Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.671
Filtrar
1.
Sci Rep ; 14(1): 21511, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277612

RESUMEN

Oral cancer is the most common malignancy in many developing countries, such as India, due to increased consumption of smokeless tobacco. The trace elemental components in commercially packaged forms of tobacco can play a significant role in the pathogenesis of oral cancer. To qualitatively assess the trace elements in various types of commercially packaged forms of tobacco using laser-induced breakdown spectroscopy (LIBS). Two popular varieties of 'Paan masala' that contained a mixture of slaked lime with areca nut, catechu, and other flavouring agents (tobacco was absent) and four types of packaged tobacco were obtained from 'Paan' shops. The contents in the packets were made into pellets using a hydraulic press and subjected to elemental analysis using LIBS. A ten-trial experiment was carried out on all six pellets. The National Institute of Standards and Technology (NIST) database was used to assess the emission lines. The elements obtained from commercially packaged tobacco and Paan masala were similar: calcium (Ca), iron (Fe), aluminium (Al), nickel (Ni), and chromium (Cr). Substances that cause DNA damage and carcinogenesis are inorganic elements such as nickel. Our study revealed that carcinogens such as nickel are present in the commercially packaged forms of tobacco and 'Paan masala' samples.


Asunto(s)
Nicotiana , Oligoelementos , Oligoelementos/análisis , Nicotiana/química , Análisis Espectral/métodos , Níquel/análisis , Rayos Láser , Productos de Tabaco/análisis , Embalaje de Productos , Tabaco sin Humo/análisis , Cromo/análisis , Calcio/análisis , Humanos , Hierro/análisis
2.
Mar Pollut Bull ; 207: 116901, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217872

RESUMEN

One of the world's crucial areas for crude oil exploration and extraction is the southern Gulf of Mexico, where Terminos Lagoon (TL) is located. Sediments from the TL region were used to assess the spatial patterns, origins, and ecotoxicological risks associated with 16 priority polycyclic aromatic hydrocarbons (PAHs; 3.1-248.9 ng⸳g-1 dry weight basis, dw) and trace metals (Ni = 11.0-104.0 mg⸳kg-1; V = 2.0-35.0 mg⸳kg-1 dw) linked to anthropogenic activities. Although origin indices based on PAHs and metals concentrations indicate no crude oil pollution in the region, sources of pyrogenic PAHs were identified. A chemometric approach demonstrated associations between organic matter and PAHs, and that metal accumulation depends mostly by the input of lithogenic materials. Ecotoxicological risk estimations showed a higher risk of possible adverse effects in sites near swamps and mangrove zones, highlighting the need of future monitoring. This study provides a reference for policymakers to conserve Mexico's largest coastal lagoon and other oil-impacted coastal areas worldwide.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Níquel , Petróleo , Hidrocarburos Policíclicos Aromáticos , Vanadio , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Golfo de México , Contaminantes Químicos del Agua/análisis , Vanadio/análisis , Níquel/análisis , Petróleo/análisis , Contaminación por Petróleo/análisis
3.
Ecotoxicol Environ Saf ; 283: 116812, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094457

RESUMEN

The cultivation of forage crops on wastewater-irrigated soils, while common in many developing countries, poses significant risks due to heavy metal pollution, particularly Lead (Pb) and Nickel (Ni). This practice, aimed at addressing water scarcity challenges and providing affordable irrigation, was investigated for its ecological and human health implications across three diverse sites (site A, site B, and site C). Our study unveiled increases in Pb concentrations in contaminated soil, cultivated with Sesbania bispinosa showing the highest Pb accumulation. The Ni concentrations ranged from 5.34 to 10.43 across all forage crop samples, with S. fruticosa from site C displaying the highest Ni concentration and S. bicolor from site A exhibiting the lowest. Trace element concentrations in the specimens were determined using an atomic absorption spectrophotometer. The Pb levels in the blood, hair, and feces of farm ruminants (cows, buffaloes, and sheep) varied across the sites, with buffaloes consistently displaying the highest Pb levels. Insights into daily Pb intake by ruminant's highlighted variations influenced by plant species, animal types, and sites, with site C, the cows exhibiting the highest Health Risk Index (HRI) associated with lead exposure from consuming forage crops. Soil and forage samples showed Pb concentrations ranging from 8.003 to 12.29 mg/kg and 6.69-10.52 mg/kg, respectively, emphasizing the severe health risks associated with continuous sewage usage. Variations in Ni concentrations across animal blood, hair, and feces samples underscored the importance of monitoring Ni exposure in livestock, with sheep at site B consistently showing the highest Ni levels. These findings highlight the necessity of vigilance in monitoring trace element (Pb and Ni) exposure in forage crops and livestock, to mitigate potential health risks associated with their consumption, with variations dependent on species, site, and trace element concentrations.


Asunto(s)
Productos Agrícolas , Plomo , Níquel , Contaminantes del Suelo , Níquel/análisis , Níquel/toxicidad , Animales , Contaminantes del Suelo/análisis , Plomo/análisis , Monitoreo del Ambiente , Rumiantes , Ovinos , Bovinos , Suelo/química , Granjas
4.
Food Chem Toxicol ; 192: 114930, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147355

RESUMEN

This study focuses on FSMPs for oncologic patients, specifically analyzing the toxicological profiles of nickel (Ni), chromium (Cr), and selenium (Se) within these products available in Polish pharmacies. The presence of these elements was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Results indicated variations in the concentrations of Ni, Cr, and Se across different FSMP samples, with some products exceeding the acceptable limits set by regulatory guidelines. The study highlights the potential health risks associated with nickel exposure, including dermatitis and carcinogenesis, and the complex roles of chromium and selenium, which can be both beneficial and harmful depending on their levels. Our findings reveal significant variability in the elemental content across different FSMP products, i.e.: Ni: 0.155-25.488 µg/portion, Cr: 0.076-28.726 µg/portion and Se: 0.083-20.304 µg/portion). Notably, selenium levels in FSMPs showed considerable discrepancies compared to manufacturers' declarations, averaging only about 20% of the stated values. Regulatory assessments based on the Acceptable Daily Intake (ADI) and Permitted Daily Exposure (PDE) descriptors indicated that the estimated weekly intake of Ni, Cr, and Se from these FSMPs did not exceed the provisional tolerable weekly intake (PTWI) values. However, the highest Ni content was 30.58% of the PTWI, raising concerns about potential health risks, including dermatitis and carcinogenesis. The results for Cr underscored the necessity for careful monitoring due to its potential toxic effects. Selenium, despite its essential role, showed levels inadequate to meet the Recommended Dietary Allowance (RDA), potentially impacting its intended health benefits.


Asunto(s)
Cromo , Níquel , Selenio , Polonia , Humanos , Cromo/análisis , Selenio/análisis , Níquel/análisis , Níquel/toxicidad , Neoplasias , Farmacias , Contaminación de Alimentos/análisis , Análisis de los Alimentos
5.
Mar Pollut Bull ; 206: 116786, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094283

RESUMEN

The fractionation and distribution of two potentially toxic elements (Co and Ni) were investigated in surface sediments to explore the pollution in Xiamen Bay, a special zone experiencing rapid economic growth and enormous environmental pressure. Relatively high concentrations were observed in nearshore areas with frequent human activities. The dominant fractions for Co and Ni were found to be residual, followed by exchangeable phase. Spatial differences in mobility and bioavailability inferred from chemical fractionations were more pronounced for Ni. Multiple evaluation methods including geo-accumulation index, risk assessment code, modified potential ecological risk index, etc., consistently indicated that pollution levels and ecological risks in the entire bay were generally classified as medium-low. However, non-carcinogenic risks of Co for children and carcinogenic risks of Ni for adults exceeded safety thresholds. Terrestrial weathering processes and industrial activities primarily contributed to the presence of these elements, while their distributions were mainly influenced by organic matter.


Asunto(s)
Bahías , Cobalto , Monitoreo del Ambiente , Sedimentos Geológicos , Níquel , Contaminantes Químicos del Agua , Níquel/análisis , Sedimentos Geológicos/química , China , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Cobalto/análisis , Humanos
6.
Talanta ; 280: 126786, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216417

RESUMEN

A lantern-shaped viologen/polyoxometalate (POM)-based compound [NiII(MSBP)2(H2O)2]·(ß-Mo8O26)·H2O (Ni-POM) (MSBP = 1-(4-Methanesulfonyl-benzyl)-[4,4']bipyridinyl-1-ium) was successfully synthesized by a hydrothermal method for the efficient detection of Ag+. A strong affinity between Ag+ and SO in the viologen component of the Ni-POM structure made them interact, which led to blue fluorescence quenching. In the concentration range of 0.1-4 µM, a strong linear relationship was observed between the Ag+concentration and the fluorescence intensity ratio of Ni-POM, and the limit of detection (LOD) was 20.4 nM. Considering the widespread presence of Ag+ in various water sources, daily necessities and food preservatives, the utilization of Ni-POM for detecting the concentration of Ag+ in real samples (water, daily necessities and beverages) was proved to be highly effective. Moreover, a remarkable recovery rate ranging from 95.70 % to 103.60 % was achieved, indicating that the monitoring results of practical samples were satisfactory. A fluorescent ink based on Ni-POM was designed for the purpose of information confidentiality. More importantly, the hydrogel intelligent device for visual detection of Ag+ was developed, which could realize visual real-time on-site quantitative detection of Ag+ concentration in beverages and daily necessities. Therefore, Ni-POM provides an effective platform for the development of visually quantitative detection of Ag+ in food and daily necessities.


Asunto(s)
Bebidas , Colorantes Fluorescentes , Plata , Compuestos de Tungsteno , Colorantes Fluorescentes/química , Plata/química , Compuestos de Tungsteno/química , Bebidas/análisis , Espectrometría de Fluorescencia/métodos , Límite de Detección , Níquel/química , Níquel/análisis , Molibdeno/química
7.
Environ Res ; 261: 119718, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096993

RESUMEN

Devising of materials that afforded dual applicability in decontamination and pollutant detection were still a towering challenge owing to the increasing flux of discharge toxic contaminants over the years. Herein, the NiFe2O4 nanoparticles-loaded on cube-like SrTiO3 (NiFe2O4/SrTiO3) composite was fabricated by a two-step hydrothermal approach providing remarkable photocatalytic treatment and electrochemical sensing of noxious pollutants in wastewater. The material traits of the fabricated composite were scrutinized by myriad characterization approaches. The NiFe2O4/SrTiO3 hybrid material demonstrated high surface area of 19.81 m2/g, adequate band gap energy of 2.75 eV, and prominent photoluminescence characteristics. In the presence of visible light, the NiFe2O4/SrTiO3 exhibited profound photocatalysis capability to eliminate sewage effluent-bearing chlortetracycline hydrochloride (CTCH) with 88.6% COD removal in 120 min, outperforming other pure materials. Meanwhile, the toxicity examination of effluent, the possible degradation pathway of CTCH and the proposed photocatalysis mechanism were also divulged. More importantly, the glassy carbon electrode was modified with synergized NiFe2O4/SrTiO3 (NiFe2O4/SrTiO3-GCE) was adopted for the precise quantification of Hydrazine (Hz). The NiFe2O4/SrTiO3-GCE obeyed first-order response for the Hz detection within the range of 1-10 mM: cyclic voltametric: limit of detection (LOD) of 0.119 µM with sensitivity of 18.9 µA µM-1 cm-2, and linear sweep voltametric: LOD of 0.222 µM with a sensitivity of 12.05 µA µM-1 cm-2. The stability and interference of modified electrode were also inspected. This work furnished valuable insights to yield a composite with the prominent S-scheme heterojunction system for quenching of charge carrier recombination and consequently contributing to the future realization into the domains of environmental clean-up and toxic chemical detection.


Asunto(s)
Técnicas Electroquímicas , Compuestos Férricos , Hidrazinas , Níquel , Óxidos , Aguas del Alcantarillado , Estroncio , Titanio , Contaminantes Químicos del Agua , Hidrazinas/química , Hidrazinas/análisis , Titanio/química , Estroncio/química , Estroncio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Óxidos/química , Níquel/análisis , Níquel/química , Compuestos Férricos/química , Aguas del Alcantarillado/química , Técnicas Electroquímicas/métodos , Eliminación de Residuos Líquidos/métodos , Catálisis , Procesos Fotoquímicos , Aguas Residuales/química , Aguas Residuales/análisis
8.
Environ Geochem Health ; 46(10): 405, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212794

RESUMEN

This study was conducted to investigate the status of Lead (Pb) and Nickel (Ni) in greenhouse cucumber affected by fertigation and spraying as a factorial split plot arrangement based on a randomized complete block design (RCBD) with three replications at Soil and Water Research Institute, Karaj, Iran in 2023. The main and sub-plots were respectively fertigation and spraying that was applied in two levels [the minimum permissible concentration of these metals in granular triple super phosphate fertilizer (five ppm Pb and five ppm Ni) as the control treatment, and the maximum permissible concentration of Pb and Ni in granular triple super phosphate fertilizer (50 ppm Pb and 100 ppm Ni)]. Spraying was done in three modes (spraying leaves, leaves + fruit, and fruit). Based on the results, the highest concentration of Pb in the fruit (fruit peel + fruit flesh) (0.295 mg/kg DW) was recorded in the fertigation + spraying with the maximum permissible concentrations of Pb and Ni treatments. A general comparison between the two fertilization methods showed that the spraying method accumulated a higher concentration of Pb in the fruit (i.e., peel + flesh) than the fertigation method. The reverse of this status happened for Ni, so the fertigation method accumulated a higher concentration of Ni in the fruit (skin + flesh) compared to the spraying method. On average, the order of Pb concentration in different organs was as follows: leaf (0.765 mg/kg) > fruit peel (0.232 mg/kg) > fruit peel + flesh (0.174 mg/kg) > fruit flesh (0.129 mg/kg). This order for Ni was as follows: fruit flesh (0.597 mg/kg) > fruit peel + flesh (0.345 mg/kg) > leaf (0.3 mg/kg) > fruit peel (0.175 mg/kg). These orders show that the status of the heavy metals in plant tissues is related to the nature of the metal, the type of the organ, and the method of fertilization.


Asunto(s)
Cucumis sativus , Fertilizantes , Frutas , Plomo , Níquel , Contaminantes del Suelo , Níquel/análisis , Plomo/análisis , Cucumis sativus/química , Fertilizantes/análisis , Contaminantes del Suelo/análisis , Frutas/química , Hojas de la Planta/química , Irán , Contaminación de Alimentos/análisis , Agricultura/métodos
9.
Rapid Commun Mass Spectrom ; 38(20): e9891, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39180446

RESUMEN

RATIONAL: Nickel is one of humans' most prevalent triggers of allergic contact dermatitis. However, the underlying mechanisms of this allergy still need to be fully understood. One aspect that has yet to be explored is the direct impact of common metal allergens on the skin's metabolites and lipids composition. METHOD: Our study employed matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to analyze spatially resolved metabolic alterations induced by nickel exposure. Cross-sections of ex vivo porcine ear skin exposed to increasing nickel (II) ion concentrations (17-167 µg/cm2) were measured with an AP-SMALDI5 AF ion source coupled to Q Exactive HF Orbitrap mass spectrometer. Additionally, the penetration of nickel ions into the skin was observed through its pink complexation with dimethylglyoxime under light microscopy. RESULTS: For nickel ion concentrations up to 84 µg/cm2, most nickel ions were stopped within the stratum corneum, while only a very small proportion of nickel ions penetrated the viable epidermis and dermis. Stratum corneum locations with high nickel ion concentrations showed a decrease in arginine and ceramides. Furthermore, several phosphatidylcholine and sphingomyelin species were found to be downregulated in the viable epidermis and dermis due to the nickel exposure. CONCLUSION: Nickel penetrates at a trace level into the viable skin and induces severe metabolomic and lipidomic changes in the stratum corneum, epidermis, and dermis, indicating a change in the skin (barrier) function. These findings contribute to a deeper understanding of nickel-induced skin allergies and provide a solid foundation for further research.


Asunto(s)
Níquel , Piel , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Porcinos , Níquel/análisis , Níquel/metabolismo , Níquel/farmacocinética , Piel/metabolismo , Piel/efectos de los fármacos , Piel/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Oído , Absorción Cutánea/efectos de los fármacos
10.
PLoS One ; 19(8): e0302420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088559

RESUMEN

Accurate monitoring and estimation of heavy metal concentrations is an important process in the prevention and treatment of soil pollution. However, the weak correlation between spectra and heavy metals in soil makes it difficult to use spectroscopy in predicting areas with a risk of heavy metal pollution. In this paper, a method for detection of Ni in soil in eastern China using the fractional-order derivative (FOD) and spectral indices was proposed. The visible-near-infrared (Vis-NIR) spectra were preprocessed using the FOD (range: 0 to 2, interval: 0.1) to solve the problems of baseline drift and overlapping peaks in the original spectra. The product index (PI), ratio index (RI), sum index (SI), difference index (DI), normalized difference index (NDI), and brightness index (BI) were applied and compared. The results showed that the spectral detail increased as the FOD increased, and the interference of the baseline drift and overlapping peaks was eliminated as the spectral reflectance decreased. Furthermore, the FOD extracted the spectral sensitivity information more effectively and improved the correlation between the Vis-NIR spectra and the Ni concentration, and the NDI had a maximum correlation coefficient (r) of 0.803 for order 1.9. The estimation model based on the NDI dataset constructed after FOD processing had the best performance, with a validation accuracy [Formula: see text] of 0.735, RMSE of 3.848, and RPD of 2.423. In addition, this method is easy to carry out and suitable for estimating other heavy metal elements in soil.


Asunto(s)
Níquel , Contaminantes del Suelo , Suelo , Espectroscopía Infrarroja Corta , Níquel/análisis , Espectroscopía Infrarroja Corta/métodos , Contaminantes del Suelo/análisis , Suelo/química , China , Monitoreo del Ambiente/métodos
11.
Food Chem ; 459: 140452, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024871

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are commonly found in various environmental matrices and have received significant attention due to their toxic effects on ecosystems and environmental health. In this study, a specific magnetic composite material derived from MXene, known as phenyl-functionalized NiFe2O4@Ti3C2TX, was designed and synthesized using a simple method. This composite material was used to develop an effective magnetic solid-phase extraction (MSPE) method for enriching trace polycyclic aromatic hydrocarbons (PAHs) in tea and coffee samples. The eluted PAHs were analyzed via gas chromatography-tandem mass spectrometry. Under optimal conditions, this method exhibited excellent linear relationships for 16 PAHs within the ranges of 0.001-25 and 0.0005-25 µg/L, with correlation coefficients exceeding 0.9979. The limits of detection for the target PAHs ranged from 0.1 to 0.3 ng/L. The effectiveness of the proposed method was evaluated by analyzing tea and coffee samples, and the satisfactory spiked recoveries of PAHs ranged from 84.5% to 112.6%.


Asunto(s)
Café , Contaminación de Alimentos , Hidrocarburos Policíclicos Aromáticos , Extracción en Fase Sólida , , Té/química , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/química , Café/química , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis , Níquel/química , Níquel/análisis , Níquel/aislamiento & purificación , Compuestos Férricos/química , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección
12.
Sci Rep ; 14(1): 16424, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013935

RESUMEN

Lately, children's daily consumption of some products, such as cereals and candies, has been rising, which provides a compelling rationale for determining any metallic substances that may be present. Monitoring the concentration of certain metals, like nickel, in these products is necessary due to medical issues in humans when consumed regularly. So, in this work, a novel and highly selective carbon paste as a Ni(II) ion-selective sensor was prepared and investigated using ceramic magnesium aluminum spinel nanoparticles as the ionophore and tritolyl phosphate (TOCP) as a plasticizer. A modified co-precipitation method was used to synthesize the spinel nanoparticles. X-ray diffraction, scanning electron microscope with EDAX, transmission electron microscope, and BET surface area were used to determine the phase composition, microstructure, pores size, particle size, and surface area of the synthesized nanoparticles. The spinel nanoparticle was found to have a nano crystallite size with a cubic crystal system, a particle size ranging from 17.2 to 51.52 nm, mesoporous nature (average pore size = 8.72 nm), and a large surface area (61.75 m2/g). The composition ratio of graphite carbon as a base: TOCP as binder: spinal as ionophore was 67.3:30.0:2.7 (wt%) based on potentiometric detections over concentrations from 5.0 × 10-8 to 1.0 × 10-2 mol L-1 with LOD of 5.0 × 10-8 mol L-1. A measurement of 29.22 ± 0.12 mV decade-1 over pH 2.0-7.0 was made for the Nernstian slope. This sensor demonstrated good repeatability over nine weeks and a rapid response of 8 s. A good selectivity was shown for Ni(II) ions across many interferents, tri-, di-, and monovalent cations. The Ni(II) content in spiked real samples, including cocaine, sweets, coca, chocolate, carbonated drinks, cereals, and packages, were measured. The results obtained indicated no significant difference between the proposed potentiometric method and the officially reported ICP method according to the F- and t-test data. In addition to utilizing ANOVA statistical analysis, validation procedures have been implemented, and the results exceed the ICP-MS methodology.


Asunto(s)
Níquel , Níquel/análisis , Níquel/química , Humanos , Niño , Óxido de Magnesio/química , Técnicas Electroquímicas/métodos , Óxido de Aluminio/química , Nanopartículas/química , Magnesio/química , Magnesio/análisis , Iones/análisis , Difracción de Rayos X , Ionóforos/química
13.
Sci Rep ; 14(1): 16372, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013977

RESUMEN

The aim of the experiment was to determine the yield of Miscanthus × giganteus M 19 in the first three years of cultivation and its bioaccumulation of Zn and Ni in aboveground and underground parts in response to different doses of sewage sludge and substrate left after the production of white mushrooms. Miscanthus × giganteus is a grass species that adapts to different environmental conditions and can be grown in various climatic zones of Europe and North America. In April 2018 the experiment was established in a randomized block design and with four replications in central-eastern Poland. Waste organic materials (municipal sewage sludge and mushroom substrate) were applied to the soil in 2018 in the spring before the rhizomes of giant miscanthus were planted. Each year (from 2018 to 2020) biomass was harvested in December. The yield of fresh and dry matter and the total content of Zn and Ni, after wet mineralization of plant samples, were determined by optical emission spectrometry (ICP-OES). After the third year of cultivation, the content of Zn and Ni in rhizomes and in the soil was determined again. In relation to control, an increase in the yield of miscanthus biomass in response to organic waste materials was noted. Plants responded to mushroom substrate (SMS) with the highest average yield (16.89 Mgha-1DM), while on the control plot it was 13.86 Mg  ha-1DM. After the third year of cultivation, rhizomes of Miscanthus x giganteus contained higher amounts of Zn (63.3 mg kg-1) and Ni (7.54 mg kg-1) than aboveground parts (40.52 and 2.07 mg kg-1), which indicated that heavy metals were retained in underground parts.


Asunto(s)
Biomasa , Níquel , Poaceae , Aguas del Alcantarillado , Suelo , Zinc , Poaceae/metabolismo , Níquel/análisis , Zinc/análisis , Zinc/metabolismo , Suelo/química , Agaricales/metabolismo , Agaricales/química , Rizoma/metabolismo , Rizoma/química , Polonia
14.
Environ Geochem Health ; 46(8): 273, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958773

RESUMEN

To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.


Asunto(s)
Disponibilidad Biológica , Cromo , Níquel , Contaminantes del Suelo , Níquel/análisis , Níquel/farmacocinética , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Cromo/farmacocinética , Cromo/análisis , Humanos , Medición de Riesgo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Suelo/química
15.
Environ Res ; 258: 119430, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885826

RESUMEN

A silica gel-modified borage biochar (BB@Si) was first produced and used as a binding agent for potentially hazardous Ni2+ ions in aqueous systems. The recommended biochar was more effective in eliminating Ni2+ than pristine biochar (BB). Its maximum qm could reach up to 1.39 × 10-3 mol/g at 30 °C, and sorption isotherms showed that the Langmuir model could more accurately define its sorption behavior. The Dubinin-Radushkevich isotherm also revealed that the average sorption energy ranged from 11.00 to 11.14 kJ/mol. Zeta potential tests, SEM images, and FT-IR scans confirmed the interactions between BB@Si and Ni2+ ions. Dynamic flow treatment studies showed high uptake effectiveness when the flow rate and amount of BB@Si were suitable. Nickel desorption yield of around 80% from BB@Si was noted with 0.01 M HCl. The BB@Si column's breakthrough and exhausted points were identified to be 45 and 352 min, respectively. Its maximum exhaustion capacity value was determined to be 52.73 mg/g. Ni2+ removal from the actual wastewater sample exceeded 75%. The resulting outcomes imply the immense potential of employing BB@Si in the treatment of Ni2+- contaminated aqueous systems.


Asunto(s)
Carbón Orgánico , Níquel , Contaminantes Químicos del Agua , Níquel/química , Níquel/análisis , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Purificación del Agua/métodos
16.
Environ Res ; 258: 119486, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38925464

RESUMEN

This present study enlightens the eco-friendly green synthesis of ZSM-5 from natural clay montmorillonite, and its proper incorporation with 'Ni'. Nickle (Ni) was wet impregnated onto HZSM-5 and the resulting catalyst was characterized by various techniques including XRD, BET, N2 Sorption Studies, TPD, SEM and TEM techniques. The SEM images revealed the uniform distribution of Ni over HZSM-5 zeolite catalyst and the XRD results indicated the undistorted crystalline structure of HZSM-5 even after impregnation of Ni. The latter part of the work concentrates on the strength of the catalyst in cracking oil derived from discarded fish parts. Discarded fish waste was pyrolyzed to obtain the fish oil, which was then used for cracking studies. The fish oil was efficiently converted (99% conversion) by Ni/ZSM5 (50 wt %) and yielded 70% liquid fractions, which formed gasoline (78.6%), kerosene (12.3%) and diesel (9.1%). The research is a complete parcel to examine the working potential of the produced biofuel in pre-existing engines. The quality of gasoline fraction was tested according to ASTM standards, which showed that the heating value was slightly lower compared to fossil gasoline. The torque and brake fuel consumption were also examined and it indicated that the fish oil derived gasoline fuel may need to be mixed with the commercial gasoline to optimize its performance.


Asunto(s)
Biocombustibles , Aceites de Pescado , Pirólisis , Zeolitas , Biocombustibles/análisis , Zeolitas/química , Catálisis , Aceites de Pescado/química , Níquel/química , Níquel/análisis , Animales
17.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892274

RESUMEN

Heavy metals are dangerous contaminants that constitute a threat to human health because they persist in soils and are easily transferred into the food chain, causing damage to human health. Among heavy metals, nickel appears to be one of the most dangerous, being responsible for different disorders. Public health protection requires nickel detection in the environment and food chains. Biosensors represent simple, rapid, and sensitive methods for detecting nickel contamination. In this paper, we report on the setting up a whole-cell-based system, in which protoplasts, obtained from Nicotiana tabacum leaves, were used as transducers to detect the presence of heavy metal ions and, in particular, nickel ions. Protoplasts were genetically modified with a plasmid containing the Green Fluorescent Protein reporter gene (GFP) under control of the promoter region of a sunflower gene coding for a small Heat Shock Protein (HSP). Using this device, the presence of heavy metal ions was detected. Thus, the possibility of using this whole-cell system as a novel tool to detect the presence of nickel ions in food matrices was assessed.


Asunto(s)
Técnicas Biosensibles , Níquel , Nicotiana , Protoplastos , Níquel/análisis , Protoplastos/metabolismo , Nicotiana/genética , Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Contaminación de Alimentos/análisis , Metales Pesados/análisis
18.
Environ Geochem Health ; 46(7): 241, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849713

RESUMEN

Soil contamination due to industrial activity in ceramics production is of concern because of the risk of heavy metal pollution. Successive extraction was used to measure and identify the concentrations of Cd, Mn, Ni, and Pb in farming soils near a ceramics company in Nigeria. Furthermore, soil pH and particle size analyses were determined. The concentration of Pb was the highest, followed by that of Ni, Mn, and Cd (lowest), and the mean level of Cd exceeded the regulatory allowed limit of 1.4 mg kg-1. The order of the metals' mobility factors was as follows: Cd > Mn > Ni, Pb. While the Fe-Mn oxide phase had 37% (Mn) and 20 to 83% (Ni), the residual fraction had approximately 30% (Cd) and 19 to 50% (Pb). Soil pollution evaluation was performed using enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geoaccumulation index (Igeo). Values of EF indicated significant enrichment for all metals, as the EF mean values for Cd, Ni, and Pb in soil were > 1.5. Total EF is of the order Cd > Pb > Ni > Mn. CF results revealed moderate to very high contamination (CF < 1: 3 ≤ CF ≥ 6). Similarly, the PLI indicated moderately to severely polluted soil. The order is 100 m > 200 m > 300 m > 400 m. The Igeo ranged from 1.46 to 2.76 (Cd), 0.07 to 1.62 (Ni), and 0.05 to 2.81 (Pb). The PCA, CA, and EF analyses suggest that the metals are a consequence of anthropogenic activities.


Asunto(s)
Cerámica , Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Cerámica/química , Suelo/química , Metales Pesados/análisis , Nigeria , Fraccionamiento Químico , Tamaño de la Partícula , Plomo/análisis , Granjas , Níquel/análisis , Cadmio/análisis , Concentración de Iones de Hidrógeno , Manganeso/análisis
19.
Environ Geochem Health ; 46(8): 261, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916678

RESUMEN

A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.


Asunto(s)
Cobalto , Compuestos Férricos , Azul de Metileno , Níquel , Cobalto/química , Cobalto/análisis , Níquel/química , Níquel/análisis , Compuestos Férricos/química , Azul de Metileno/química , Nanopartículas del Metal/química , Gases , Catálisis , Rayos Ultravioleta , Restauración y Remediación Ambiental/métodos , Nanopartículas/química , Óxido de Aluminio , Óxido de Magnesio
20.
Sci Rep ; 14(1): 11017, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745041

RESUMEN

Mining activities have increased the potential risks of metal pollution to the groundwater resources in arid areas across the globe. Therefore, this study aimed to examine the health risk associated with nickel (Ni) in the groundwater sources of a mining-impacted area, South Khorasan, Eastern Iran. A total of 110 stations were included in the study, comprising 62 wells, 40 qanats, and 8 springs in summer, 2020. Initially, the collected samples were tested for temperature, pH, and electrical conductivity (EC). Subsequently, the samples were filtered and treated with nitric acid (HNO3) to measure the concentration of Ni using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Hazard quotient (HQ) and non-carcinogenic risk assessments were employed to evaluate the potential risks of Ni to the inhabitants. The findings revealed that the concentration of Ni ranged from 0.02 to 132.39 µg l-1, and only two stations exhibited Ni concentrations above the WHO standards (20 µg l-1). The results demonstrated that 98.21% of the sampled locations had HQ values below one, indicating negligible risk, while 1.78% of the stations exhibited HQ values of one or higher, representing a high non-carcinogenic risk for water consumers. Overall, the concentration of nickel in the groundwater of South Khorasan exceeded the World Health Organization (WHO) limit solely in the Halvan station, posing a non-carcinogenic risk for the residents in that area, and therefore, additional efforts should be made to provide healthier groundwater to consumers in this region.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Minería , Níquel , Contaminantes Químicos del Agua , Níquel/análisis , Agua Subterránea/análisis , Agua Subterránea/química , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Humanos , Irán , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA