Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.804
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124987, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163774

RESUMEN

While numerous methods exist for diagnosing tumors through the detection of miRNA within tumor cells, few can simultaneously achieve both tumor diagnosis and treatment. In this study, a novel graphene oxide (GO)-based DNA nanodevice (DND), initiated by miRNA, was developed for fluorescence signal amplification imaging and photodynamic therapy in tumor cells. After entering the cells, tumor-associated miRNA drives DND to Catalyzed hairpin self-assembly (CHA). The CHA reaction generated a multitude of DNA Y-type structures, resulting in a substantial amplification of Ce6 fluorescence release and the generation of numerous singlet oxygen (1O2) species induced by laser irradiation, consequently inducing cell apoptosis. In solution, DND exhibited high selectivity and sensitivity to miRNA-21, with a detection limit of 11.47 pM. Furthermore, DND discriminated between normal and tumor cells via fluorescence imaging and specifically generated O21 species in tumor cells upon laser irradiation, resulting in tumor cells apoptosis. The DND offer a new approach for the early diagnosis and timely treatment of malignant tumors.


Asunto(s)
ADN , Grafito , MicroARNs , Fotoquimioterapia , Nanomedicina Teranóstica , Fotoquimioterapia/métodos , Humanos , MicroARNs/análisis , Grafito/química , Nanomedicina Teranóstica/métodos , ADN/química , Apoptosis/efectos de los fármacos , Imagen Óptica , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen
2.
Results Probl Cell Differ ; 73: 551-578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242393

RESUMEN

Diagnosing and then treating disease defines theranostics. The approach holds promise by facilitating targeted disease outcomes. The simultaneous analysis of finding the presence of disease pathophysiology while providing a parallel in treatment is a novel and effective strategy for seeking improved medical care. We discuss how theranostics improves disease outcomes is discussed. The chapter reviews the delivery of targeted therapies. Bioimaging techniques are highlighted as early detection and tracking systems for microbial infections, degenerative diseases, and cancers.


Asunto(s)
Nanomedicina Teranóstica , Humanos , Nanomedicina Teranóstica/métodos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Medicina de Precisión/métodos , Animales
3.
Biochemistry (Mosc) ; 89(8): 1362-1391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39245451

RESUMEN

The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.


Asunto(s)
Grafito , Neoplasias , Nanomedicina Teranóstica , Grafito/química , Grafito/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Fotoquimioterapia , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Terapia Fototérmica/métodos
4.
Theranostics ; 14(12): 4861-4873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239515

RESUMEN

Rationale: Theranostic nanoplatforms exert a vital role in facilitating concurrent real-time diagnosis and on-demand treatment of diseases, thereby making contributions to the improvement of therapeutic efficacy. Nevertheless, the structural intricacy and the absence of well-defined integration of dual functionality persist as challenges in the development of theranostic nanoplatforms. Methods: We develop an atomically precise theranostic nanoplatform based on metal-organic cage (MOC) to provide magnetic resonance imaging (MRI) guided chemodynamic therapy (CDT) for cancer therapy and assess the theranostic performance both in vitro and in vivo. Through UV-vis spectroscopy, electron paramagnetic resonance (EPR), confocal microscopy, flow cytometry, immunofluorescence staining, and western blotting, the ability of MOC-Mn to generate •OH and the subsequent inhibition of HeLa cells was confirmed. Results: The MOC-Mn composed of manganese and calixarene was successfully synthesized and comprehensively characterized. The catalytic activity of manganese within MOC-Mn facilitated the efficient generation of hydroxyl radicals (•OH) through a Fenton-like reaction, leveraging the high concentrations of hydrogen peroxide in the tumor microenvironment (TME). Additionally, its capacity to prolong the T1 relaxation time and augment the MR signal was observed. The theranostic efficacy was verified via rigorous in vitro and in vivo experiments, indicating that MOC-Mn offered clearer visualization of tumor particulars and substantial suppression of tumor growth. Conclusion: This study showcases a precise MRI-guided CDT theranostic nanoplatform for cancer therapy, thereby promoting the advancement of precise nanomedicine and structure-function research.


