Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
J Control Release ; 372: 417-432, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908758

RESUMEN

This study introduces the nanobromhexine lipid particle (NBL) platform designed for effective pulmonary drug delivery. Inspired by respiratory virus transport mechanisms, NBL address challenges associated with mucus permeation and inflammation in pulmonary diseases. Composed of low molecular weight polyethylene glycol-coated lipid nanoparticles with bromhexine hydrochloride, NBL exhibit a size of 118 ± 24 nm, a neutral zeta potential, osmolarity of 358 ± 28 mOsmol/kg, and a pH of 6.5. Nebulizing without leakage and showing no toxicity to epithelial cells, NBL display mucoadhesive properties with a 60% mucin-binding efficiency. They effectively traverse the dense mucus layer of Calu-3 cultures in an air-liquid interface, as supported by a 55% decrease in MUC5AC density and a 29% increase in nanoparticles internalization compared to non-exposed cells. In assessing immunomodulatory effects, NBL treatment in SARS-CoV-2-infected lung cells leads to a 40-fold increase in anti-inflammatory MUC1 gene expression, a proportional reduction in pro-inflammatory IL-6 expression, and elevated anti-inflammatory IL-10 expression. These findings suggest a potential mechanism to regulate the excessive IL-6 expression triggered by virus infection. Therefore, the NBL platform demonstrates promising potential for efficient pulmonary drug delivery and immunomodulation, offering a novel approach to addressing mucus permeation and inflammation in pulmonary diseases.


Asunto(s)
Pulmón , Nanopartículas , SARS-CoV-2 , Nanopartículas/administración & dosificación , Humanos , Pulmón/metabolismo , SARS-CoV-2/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Inmunomodulación , Línea Celular , Mucina-1/metabolismo , COVID-19 , Lípidos/química , Lípidos/administración & dosificación , Moco/metabolismo , Polietilenglicoles/química , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Mucina 5AC/metabolismo , Liposomas
2.
Eur J Pharm Sci ; 197: 106766, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615970

RESUMEN

One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine ß-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.


Asunto(s)
Administración Intranasal , Antivirales , Curcumina , Emulsiones , Quercetina , Curcumina/administración & dosificación , Curcumina/farmacología , Curcumina/química , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/química , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Antivirales/química , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Porcinos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/prevención & control , Mucosa Nasal/metabolismo , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/virología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Humanos
3.
Neuropharmacology ; 253: 109969, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688422

RESUMEN

This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP), which formed a flattened layer on their surface. Nanoparticle preparation involved ionic gelation, followed by characterization using scanning electron microscopy (SEM) for morphology, dynamic light scattering (DLS) for colloidal properties, and ATR-FTIR spectroscopy for structure. Intraperitoneal injection of FITC-PS80/CS NPs and [NDP-MSH]-PS80/CS NP in rats demonstrated their ability to cross the blood-brain barrier, reach the brain, and accumulate in CA1 neurons of the dorsal hippocampus within 2 h. Two experimental models of neuroinflammation were employed with Male Wistar rats: a short-term model involving high-fat diet (HFD) consumption for 5 days followed by an immune stimulus with LPS, and a long-term model involving HFD consumption for 8 weeks. In both models, [NDP-MSH]-PS80/CS NPs could reverse the decreased expression of contextual fear memory induced by the diets. These findings suggest that [NDP-MSH]-PS80/CS NPs offer a promising strategy to overcome the limitations of NDP-MSH regarding pharmacokinetics and enzymatic stability. By facilitating NDP-MSH delivery to the hippocampus, these nanoparticles can potentially mitigate the cognitive impairments associated with HFD consumption and neuroinflammation.


Asunto(s)
Encéfalo , Quitosano , Disfunción Cognitiva , Dieta Alta en Grasa , Nanopartículas , Polisorbatos , Ratas Wistar , alfa-MSH , Animales , Quitosano/administración & dosificación , Quitosano/química , Masculino , alfa-MSH/administración & dosificación , alfa-MSH/análogos & derivados , Polisorbatos/química , Polisorbatos/administración & dosificación , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Nanopartículas/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas
4.
Drug Deliv Transl Res ; 14(9): 2499-2519, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38381316

RESUMEN

This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 1011 NP/cm2, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work. The NP-HA films, featuring Ag/AgCl electrodes, demonstrated the capability to conduct a constant electrical current of 0.2 mA/cm2 without inducing toxicity in keratinocytes and fibroblasts during a 15-min application. Moreover, the NPs facilitated the homogeneous distribution of lipophilic drugs within the film, effectively transporting them to the skin and uniformly distributing them in the stratum corneum upon film administration. The sustained release of HA from the films, following Higuchi kinetics, did not alter the macroscopic characteristics of the film. Although anodic iontophoresis did not noticeably affect the release of HA, it did enhance its penetration into the skin. This enhancement facilitated the permeation of HA with a molecular weight (MW) of up to 2 × 105 through intercellular and transcellular routes. Confocal Raman spectroscopy provided evidence of an approximate 100% increase in the presence of HA with a MW in the range of 1.5-1.8 × 106 in the viable epidermis of human skin after only 15 min of iontophoresis applied to the films. Combining iontophoresis with NP-HA films exhibits substantial potential for noninvasive treatments focused on skin rejuvenation and wound healing.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Ácido Hialurónico/química , Ácido Hialurónico/administración & dosificación , Nanopartículas/administración & dosificación , Nanopartículas/química , Humanos , Absorción Cutánea , Animales , Piel/metabolismo , Quitosano/química , Quitosano/administración & dosificación , Administración Cutánea , Sistemas de Liberación de Medicamentos , Lípidos/química , Lípidos/administración & dosificación , Fibroínas/química , Fibroínas/administración & dosificación , Queratinocitos/efectos de los fármacos , Polímeros/química , Polímeros/administración & dosificación , Liposomas
5.
Braz. j. biol ; 84: e261262, 2024. tab, graf, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1384101

RESUMEN

Promising bioactivities of silver nanoparticles SNP urged researchers of different specialties to evaluate their field-respective activities. Bioactivity towards agricultural pests were the subject of limited publications. In the current study, SNP were synthesized and miticidal activity was evaluated towards old world date mite Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae) and an associated predatory mite Neoseiulus barkeri Hughes (Phytoseiidae). Under laboratory conditions, SNP displayed significantly higher activity towards O. afrasiaticus (LC50 was 39.7 µg/mL) than N. barkeri (LC50 was 1587.9 µg/mL) which accounts for about 40 folds of selectivity against the pest. SNP exhibited ovicidal activity against laid eggs of O. afrasiaticus (LC50 was 67.8 µg/mL). In field, SNP (at 216 µg/mL) achieved slightly higher efficiency than in laboratory study, 86.5% of population reduction of O. afrasiaticus was achieved and only 18.5% of N. barkeri population was affected. SNP suppressed hatching of 57.1% of laid eggs of O. afrasiaticus. Residues of silver were determined using ICP-OES spectrometry. Initial residues reached 1.83 µg/mL after application then declined with time passing. Estimated daily intake (EDI) reached 1.28 µg/kg/day, calculated for the highest residues obtained and the highest consumption rate of date in the world. Hazard index (Hi) was 0.17 in average. The obtained level of residues appeared to be safe in terms of acute and chronic toxicity references.


Bioatividades promissoras de nanopartículas de prata (SNPs) incitaram pesquisadores de diferentes especialidades a avaliar suas atividades em campo. A bioatividade contra pragas agrícolas foi objeto de publicações limitadas. No presente estudo, SNPs foram sintetizadas, e a atividade miticida foi avaliada em relação ao ácaro Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae) e um ácaro predador associado, Neoseiulus barkeri Hughes (Phytoseiidae). Em condições de laboratório, SNP apresentou atividade significativamente maior para O. afrasiaticus (LC50 foi de 39,7 µg/mL) do que N. barkeri (LC50 foi de 1.587,9 µg/mL), o que representa cerca de 40 vezes de seletividade contra a praga. O SNP exibiu atividade ovicida contra ovos postos de O. afrasiaticus (LC50 foi de 67,8 µg/mL). Em campo, o SNP (a 216 µg/mL) alcançou eficiência ligeiramente maior do que em estudo de laboratório; 86,5% de redução populacional de O. afrasiaticus foram alcançados e apenas 18,5% da população de N. barkeri foram afetados. O SNP suprimiu a eclosão de 57,1% dos ovos postos de O. afrasiaticus. Os resíduos de prata foram determinados usando espectrometria ICP-OES. Os resíduos iniciais atingiram 1,83 µg/mL após a aplicação e depois diminuíram com o passar do tempo. A ingestão diária estimada (IDE) atingiu 1,28 µg/kg/dia, calculada para os maiores resíduos obtidos e a maior taxa de consumo de tâmaras do mundo. O índice de risco (Hi) foi de 0,17 em média. O nível de resíduos obtido mostrou-se seguro em termos de referências de toxicidade aguda e crônica.


Asunto(s)
Animales , Plata , Control de Plagas , Plagas Agrícolas , Tetranychidae , Nanopartículas/administración & dosificación , Ácaros
6.
São Paulo; s.n; s.n; 2024. 89 p tab, graf.
Tesis en Portugués | LILACS | ID: biblio-1563079

RESUMEN

Dentro da área da nanotecnologia, o sistema drug delivery vem sendo amplamente utilizado, cujo objetivo é proporcionar uma maior eficácia dos ativos farmacêuticos, podendo envolver desde uma distribuição mais seletiva dentro do organismo até a taxa que as moléculas serão liberadas e/ou a atenuação dos efeitos adversos provocados. Para isso, os ativos são encapsulados em nanoestruturas, podendo estas serem de natureza sintética ou natural. Dentre os nanocarreadores promissores encontram-se os cubossomos, que são nanoestruturas complexas capazes de encapsular ativos tanto hidrofílicos quanto hidrofóbicos. O objetivo deste projeto foi estudar a encapsulação de fármacos antineoplásicos em sistemas drug delivery contra linhagens celulares, investigando também as alterações estruturais sofridas pelos cubossomos e os efeitos sinérgicos dos fármacos, sendo eles: a doxorrubicina, a cisplatina, a vemurafenibe e a curcumina. As metodologias empregadas para elucidar o efeito das combinações dos fármacos, a estruturação da nanopartícula e sua citotoxicidade foram: os estudos de viabilidade celular pós-exposição, espalhamento dinâmico de luz, potencial zeta, análise de rastreamento de nanopartículas, espalhamento de raios-x a baixos ângulos, criomicroscopia eletrônica de transmissão, eficiência de encapsulação e ensaio de liberação. Inicialmente os fármacos foram testados isoladamente e em duplas, sendo utilizadas cinco linhagens celulares, afim de se promover um delineamento aos ensaios futuros. A partir destes resultados, foi-se optado por manter duas linhagens celulares, a HeLa, como representante de tecidos tumorais, e a HaCat, modelo de tecido saudável, devido a menor resistência apresentada por elas. Em relação as combinações entre as drogas, pode-se observar que todas as duplas formadas apresentaram resultados sinérgicos na linhagem tumoral, sendo mantida para os testes seguintes a combinação curcumina e vemurafenibe. Os cubossomos foram sintetizados eficientemente, sendo produzidos na ausência de fármacos bem como contendo curcumina e vemurafenibe. As nanopartículas apresentaram uma variação de diâmetro entre 189 ± 3 nm e 224 ± 2 nm, sendo o PDI entre 0,08 e 0,25. A conformação do cubossomo foi confirmada através da criomicroscopia eletrônica de transmissão e pelo espalhamento de raios-x a baixos ângulos, onde foi determinada uma estruturação característica de Pn3m. Para a eficiência de encapsulação os valores variaram entre 79% de encapsulação para a curcumina e 72% para a vemurafenibe, quando utilizadas isoladamente. No caso da encapsulação em dupla, os valores se converteram para 63% e 53% para a curcumina e vemurafenibe, respectivamente. A liberação das drogas do interior da nanopartícula oscilou entre 1500, 480 e 420 minutos para os cubossomos de curcumina, vemurafenibe e curcumina + vemunafenibe, respectivamente. Os testes de citotoxicidade demonstraram que as concentrações de 0,01 e 0,03 mg/mL foram capazes de promover uma viabilidade acima de 70%, porém, utilizando estas proporções não foi possível observar resultados significativos. Por fim, o sistema se mostrou estável e homogêneo, sendo capaz de promover a encapsulação dos fármacos tanto singularmente quanto em dupla e, apesar da quantidade de fármacos não ter sido suficiente para ocasionar alterações ao sistema celular, a execução deste trabalho abre portas para que novos estudos sejam realizados, podendo-se testar diferentes ativos bem como alterando a composição da nanopartícula afim de se reduzir a citotoxicidade


Within the area of nanotechnology, the drug delivery system has been widely used, whose objective is to provide greater effectiveness of pharmaceutical active ingredients, which may range from a more selective distribution within the organism to the rate at which the molecules will be released and/or the attenuation of adverse effects caused. To achieve this, the active ingredients are encapsulated in nanostructures, which may be synthetic or natural in nature. Among the promising nanocarriers are cubosomes, which are complex nanostructures capable of encapsulating both hydrophilic and hydrophobic active ingredients. The objective of this project was to study the encapsulation of antineoplastic drugs in drug delivery systems against cell lines, also investigating the structural changes undergone by the cubosomes and the synergistic effects ofthe drugs, namely: doxorubicin, cisplatin, vemurafenib and curcumin. The methodologies used to elucidate the effect of drug combinations, the structuring of the nanoparticle and its cytotoxicity were: post-exposure cell viability studies, dynamic light scattering, zeta potential, nanoparticle tracking analysis, small angle x-rays scattering, transmission electron cryomicroscopy, encapsulation efficiency and release assay. Initially, the drugs were tested alone and in pairs, using five cell lines, in order to promote a design for future trials. Based on these results, it was decided to maintain two cell lines, HeLa, as a representative oftumor tissues, and HaCat, a model ofhealthy tissue, due to their lower resistance. Regarding the combinations between the drugs, it can be observed that all the pairs formed presented synergistic results in the tumor lineage, with the combination of curcumin and vemurafenib being maintained for the following tests. Cubosomes were efficiently synthesized, being produced in the absence of drugs as well as containing curcumin and vemurafenib. The nanoparticles varied in diameter between 189 ± 3 nm and 224 ± 2 nm, with the PDI being between 0.08 and 0.25. The conformation ofthe cubosome was confirmed through transmission electron cryomicroscopy and small angle x-rays scattering, where a characteristic structure of Pn3m was determined. For encapsulation efficiency, values varied between 79% encapsulation for curcumin and 72% for vemurafenib, when used alone. ln the case of double encapsulation, the values converted to 63% and 53% for curcumin and vemurafenib, respectively. The release of drugs from the interior of the nanoparticle ranged between 1500, 480 and 420 minutes for the curcumin, vemurafenib and cubosomes with curcumin + vemunafenib, respectively. Cytotoxicity tests demonstrated that concentrations of 0.01 and 0.03 mg/mL were capable of promoting viability above 70%, however, using these proportions it was not possible to observe significant results. Finally, the system proved to be stable and homogeneous, being able to promote the encapsulation of drugs both singly and in pairs and, although the quantity of drugs was not enough to cause changes to the cellular system, the execution of this work opens doors for new studies are carried out, with the possibility oftesting different active ingredients as well as changing the composition of the nanoparticle in order to reduce cytotoxicity


Asunto(s)
Preparaciones Farmacéuticas/análisis , Sistemas de Liberación de Medicamentos/clasificación , Antineoplásicos/análisis , Adaptación Psicológica/clasificación , Doxorrubicina/efectos adversos , Cisplatino/efectos adversos , Microscopía por Crioelectrón/métodos , Curcumina/efectos adversos , Nanopartículas/administración & dosificación , Vemurafenib/agonistas
7.
Diabetes ; 71(3): 483-496, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007324

RESUMEN

The induction of antigen (Ag)-specific tolerance and replacement of islet ß-cells are major ongoing goals for the treatment of type 1 diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4+ T cells in the NOD mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and the expansion of Foxp3+ regulatory T cells specific for the same Ag. Notably, our results indicate that effector function of graft-infiltrating CD4+ and CD8+ T cells specific for other ß-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with an HIP can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Supervivencia de Injerto/efectos de los fármacos , Insulina/administración & dosificación , Trasplante de Islotes Pancreáticos/métodos , Fragmentos de Péptidos/administración & dosificación , Animales , Autoantígenos/inmunología , Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Femenino , Islotes Pancreáticos/inmunología , Ratones , Ratones Endogámicos NOD , Nanopartículas/administración & dosificación , Recurrencia
8.
Clin Sci (Lond) ; 136(1): 81-101, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34904644

RESUMEN

RATIONALE: The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE: Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS: EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS: After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION: Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.


Asunto(s)
Dimetilfumarato/administración & dosificación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Liposomas/administración & dosificación , Nanopartículas/administración & dosificación , Neumonía/tratamiento farmacológico , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Femenino , Inmunosupresores/administración & dosificación , Ratones Endogámicos C57BL , Esclerosis Múltiple
9.
J Toxicol Environ Health A ; 85(4): 131-142, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34612163

RESUMEN

Melanoma is the most aggressive type of skin cancer, and thus it is important to develop new drugs for its treatment. The present study aimed to examine the antitumor effects of solamargine a major alkaloid heteroside present in Solanum lycocarpum fruit. In addition solamargine was incorporated into nanoparticles (NP) of yttrium vanadate functionalized with 3-chloropropyltrimethoxysilane (YVO4:Eu3+:CPTES:SM) to determine antitumor activity. The anti-melanoma assessment was performed using a syngeneic mouse melanoma model B16F10 cell line. In addition, systemic toxicity, nephrotoxic, and genotoxic parameters were assessed. Solamargine, at doses of 5 or 10 mg/kg/day administered subcutaneously to male C57BL/6 mice for 5 days, decreased tumor size and frequency of mitoses in tumor tissue, indicative of a decrease in cell proliferation. Treatments with YVO4:Eu3+:CPTES:SM significantly reduced the number of mitoses in tumor tissue, associated with no change in tumor size. There were no apparent signs of systemic toxicity, nephrotoxicity, and genotoxicity initiated by treatments either with solamargine alone or plant alkaloid incorporated into NP. The animals treated with YVO4:Eu3+:CPTES:SM exhibited significant increase in spleen weight accompanied by no apparent histological changes in all tissues examined. In addition, animals treated with solamargine (10 mg/kg/day) and YVO4:Eu3+:CPTES:SM demonstrated significant reduction in hepatic DNA damage which was induced by tumor growth. Therefore, data suggest that solamargine may be considered a promising candidate in cancer therapy with no apparent toxic effects.


Asunto(s)
Antineoplásicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Alcaloides Solanáceos/farmacología , Animales , Antineoplásicos/toxicidad , Línea Celular Tumoral , Daño del ADN , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitosis/efectos de los fármacos , Nanopartículas/administración & dosificación , Silanos/química , Alcaloides Solanáceos/toxicidad , Itrio/química
10.
Braz. J. Pharm. Sci. (Online) ; 58: e18719, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1364412

RESUMEN

Abstract The aim of present study was calculate the Minimum inhibitory concentrations (MICs) of silver nanoparticles and clotrimazole for Candida species and their interaction by the adaptation of standarized methods. The MICs values of clotrimazole were 9 E-04-3 E-03 ug/ml, 0.1-0.6 ug/ml, 3 E-03- 0.1 ug/ml and 3 E-03-0.3 ug/ml for Candida albicans susceptible to fluconazole, Candida albicans resistance to fluconazole, Candida krusei and Candida parapsilosis respectively. The MICs values of silver nanoparticles were 26.50- 53 ug/ml; 26.50-106 ug/ml; 106-212 ug/ ml and 26.50- 53 ug/ml for Candida albicans susceptible to fluconazole, Candida albicans resistance to fluconazole, Candida krusei and Candida parapsilosis respectively. Synergism between clotrimazole and silver nanoparticles was measured by checkerboard BMD (broth microdilution) test and shown only for C. albicans susceptible to fluconazole because the fractional inhibitory concentrations (FICs) values were 0.07 - 0.15 ug/ml. Indifference was shown for the other species tested because the FICs values were between 0.5 - 2- 3.06 ug/ml. The results suggest synergistic activity depending on the fungus species analysed, however we recommend the incorporation of others measurement methodologies to confirm our results. As for measurement methodologies of MICs of silver nanoparticles and clotrimazole international normative were respected to guarantee reproducible and comparable results.


Asunto(s)
Candida/clasificación , Clotrimazol/análogos & derivados , Nanopartículas/administración & dosificación , Antifúngicos/efectos adversos , Pruebas de Sensibilidad Microbiana/instrumentación , Hongos
11.
Braz. J. Pharm. Sci. (Online) ; 58: e18800, 2022. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1364431

RESUMEN

Abstract Efavirenz is one of the most commonly used drugs in HIV therapy. However the low water solubility tends to result in low bioavailability. Drug nanocrystals, should enhance the dissolution and consequently bioavailability. The aim of the present study was to obtain EFV nanocrystals prepared by an antisolvent technique and to further observe possible effect, on the resulting material, due to altering crystallization parameters. A solution containing EFV and a suitable solvent was added to an aqueous solution of particle stabilizers, under high shear agitation. Experimental conditions such as solvent/antisolvent ratio; drug load; solvent supersaturation; change of stabilizer; addition of milling step and solvents of different polarities were evaluated. Suspensions were characterized by particle size and zeta potential. After freeze- dried and the resulting powder was characterized by PXRD, infrared spectroscopy and SEM. Also dissolution profiles were obtained. Many alterations were not effective for enhancing EFV dissolution; some changes did not even produced nanosuspensions while other generated a different solid phase from the polymorph of raw material. Nevertheless reducing EFV load produced enhancement on dissolution profile. The most important modification was adding a milling step after precipitation. The resulting suspension was more uniform and the powder presented grater enhancement of dissolution efficacy.


Asunto(s)
Eficacia/clasificación , VIH/patogenicidad , Cristalización/instrumentación , Disolución/métodos , Tamaño de la Partícula , Solubilidad , Preparaciones Farmacéuticas/administración & dosificación , Excipientes/farmacología , Disolución/clasificación , Nanopartículas/administración & dosificación , Métodos
12.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884695

RESUMEN

Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Portadores de Fármacos/química , Farmacorresistencia Bacteriana , Compuestos Inorgánicos/administración & dosificación , Nanopartículas/administración & dosificación , Antibacterianos/química , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/microbiología , Humanos , Compuestos Inorgánicos/química , Nanopartículas/química
13.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 101-105, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817361

RESUMEN

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders worldwide. It is caused by the degeneration of dopaminergic neurons from the substantia nigra pars compacta. This neuronal loss causes the dopamine deficiency that leads to a series of functional changes within the basal ganglia, producing motor control abnormalities. L-DOPA is considered the gold standard for PD treatment, and it may alleviate its clinical manifestations for some time. However, its prolonged administration produces tolerance and several severe side effects, including dyskinesias and gastrointestinal disorders. Thus, there is an urgent need to find effective medications, and current trends have proposed some natural products as emerging options for this purpose. Concerning this, curcumin represents a promising bioactive compound with high therapeutic potential. Diverse studies in cellular and animal models have suggested that curcumin could be employed for the treatment of PD. Therefore, the objective of this narrative mini-review is to present an overview of the possible therapeutic effects of curcumin and the subjacent molecular mechanisms. Moreover, we describe several possible nanocarrier-based approaches to improve the bioavailability of curcumin and enhance its biological activity.


Asunto(s)
Encéfalo/efectos de los fármacos , Curcumina/administración & dosificación , Nanopartículas/administración & dosificación , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Curcumina/química , Curcumina/farmacocinética , Liberación de Fármacos , Glutatión Peroxidasa/metabolismo , Humanos , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Nanopartículas/química , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacocinética , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos
14.
Molecules ; 26(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641478

RESUMEN

The use of selenium nanoparticles (SeNPs) in the biomedical area has been increasing as an alternative to the growing bacterial resistance to antibiotics. In this research, SeNPs were synthesized by green synthesis using ascorbic acid (AsAc) as a reducing agent and methanolic extract of Calendula officinalis L. flowers as a stabilizer. Characterization of SeNPs was performed by UV-vis spectrophotometry, infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. SeNPs of 40-60 nm and spherical morphologies were obtained. The antibacterial activity of marigold extracts and fractions was evaluated by disk diffusion methodology. The evaluation of SeNPs at different incubation times was performed through the colony-forming unit (CFU) count, in both cases against Serratia marcescens, Enterobacter cloacae, and Alcaligenes faecalis bacteria. Partial antibacterial activity was observed with methanolic extracts of marigold leaves and flowers and total inhibition with SeNPs from 2 h for S. marcescens, 1 h for E. cloacae, and 30 min for A. faecalis. In addition, SeNPs were found to exhibit antioxidant activity. The results indicate that SeNPs present a potentiated effect of both antimicrobial and antioxidant activity compared to the individual use of marigold extracts or sodium selenite (Na2SeO3). Their application emerges as an alternative for the control of clinical pathogens.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Calendula/química , Nanopartículas/administración & dosificación , Extractos Vegetales/metabolismo , Selenio/química , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Humanos , Nanopartículas/química
15.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299401

RESUMEN

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


Asunto(s)
Bevacizumab/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Bevacizumab/administración & dosificación , Bevacizumab/química , Humanos , Nanopartículas/química
16.
Sci Rep ; 11(1): 15185, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312413

RESUMEN

Parkinson's disease (PD) is a progressive and chronic neurodegenerative disease of the central nervous system. Early treatment for PD is efficient; however, long-term systemic medication commonly leads to deleterious side-effects. Strategies that enable more selective drug delivery to the brain using smaller dosages, while crossing the complex brain-blood barrier (BBB), are highly desirable to ensure treatment efficacy and decrease/avoid unwanted outcomes. Our goal was to design and test the neurotherapeutic potential of a forefront nanoparticle-based technology composed of albumin/PLGA nanosystems loaded with dopamine (ALNP-DA) in 6-OHDA PD mice model. ALNP-DA effectively crossed the BBB, replenishing dopamine at the nigrostriatal pathway, resulting in significant motor symptom improvement when compared to Lesioned and L-DOPA groups. Notably, ALNP-DA (20 mg/animal dose) additionally up-regulated and restored motor coordination, balance, and sensorimotor performance to non-lesioned (Sham) animal level. Overall, ALNPs represent an innovative, non-invasive nano-therapeutical strategy for PD, considering its efficacy to circumvent the BBB and ultimately deliver the drug of interest to the brain.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Dopamina/administración & dosificación , Dopamina/farmacocinética , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Masculino , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
17.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281181

RESUMEN

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


Asunto(s)
Antiinfecciosos/administración & dosificación , Curcumina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Curcumina/química , Humanos , Micelas , Nanomedicina/métodos , Nanopartículas/química
18.
Electron. j. biotechnol ; Electron. j. biotechnol;52: 21-29, July. 2021. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1283484

RESUMEN

BACKGROUND: Super-paramagnetic iron oxide nanoparticles (SPION) contain a chemotherapeutic drug and are regarded as a promising technique for improving targeted delivery into cancer cells. RESULTS: In this study, the fabrication of 5-fluorouracil (5-FU) was investigated with loaded Dextran (DEXSPION) using the co-precipitation technique and conjugated by folate (FA). These nanoparticles (NPs) were employed as carriers and anticancer compounds against liver cancer cells in vitro. Structural, magnetic, morphological characterization, size, and drug loading activities of the obtained FA-DEX-5-FUSPION NPs were checked using FTIR, VSM, FESEM, TEM, DLS, and zeta potential techniques. The cellular toxicity effect of FA-DEX-5-FU-SPION NPs was evaluated using the MTT test on liver cancer (SNU-423) and healthy cells (LO2). Furthermore, the apoptosis measurement and the expression levels of NF-1, Her-2/neu, c-Raf-1, and Wnt-1 genes were evaluated post-treatment using flow cytometry and RT-PCR, respectively. The obtained NPs were spherical with a suitable dispersity without noticeable aggregation. The size of the NPs, polydispersity, and zeta were 74 ± 13 nm, 0.080 and 45 mV, respectively. The results of the encapsulation efficiency of the nano-compound showed highly colloidal stability and proper drug maintenance. The results indicated that FA-DEX-5-FU-SPION demonstrated a sustained release profile of 5-FU in both phosphate and citrate buffer solutions separately, with higher cytotoxicity against SNU-423 cells than against other cells types. These findings suggest that FA-DEX-SPION NPs exert synergistic effects for targeting intracellular delivery of 5-FU, apoptosis induction, and gene expression stimulation. CONCLUSIONS: The findings proved that FA-DEX-5-FU-SPION presented remarkable antitumor properties; no adverse subsequences were revealed against normal cells.


Asunto(s)
Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Fluorouracilo/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Polímeros , Expresión Génica/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Apoptosis/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Preparaciones de Acción Retardada , Nanopartículas/administración & dosificación , Nanopartículas de Magnetita , Citometría de Flujo
19.
J Wound Care ; 30(Sup6): S44-S50, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34120463

RESUMEN

OBJECTIVE: Little is known about the efficacy of products aiming to prevent radiodermatitis, which affects between 90-95% of women with breast cancer. The use of antioxidants is promising, however, there is a lack of evidenceon their effectiveness. Here, the authors present a clinical trial protocol to evaluate the effects of applying a cream containing nanoparticles with vitamin E to prevent radiodermatitis in patients with breast cancer. METHOD: The protocol recommends that 108 women with breast cancer, receiving radiotherapy, are included in this triple-blinded, randomized, controlled study at an oncology hospital. Patients will be divided in three groups of 36 individuals each: group A will receive a cream with lipid nanoparticles and vitamin E, group B will receive a cream without nanoparticles nor vitamin E, and group C will receive a cream with nanoparticles without vitamin E. The primary endpoints will evaluate the incidence, degree, and time of onset of radiodermatitis. The secondary endpoints will focus on the quality of life, symptoms, and local temperature. Patients will be assessed three times a week, from the start of their radiotherapy treatment to two weeks after the last session. This protocol was approved by the research ethics committee of the institutions involved and registered on an international trials database.


Asunto(s)
Neoplasias de la Mama/radioterapia , Nanopartículas/administración & dosificación , Protectores contra Radiación/administración & dosificación , Radiodermatitis/prevención & control , Vitamina E/administración & dosificación , Administración Cutánea , Administración Tópica , Protocolos Clínicos , Femenino , Humanos , Nanopartículas/uso terapéutico , Pomadas , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Vitamina E/uso terapéutico
20.
Life Sci ; 279: 119667, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34087280

RESUMEN

Estimates indicate that cancer will become the leading cause of mortality worldwide in the future. Tumorigenesis is a complex process that involves self-sufficiency in signs of growth, insensitivity to anti-growth signals, prevention of apoptosis, unlimited replication, sustained angiogenesis, tissue invasion, and metastasis. Cancer stem cells (CSCs) have an important role in tumor development and resistance. Here we will approach phenotypic plasticity capacity, highly efficient DNA repair systems, anti-apoptotic machinery, sustained stemness features, interaction with the tumor microenvironment, and Notch, Wnt, and Hedgehog signaling pathways. The researches about CSCs as a target in cancer treatment has been growing. Many different options have pointed beneficial results, such as pathways and CSC-surface markers targeting. Besides its limitations, nanotherapeutics have emerged as a potential strategy in this context since they aim to improve pharmacokinetics, biodistribution, and reduce the side effects observed in traditional treatments. Nanoparticles have been studied in this field, mostly for drug delivery and a multitherapy approach. Another widely researched approaches in this area are related to heat therapy, such as photothermal therapy, photodynamic therapy and magnetic hyperthermia, besides molecular targeting. This review will contemplate the most relevant studies that have shown the effects of nanotherapeutics. In conclusion, although the studies analyzed are mostly preclinical, we believe that there is strong evidence that nanoparticles can increase the chances of a better prognosis to cancer in the future. It is also essential to transpose these findings to the clinic to confirm and better understand the role of nanotherapeutics in this context.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antineoplásicos/química , Humanos , Nanopartículas/química , Neoplasias/patología , Células Madre Neoplásicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA