due to their high reactivity and potent antimicrobial activity, silver and copper-based nanomaterials have been playing an important role in the search for new alternatives for the treatment of several issues of concern, such as pathologies caused by bacteria and viruses. Viral diseases are a significant and constant threat to public health. The most recent example is the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, the object of the present review is to highlight recent progress in the biomedical uses of these metal nanoparticles for the treatment and prevention of human viral infections. We discuss the antiviral activity of AgNPs and Cu-based NPs, including their actions against SARS-CoV-2. We also discuss the toxicity, biodistribution and excretion of AgNPs and CuNPs, along with their uses in medical devices or on inert surfaces to avoid viral dissemination by fomites. The challenges and limitations of the biomedical use of these nanoparticles are presented.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas del Metal , Cobre , Humanos , Nanopartículas del Metal/uso terapéutico , Óxidos , SARS-CoV-2 , Plata/farmacología , Distribución TisularRESUMEN
Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials consists, mainly, in trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially to the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnONPs on these parasites.
Asunto(s)
Antihelmínticos , Antiinfecciosos , Antiprotozoarios , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Antibacterianos , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Humanos , Nanopartículas del Metal/uso terapéutico , Óxido de Zinc/farmacologíaRESUMEN
Antibacterial activity of zinc oxide nanoparticles in self-curing acrylic resin against Streptococcus mutans. The main objective of this study was to investigate whether nanoparticles of zinc oxide (ZnO) in self-curing acrylic resin, hav e antimicrobial properties against Streptococcus mutans, one of the microorganisms involved in the development of caries. Self- cured acrylic resin samples were prepared by incorporating ZnO nanoparticles at different concentrations based on the minimum inhibitory concentration (MIC) for Streptococcus mutans ATCC 25175. Antibacterial activity against a biofilm was evaluated in samples that were aged in artificial saliva for different times using spectral confocal laser microscopy and scanning electron microscopy. Kruskal-Wallis test using IBM SPSS Statistics version 23.0 software (SPSS Inc. ®, Chicago, IL, United States) were used, establishing the value of p <0.05 for statistical significance. The volume of the total biomass that formed in the samples aged for one day was significantly lower than the volume of the total biomass that was formed in those aged for additional days (p <0.001). Electron microscopy analysis revealed high porosity surfaces in all samples. Bacterial clusters wer e located next to large pores and irregular surfaces, while smooth surfaces had defined and linear organization cocci or simple chains. Considering the limitations of this study, the results suggest that the antibacterial activity of ZnO nanoparticles add ed to self-curing acrylic (ALIKE) is effective, mainly in fresh 1-day samples, independent of their concentration, and in samples with 16 MIC aged for 14 days, indicating it does not lose its antibacterial activity despite setting for more days. In addition, the ZnO nanoparticles added to ALIKE have the ability to inhibit the formation of biofilms, although they do not minimize the number of viable bacteria.
El objetivo principal de este estudio fue investigar si nanopartículas de óxido de zinc (ZnO), incorporadas a acrílico acrilico de autocurado, tienen propiedades antimicrobianas contra Streptococcus mutans, uno de los microorganismos implicados en el desarrollo de caries. Se prepararon muestras de resina acrílica autopolimerizada mediante la incorporación de nanopartículas de ZnO a diferentes concentraciones basadas en la concentración mínima inhibitoria (MIC) para Streptococcus mutans ATCC 25175. Se evaluó la actividad antibacteriana contra una biopelícula en muestras envejecidas en saliva artificial para diferentes tiempos utilizando espectros microscopía láser confocal y microscopía electrónica de barrido. Se utilizó la prueba de Kruskal-Wallis utilizando el software IBM SPSS Statistics versión 23.0 (SPSS Inc. ®, Chicago, IL, Estados Unidos), estableciendo el valor de p <0,05 para la significancia estadística. El volumen de la biomasa total que se formó en las muestras envejecidas durante un día fue significativamente menor que el volumen de la biomasa total que se formó en las envejecidas durante días adicionales (p <0,001). El análisis de microscopía electrónica reveló superficies de alta porosidad en todas las muestras. Los cúmulos bacterianos se ubicaron junto a poros grandes y superficies irregulares, mientras que las superficies lisas tenían cocos o cadenas simples de organización lineal y definida. Considerando las limitaciones de este estudio, los resultados sugieren que la actividad antibacteriana de las nanopartículas de ZnO agregadas al acrílico autopolimerizable (ALIKE) es efectiva, principalmente en muestras frescas de 1 día, independientemente de su concentración, y en muestras con 16 MIC envejecidas para 14 días, lo que indica que no pierde su actividad antibacteriana a pesar de estar fraguada durante más días. Además, las nanopartículas de ZnO añadidas a ALIKE tienen la capacidad de inhibir la formación de biopelículas, aunque no minimizan el número de bacterias viables.