Asunto(s)
Imagen por Resonancia Magnética , Nanomedicina Teranóstica , Nanomedicina Teranóstica/métodos , Humanos , Animales , Células HeLa , Imagen por Resonancia Magnética/métodos , Ratones , Manganeso/química , Ratones Desnudos , Femenino , Radical Hidroxilo/metabolismo , Radical Hidroxilo/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Ratones Endogámicos BALB C , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Nanopartículas/química
5.
Int J Nanomedicine ; 19: 9213-9226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263631

RESUMEN

Introduction: Targeting, imaging, and treating tumors represent major clinical challenges. Developing effective theranostic agents to address these issues is an urgent need. Methods: We introduce an "all-in-one" tumor-targeted theranostic platform using CuFeSe2-based composite nanoparticles (CuFeSe2@PA) for magnetic resonance (MR) and computed tomography (CT) dual model imaging-guided hyperthermia tumor ablation. Plerixafor (AMD3100) is bonded to the surface of CuFeSe2 as a targeting unit. Due to the robust interaction between AMD3100 and the overexpressed Chemokine CXC type receptor 4 (CXCR4) on the membrane of 4T1 cancer cells, CuFeSe2@PA specifically recognizes 4T1 cancer cells, enriching the tumor region. Results: CuFeSe2@PA serves as a contrast agent for T2-weighted MR imaging (relaxivity value of 1.61 mM-1 s-1) and CT imaging. Moreover, it effectively suppresses tumor growth through photothermal therapy (PTT) owing to its high photothermal conversion capability and stability, with minimized side effects demonstrated both in vitro and in vivo. Discussion: CuFeSe2@PA nanoparticles show potential as dual-mode imaging contrast agents for MR and CT and provide an effective means of tumor treatment through photothermal therapy. The surface modification with Plerixafor enhances the targeting ability of the nanoparticles, performing more significant efficacy and biocompatibility in the 4T1 cancer cell model. The study demonstrates that CuFeSe2@PA is a promising multifunctional theranostic platform with clinical application potential.


Asunto(s)
Cobre , Imagen por Resonancia Magnética , Terapia Fototérmica , Receptores CXCR4 , Nanomedicina Teranóstica , Tomografía Computarizada por Rayos X , Animales , Receptores CXCR4/metabolismo , Nanomedicina Teranóstica/métodos , Terapia Fototérmica/métodos , Línea Celular Tumoral , Imagen por Resonancia Magnética/métodos , Ratones , Cobre/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Ratones Endogámicos BALB C , Femenino , Humanos , Medios de Contraste/química , Nanopartículas/química , Ciclamas/farmacología , Ciclamas/química , Bencilaminas/química
6.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273645

RESUMEN

Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Nanomedicina Teranóstica , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Nanomedicina Teranóstica/métodos , Barrera Hematoencefálica/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Péptidos beta-Amiloides/metabolismo
7.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274933

RESUMEN

64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous ß- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.


Asunto(s)
Radioisótopos de Cobre , Cobre , Neoplasias , Radiofármacos , Nanomedicina Teranóstica , Humanos , Radioisótopos de Cobre/química , Cobre/química , Animales , Radiofármacos/química , Radiofármacos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Distribución Tisular
8.
Proc Natl Acad Sci U S A ; 121(37): e2411583121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236242

RESUMEN

Residual nonvisible bladder cancer after proper treatment caused by technological and therapeutic limitations is responsible for tumor relapse and progression. This study aimed to demonstrate the feasibility of a solution for simultaneous detection and treatment of bladder cancer lesions smaller than one millimeter. The α5ß1 integrin was identified as a specific marker in 81% of human high-grade nonmuscle invasive bladder cancers and used as a target for the delivery of targeted gold nanorods (GNRs). In a preclinical model of orthotopic bladder cancer expressing the α5ß1 integrin, the photoacoustic imaging of targeted GNRs visualized lesions smaller than one millimeter, and their irradiation with continuous laser was used to induce GNR-assisted hyperthermia. Necrosis of the tumor mass, improved survival, and computational modeling were applied to demonstrate the efficacy and safety of this solution. Our study highlights the potential of the GNR-assisted theranostic strategy as a complementary solution in clinical practice to reduce the risk of nonvisible residual bladder cancer after current treatment. Further validation through clinical studies will support the findings of the present study.


Asunto(s)
Oro , Nanotubos , Nanomedicina Teranóstica , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Oro/química , Nanotubos/química , Humanos , Animales , Nanomedicina Teranóstica/métodos , Ratones , Neoplasia Residual , Línea Celular Tumoral , Femenino , Técnicas Fotoacústicas/métodos
9.
Nanotechnology ; 35(48)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146955

RESUMEN

As a part of the immune system, leukocytes (LEs) have the features of circumvention of immunogenicity as well as recruitment to sites of inflammation during infection and tumorigenesis. Utilizing LEs as vehicles to carry theranostic agents is a promising strategy for highly efficient targeted delivery and treatment for inflammation and cancer. Specifically, the LEs, similar to 'Trojan horses', can bypass the immune system and thus enhance the therapeutic effects on inflammation and cancer. In this context, the latest progress of LEs-based delivery systems for improving theranostics of inflammations and cancers is summarized, includingin vitroincubation andin vivointernalization strategy. Although the therapeutic efficacy of LEs-based delivery systems has been achieved, the system construction is complex and the effect is not fulfilling demand completely. Encouragingly, a most recent work reported that the supramolecular arrangement of proteins on the nanocarriers would drive them to be selectively uptaken by neutrophils, opening a new avenue for diagnosis and treatment of inflammation. Moreover, enucleated cells are considered as the biomimetic drug delivery vehicle to retain the organelles for a range of diseases in a safe, controllable and effective manner. These novel findings provide more opportunities for researchers to rethink and redesign the LEs-based delivery systems to overcome existing limitations and broaden their usage, especially in clinical medicine.


Asunto(s)
Inflamación , Leucocitos , Neoplasias , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animales , Sistemas de Liberación de Medicamentos/métodos
10.
Int J Nanomedicine ; 19: 8681-8694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205867

RESUMEN

Purpose: Developing novel multimodal nanomaterials-based anticancer agents to meet complex clinical demands is an urgent challenge. This study presents a novel uniform hollow S-doped NiCuFe Prussian blue analogue (NiCuFe-S) with satisfactory size and properties as anticancer agents for efficient cervical cancer therapy using a simple and environmentally friendly procedure. Methods: The formation mechanism and the reason for enhanced performance of NiCuFe-S were characterized and discussed by diverse spectroscopic and microscopic methods. Moreover, to demonstrate the anti-cancer ability of NiCuFe-S, in vitro and in vivo experiments were carried out. Results: Compared to the non-doped NiCuFe, the NiCuFe-S exhibited significantly enhanced photothermal and catalytic activity attributed to the electronic bandgap-narrowing effect and the increased electron circuit paths resulting from S doping. The hollow structure of NiCuFe-S facilitated the loading of small-molecule drugs, such as doxorubicin (DOX), transforming it into a multimodal nanoplatform for cervical cancer treatment. In vitro and in vivo experiments proved the potential of the NiCuFe-S nanotheranostic agent for chemodynamic therapy (CDT), photothermal therapy (PTT), and chemotherapy for cervical cancer. Conclusion: This research not only overcomes inherent limitations but also significantly broadens the applications of Prussian blue analogues in biomedicine.


Asunto(s)
Antineoplásicos , Doxorrubicina , Ferrocianuros , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Ferrocianuros/química , Femenino , Animales , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Ratones , Células HeLa , Terapia Fototérmica/métodos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos , Ratones Endogámicos BALB C
11.
Transl Neurodegener ; 13(1): 43, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192378

RESUMEN

The diagnosis of neurodegenerative diseases (NDDs) remains challenging, and existing therapeutic approaches demonstrate little efficacy. NDD drug delivery can be achieved through the utilization of nanostructures, hence enabling multimodal NDD theranostics. Nevertheless, both biomembrane and non-biomembrane nanostructures possess intrinsic shortcomings that must be addressed by hybridization to create novel nanostructures with versatile applications in NDD theranostics. Hybrid nanostructures display improved biocompatibility, inherent targeting capabilities, intelligent responsiveness, and controlled drug release. This paper provides a concise overview of the latest developments in hybrid nanostructures for NDD theranostics and emphasizes various engineering methodologies for the integration of diverse nanostructures, including liposomes, exosomes, cell membranes, and non-biomembrane nanostructures such as polymers, metals, and hydrogels. The use of a combination technique can significantly augment the precision, intelligence, and efficacy of hybrid nanostructures, therefore functioning as a more robust theranostic approach for NDDs. This paper also addresses the issues that arise in the therapeutic translation of hybrid nanostructures and explores potential future prospects in this field.


Asunto(s)
Nanoestructuras , Enfermedades Neurodegenerativas , Nanomedicina Teranóstica , Humanos , Nanomedicina Teranóstica/métodos , Nanomedicina Teranóstica/tendencias , Nanoestructuras/uso terapéutico , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/diagnóstico por imagen , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Animales
12.
Talanta ; 279: 126633, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121551

RESUMEN

An innovative organic small molecule with a D-A structure was synthesized by connecting triphenylamine to BODIPY via a thiophene bridge. Triphenylamine and thiophene units ingeniously modulate the balance between steric hindrance and π-π interactions around the flat aza-BODIPY core. The molecule exhibits near-infrared fluorescence absorption and emits at roughly 1100 nm, featuring a significant Stokes shift. Both the molecule and its nanoparticles demonstrate high stability and achieve a remarkable 35 % photothermal conversion efficiency when conjugated with the P(OEGMA)20-P(Asp)14 copolymer. In vitro assessments show low dark toxicity and outstanding biocompatibility. Moreover, in vivo studies and photothermal therapy in mice indicate substantial tumor shrinkage and reduced recurrence, confirming its potential in cancer treatment. These results highlight the promise of this organic molecule and its nanoparticles for NIR-II imaging-guided photothermal therapy, introducing a novel approach to phototheranostic applications for cancer management.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Rayos Infrarrojos , Nanopartículas , Péptidos , Nanopartículas/química , Compuestos de Boro/química , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ratones , Humanos , Péptidos/química , Nanomedicina Teranóstica/métodos , Terapia Fototérmica , Ratones Endogámicos BALB C , Fototerapia
13.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125669

RESUMEN

Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Nanopartículas , Dióxido de Silicio , Nanomedicina Teranóstica , Dióxido de Silicio/química , Animales , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Nanomedicina Teranóstica/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Línea Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Medios de Contraste/química , Gadolinio/química , Porosidad , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126121

RESUMEN

The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVß3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVß3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVß3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.


Asunto(s)
Receptores ErbB , Integrina alfaVbeta3 , Neoplasias , Péptidos , Radiofármacos , Humanos , Integrina alfaVbeta3/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Radiofármacos/uso terapéutico , Radiofármacos/química , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Péptidos/química , Péptidos/uso terapéutico , Animales , Medicina de Precisión/métodos , Nanomedicina Teranóstica/métodos
15.
Int J Pharm ; 662: 124535, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094922

RESUMEN

The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.


Asunto(s)
Tecnología Química Verde , Nanopartículas , Selenio , Nanomedicina Teranóstica , Selenio/química , Humanos , Nanomedicina Teranóstica/métodos , Tecnología Química Verde/métodos , Animales
16.
Mikrochim Acta ; 191(9): 541, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150483

RESUMEN

The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Animales , Nanomedicina Teranóstica/métodos
18.
J Nanobiotechnology ; 22(1): 515, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198894

RESUMEN

Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.


Asunto(s)
Disulfuros , Molibdeno , Neoplasias , Nanomedicina Teranóstica , Molibdeno/química , Molibdeno/uso terapéutico , Humanos , Disulfuros/química , Nanomedicina Teranóstica/métodos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Animales , Sistemas de Liberación de Medicamentos/métodos , Técnicas Fotoacústicas/métodos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Imagen Multimodal/métodos
19.
Nat Commun ; 15(1): 6610, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098904

RESUMEN

There is no effective and noninvasive solution for thrombolysis because the mechanism by which certain thrombi become tissue plasminogen activator (tPA)-resistant remains obscure. Endovascular thrombectomy is the last option for these tPA-resistant thrombi, thus a new noninvasive strategy is urgently needed. Through an examination of thrombi retrieved from stroke patients, we found that neutrophil extracellular traps (NETs), ε-(γ-glutamyl) lysine isopeptide bonds and fibrin scaffolds jointly comprise the key chain in tPA resistance. A theranostic platform is designed to combine sonodynamic and mechanical thrombolysis under the guidance of ultrasonic imaging. Breakdown of the key chain leads to a recanalization rate of more than 90% in male rat tPA-resistant occlusion model. Vascular reconstruction is observed one month after recanalization, during which there was no thrombosis recurrence. The system also demonstrates noninvasive theranostic capabilities in managing pigs' long thrombi (>8 mm) and in revascularizing thrombosis-susceptible tissue-engineered vascular grafts, indicating its potential for clinical application. Overall, this noninvasive theranostic platform provides a new strategy for treating tPA-resistant thrombi.


Asunto(s)
Terapia Trombolítica , Trombosis , Activador de Tejido Plasminógeno , Animales , Activador de Tejido Plasminógeno/uso terapéutico , Humanos , Trombosis/diagnóstico por imagen , Trombosis/tratamiento farmacológico , Masculino , Ratas , Terapia Trombolítica/métodos , Trampas Extracelulares/metabolismo , Porcinos , Fibrinolíticos/uso terapéutico , Fibrinolíticos/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Fibrina/metabolismo , Nanomedicina Teranóstica/métodos , Resistencia a Medicamentos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/tratamiento farmacológico
20.
J Nanobiotechnology ; 22(1): 484, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138477

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a progressive and debilitating inflammatory disease of the gastrointestinal tract (GIT). Despite recent advances, precise treatment and noninvasive monitoring remain challenging. METHODS: Herein, we developed orally-administered, colitis-targeting and hyaluronic acid (HA)-modified, core-shell curcumin (Cur)- and cerium oxide (CeO2)-loaded nanoprobes (Cur@PC-HA/CeO2 NPs) for computed tomography (CT) imaging-guided treatment and monitoring of IBD in living mice. RESULTS: Following oral administration, high-molecular-weight HA maintains integrity with little absorption in the upper GIT, and then actively accumulates at local colitis sites owing to its colitis-targeting ability, leading to specific CT enhancement lasting for 24 h. The retained NPs are further degraded by hyaluronidase in the colon to release Cur and CeO2, thereby exerting anti-inflammatory and antioxidant effects. Combined with the ability of NPs to regulate intestinal flora, the oral NPs result in substantial relief in symptoms. Following multiple treatments, the gradually decreasing range of the colon with high CT attenuation correlates with the change in the clinical biomarkers, indicating the feasibility of treatment response and remission. CONCLUSION: This study provides a proof-of-concept for the design of a novel theranostic integration strategy for concomitant IBD treatment and the real-time monitoring of treatment responses.


Asunto(s)
Cerio , Curcumina , Ácido Hialurónico , Enfermedades Inflamatorias del Intestino , Nanopartículas , Nanomedicina Teranóstica , Animales , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ratones , Cerio/química , Curcumina/farmacología , Curcumina/química , Curcumina/uso terapéutico , Nanomedicina Teranóstica/métodos , Administración Oral , Nanopartículas/química , Ácido Hialurónico/química , Hialuronoglucosaminidasa/metabolismo , Tomografía Computarizada por Rayos X , Ratones Endogámicos C57BL , Colon/diagnóstico por imagen , Colon/patología , Colon/metabolismo , Humanos , Colitis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA