Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.660
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275542

RESUMEN

Surface electromyography (sEMG) offers a novel method in human-machine interactions (HMIs) since it is a distinct physiological electrical signal that conceals human movement intention and muscle information. Unfortunately, the nonlinear and non-smooth features of sEMG signals often make joint angle estimation difficult. This paper proposes a joint angle prediction model for the continuous estimation of wrist motion angle changes based on sEMG signals. The proposed model combines a temporal convolutional network (TCN) with a long short-term memory (LSTM) network, where the TCN can sense local information and mine the deeper information of the sEMG signals, while LSTM, with its excellent temporal memory capability, can make up for the lack of the ability of the TCN to capture the long-term dependence of the sEMG signals, resulting in a better prediction. We validated the proposed method in the publicly available Ninapro DB1 dataset by selecting the first eight subjects and picking three types of wrist-dependent movements: wrist flexion (WF), wrist ulnar deviation (WUD), and wrist extension and closed hand (WECH). Finally, the proposed TCN-LSTM model was compared with the TCN and LSTM models. The proposed TCN-LSTM outperformed the TCN and LSTM models in terms of the root mean square error (RMSE) and average coefficient of determination (R2). The TCN-LSTM model achieved an average RMSE of 0.064, representing a 41% reduction compared to the TCN model and a 52% reduction compared to the LSTM model. The TCN-LSTM also achieved an average R2 of 0.93, indicating an 11% improvement over the TCN model and an 18% improvement over the LSTM model.


Asunto(s)
Electromiografía , Redes Neurales de la Computación , Articulación de la Muñeca , Humanos , Electromiografía/métodos , Articulación de la Muñeca/fisiología , Rango del Movimiento Articular/fisiología , Movimiento/fisiología , Procesamiento de Señales Asistido por Computador , Algoritmos , Adulto , Masculino , Muñeca/fisiología
2.
Sensors (Basel) ; 24(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275614

RESUMEN

Musculoskeletal Disorders (MSDs) stand as a prominent cause of injuries in modern agriculture. Scientific research has highlighted a causal link between MSDs and awkward working postures. Several methods for the evaluation of working postures, and related risks, have been developed such as the Rapid Upper Limb Assessment (RULA). Nevertheless, these methods are generally applied with manual measurements on pictures or videos. As a consequence, their applicability could be scarce, and their effectiveness could be limited. The use of wearable sensors to collect kinetic data could facilitate the use of these methods for risk assessment. Nevertheless, the existing system may not be usable in the agricultural and vine sectors because of its cost, robustness and versatility to the various anthropometric characteristics of workers. The aim of this study was to develop a technology capable of collecting accurate data about uncomfortable postures and repetitive movements typical of vine workers. Specific objectives of the project were the development of a low-cost, robust, and wearable device, which could measure data about wrist angles and workers' hand positions during possible viticultural operations. Furthermore, the project was meant to test its use to evaluate incongruous postures and repetitive movements of workers' hand positions during pruning operations in vineyard. The developed sensor had 3-axis accelerometers and a gyroscope, and it could monitor the positions of the hand-wrist-forearm musculoskeletal system when moving. When such a sensor was applied to the study of a real case, such as the pruning of a vines, it permitted the evaluation of a simulated sequence of pruning and the quantification of the levels of risk induced by this type of agricultural activity.


Asunto(s)
Postura , Dispositivos Electrónicos Vestibles , Humanos , Postura/fisiología , Enfermedades Musculoesqueléticas/fisiopatología , Agricultura/métodos , Agricultura/instrumentación , Muñeca/fisiología , Fenómenos Biomecánicos/fisiología , Adulto , Masculino , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Movimiento/fisiología
3.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275712

RESUMEN

A brain-computer interface could control a bionic hand by interpreting electroencephalographic (EEG) signals associated with wrist extension (WE) and wrist flexion (WF) movements. Misinterpretations of the EEG may stem from variations in the force, speed and range of these movements. To address this, we designed, constructed and tested a novel dynamometer, the IsoReg, which regulates WE and WF movements during EEG recording experiments. The IsoReg restricts hand movements to isometric WE and WF, controlling their speed and range of motion. It measures movement force using a dual-load cell system that calculates the percentage of maximum voluntary contraction and displays it to help users control movement force. Linearity and measurement accuracy were tested, and the IsoReg's performance was evaluated under typical EEG experimental conditions with 14 participants. The IsoReg demonstrated consistent linearity between applied and measured forces across the required force range, with a mean accuracy of 97% across all participants. The visual force gauge provided normalised force measurements with a mean accuracy exceeding 98.66% across all participants. All participants successfully controlled the motor tasks at the correct relative forces (with a mean accuracy of 89.90%) using the IsoReg, eliminating the impact of inherent force differences between typical WE and WF movements on the EEG analysis. The IsoReg offers a low-cost method for measuring and regulating movements in future neuromuscular studies, potentially leading to improved neural signal interpretation.


Asunto(s)
Electroencefalografía , Muñeca , Humanos , Electroencefalografía/métodos , Muñeca/fisiología , Masculino , Adulto , Femenino , Movimiento/fisiología , Interfaces Cerebro-Computador , Adulto Joven , Dinamómetro de Fuerza Muscular , Rango del Movimiento Articular/fisiología
4.
Sci Rep ; 14(1): 20634, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232018

RESUMEN

The redundancy present within the musculoskeletal system may offer a non-invasive source of signals for movement augmentation, where the set of muscle activations that do not produce force/torque (muscle-to-force null-space) could be controlled simultaneously to the natural limbs. Here, we investigated the viability of extracting movement augmentation control signals from the muscles of the wrist complex. Our study assessed (i) if controlled variation of the muscle activation patterns in the wrist joint's null-space is possible; and (ii) whether force and null-space cursor targets could be reached concurrently. During the null-space target reaching condition, participants used muscle-to-force null-space muscle activation to move their cursor towards a displayed target while minimising the exerted force as visualised through the cursor's size. Initial targets were positioned to require natural co-contraction in the null-space and if participants showed a consistent ability to reach for their current target, they would rotate 5 ∘ incrementally to generate muscle activation patterns further away from their natural co-contraction. In contrast, during the concurrent target reaching condition participants were required to match a target position and size, where their cursor position was instead controlled by their exerted flexion-extension and radial-ulnar deviation, while its size was changed by their natural co-contraction magnitude. The results collected from 10 participants suggest that while there was variation in each participant's co-contraction behaviour, most did not possess the ability to control this variation for muscle-to-force null-space virtual reaching. In contrast, participants did show a direction and target size dependent ability to vary isometric force and co-contraction activity concurrently. Our results indicate the limitations of using the muscle-to-force null-space activity of joints with a low level of redundancy as a possible command signal for movement augmentation.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Articulación de la Muñeca , Muñeca , Humanos , Músculo Esquelético/fisiología , Masculino , Femenino , Muñeca/fisiología , Adulto , Articulación de la Muñeca/fisiología , Contracción Muscular/fisiología , Electromiografía , Movimiento/fisiología , Adulto Joven , Fenómenos Biomecánicos
5.
Sensors (Basel) ; 24(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204870

RESUMEN

Walking is crucial for independence and quality of life. This study leverages wrist-worn sensor data from UK Biobank participants to establish normative daily-life walking data, stratified by age and sex, to provide benchmarks for research and clinical practice. The Watch Walk digital biomarkers were developed, validated, and applied to 92,022 participants aged 45-79 who wore a wrist sensor for at least three days. Normative data were collected for daily-life walking speed, step-time variability, step count, and 17 other gait and sleep biomarkers. Test-retest reliability was calculated, and associations with sex, age, self-reported walking pace, and mobility problems were examined. Population mean maximal and usual walking speeds were 1.49 and 1.15 m/s, respectively. The daily step count was 7749 steps, and step regularity was 65%. Women walked more regularly but slower than men. Walking speed, step count, longest walk duration, and step regularity decreased with age. Walking speed is associated with sex, age, self-reported pace, and mobility problems. Test-retest reliability was good to excellent (ICC ≥ 0.80). This study provides large-scale normative data and benchmarks for wrist-sensor-derived digital gait and sleep biomarkers from real-world data for future research and clinical applications.


Asunto(s)
Velocidad al Caminar , Muñeca , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Muñeca/fisiología , Velocidad al Caminar/fisiología , Caminata/fisiología , Marcha/fisiología , Dispositivos Electrónicos Vestibles , Calidad de Vida , Reproducibilidad de los Resultados
6.
Sensors (Basel) ; 24(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204914

RESUMEN

Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers.


Asunto(s)
Suministros de Energía Eléctrica , Dispositivos Electrónicos Vestibles , Muñeca , Humanos , Muñeca/fisiología , Cabeza/fisiología , Diseño de Equipo , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
7.
Hum Mov Sci ; 97: 103269, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137455

RESUMEN

When fatigued, the wrist extensors, which are the primary wrist stabilizers, impair distal upper limb motor performance in a surprisingly similar way as when fatiguing the wrist flexors. It is possible that the wrist extensors are so active as antagonists that they develop an equal degree of fatigue during wrist flexion contractions, making it difficult to truly isolate their impact on performance. Thus, the purpose of this study was to examine how wrist flexion/extension forces are impaired following either agonist or antagonist sustained submaximal wrist contractions. 13 male participants attended four laboratory sessions. In these sessions, fatigue was induced via a sustained submaximal isometric contraction of either wrist flexion or extension. These contractions were held for up to 10 min at 20% of the participant's baseline maximal voluntary contraction (MVC) force. Throughout the sustained contraction, intermittent agonist (matching the sustained contraction) or antagonist (opposing the sustained contraction) MVCs were performed. Unsurprisingly, agonist MVC forces decreased significantly more than antagonist (Agonist: 58.5%, Antagonist: 86.5% of MVC, P < 0.001). However, while there were no differences in antagonist wrist extension and flexion MVC decreases (Wrist Flexion: 87.5%, Wrist Extension: 85.5%, P = 0.41), wrist extension MVCs did decrease significantly more than wrist flexion MVCs when forces were expressed relative to the agonist (P = 0.036). These findings partially support the hypothesis that the wrist extensors may be more susceptible to developing fatigue when functioning as antagonists than the wrist flexors. This work will help equip future research into the motor control of the upper limb and the prevention of forearm-related musculoskeletal disorders.


Asunto(s)
Contracción Isométrica , Fatiga Muscular , Músculo Esquelético , Muñeca , Humanos , Masculino , Contracción Isométrica/fisiología , Fatiga Muscular/fisiología , Adulto , Adulto Joven , Muñeca/fisiología , Músculo Esquelético/fisiología , Articulación de la Muñeca/fisiología , Rango del Movimiento Articular/fisiología , Fenómenos Biomecánicos/fisiología , Electromiografía
8.
J Sport Rehabil ; 33(7): 522-530, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39117311

RESUMEN

CONTEXT: Analyzing flick movement kinematics biomechanically is important to prevent sport-related injuries in underwater hockey players since the aquatic-based flick movement is completely different from land-based flick movements. The study aimed to describe the flick movement kinematic biomechanically in underwater hockey players. Moreover, this study further aimed to investigate the effect of the Thrower's Ten exercises on flick movement kinematics in underwater hockey players. DESIGN: Descriptive laboratory study. METHODS: Seventeen underwater hockey players (age: 26.2 [4.3] y; sports age: 6.2 [4.5] y) were included. First, 2 underwater cameras using motion capture video analysis MATLAB were used to biomechanically analyze the angular changes on the shoulder, elbow, wrist, and body while players were performing the flick movements. Players were then recruited to the Thrower's Ten exercise program for 6 weeks. Flick movement kinematics and flick-throwing distance were recorded at baseline and 6 weeks. RESULTS: The flick movement kinematic patterns demonstrated increased shoulder flexion (from 102.5° to 144.9°), wrist extension (from 9.5° to 10.8°), and upper-extremity rotation (from 5.7° to 56.8°) while decreased elbow extension (from 107.7° to 159.2°) from the stick met the puck until the competition of the movement. The Thrower's Ten exercises improved the elbow extension (P = .04), wrist extension (P = .01), body rotation (P < .001), and flick-throwing distance (P < .001) from baseline to 6 weeks. CONCLUSION: This study describes the underwater flick kinematic technique biomechanically and interprets preliminary findings for the first time. Thus, 6 weeks of Thrower's Ten exercise program provides more body muscle movements than the smaller ones during the flick movements and higher flick-throwing distance in underwater hockey players.


Asunto(s)
Hockey , Humanos , Hockey/fisiología , Fenómenos Biomecánicos , Masculino , Adulto , Adulto Joven , Movimiento/fisiología , Extremidad Superior/fisiología , Rango del Movimiento Articular/fisiología , Hombro/fisiología , Codo/fisiología , Muñeca/fisiología
9.
Fa Yi Xue Za Zhi ; 40(3): 237-244, 2024 Jun 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39166304

RESUMEN

OBJECTIVES: To explore the effects of different test positions on quantitative muscle strength of wrist and finger flexor muscle groups and to establish a standardized muscle strength test protocol for each muscle group. METHODS: Forty healthy subjects (12 males and 28 females) were recruited. A portable digital quantitative muscle strength tester, Micro FET2TM, was used to measure the flexor muscle strength of each finger and the wrist joint at the 30° extension, 0° neutral, and 30° flexion, respectively. Palmar abduction strength of the thumb was measured at 30° and 60°, respectively. Ten subjects were randomly selected from the 40 subjects, and the quantitative muscle strength of each muscle group was tested again by the same operator after an interval of 10 to 15 days. RESULTS: Except for the fact that in males, there was no significant difference in flexor muscle strength of thumb and wrist joint between 30° of wrist extension and neutral 0° position, the muscle strength of the other fingers flexion and wrist palmar flexor showed the following characteristics:30° of wrist extension > neutral 0° position > 30° of flexion, and the PAST was 30°>60°; The flexor muscle strength of all the subjects was thumb > index finger > middle finger > ring finger > little finger; All muscle strength values of male were greater than those of female, and the difference was statistically significant (P<0.05); There was no significant difference between the left and right side muscle strength values of all subjects (P>0.05). The reliability of muscle strength values measured at different times in 10 subjects was good. CONCLUSIONS: The quantitative muscle strength of each muscle group of the hand and wrist is affected by the test position, and a standardized and uniformed test position should be adopted in the actual identification. Micro FET2TM has good reliability for hand and wrist quantitative muscle strength testing. The 30° extension of the wrist can be used as the best standardized test position for the flexion muscle strength of each finger and wrist joint. The 30° position can be used as the best standardized test position for PAST.


Asunto(s)
Dedos , Fuerza Muscular , Músculo Esquelético , Articulación de la Muñeca , Humanos , Masculino , Femenino , Dedos/fisiología , Músculo Esquelético/fisiología , Adulto , Fuerza Muscular/fisiología , Adulto Joven , Articulación de la Muñeca/fisiología , Muñeca/fisiología , Fuerza de la Mano/fisiología , Rango del Movimiento Articular/fisiología , Postura/fisiología , Dinamómetro de Fuerza Muscular , Pulgar/fisiología , Articulaciones de los Dedos/fisiología , Reproducibilidad de los Resultados
10.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124002

RESUMEN

Tai Chi is a Chinese martial art that provides an adaptive and accessible exercise for older adults with varying functional capacity. While Tai Chi is widely recommended for its physical benefits, wider adoption in at-home practice presents challenges for practitioners, as limited feedback may hamper learning. This study examined the feasibility of using a wearable sensor, combined with machine learning (ML) approaches, to automatically and objectively classify Tai Chi expertise. We hypothesized that the combination of wrist acceleration profiles with ML approaches would be able to accurately classify practitioners' Tai Chi expertise levels. Twelve older active Tai Chi practitioners were recruited for this study. The self-reported lifetime practice hours were used to identify subjects in low, medium, or highly experienced groups. Using 15 acceleration-derived features from a wearable sensor during a self-guided Tai Chi movement and 8 ML architectures, we found multiclass classification performance to range from 0.73 to 0.97 in accuracy and F1-score. Based on feature importance analysis, the top three features were found to each result in a 16-19% performance drop in accuracy. These findings suggest that wrist-wearable-based ML models may accurately classify practice-related changes in movement patterns, which may be helpful in quantifying progress in at-home exercises.


Asunto(s)
Aprendizaje Automático , Taichi Chuan , Dispositivos Electrónicos Vestibles , Muñeca , Humanos , Taichi Chuan/métodos , Anciano , Muñeca/fisiología , Masculino , Femenino , Persona de Mediana Edad
11.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39124090

RESUMEN

Human-Machine Interfaces (HMIs) have gained popularity as they allow for an effortless and natural interaction between the user and the machine by processing information gathered from a single or multiple sensing modalities and transcribing user intentions to the desired actions. Their operability depends on frequent periodic re-calibration using newly acquired data due to their adaptation needs in dynamic environments, where test-time data continuously change in unforeseen ways, a cause that significantly contributes to their abandonment and remains unexplored by the Ultrasound-based (US-based) HMI community. In this work, we conduct a thorough investigation of Unsupervised Domain Adaptation (UDA) algorithms for the re-calibration of US-based HMIs during within-day sessions, which utilize unlabeled data for re-calibration. Our experimentation led us to the proposal of a CNN-based architecture for simultaneous wrist rotation angle and finger gesture prediction that achieves comparable performance with the state-of-the-art while featuring 87.92% less trainable parameters. According to our findings, DANN (a Domain-Adversarial training algorithm), with proper initialization, offers an average 24.99% classification accuracy performance enhancement when compared to no re-calibration setting. However, our results suggest that in cases where the experimental setup and the UDA configuration may differ, observed enhancements would be rather small or even unnoticeable.


Asunto(s)
Algoritmos , Ultrasonografía , Humanos , Ultrasonografía/métodos , Interfaz Usuario-Computador , Muñeca/fisiología , Muñeca/diagnóstico por imagen , Redes Neurales de la Computación , Dedos/fisiología , Sistemas Hombre-Máquina , Gestos
12.
J Neuroeng Rehabil ; 21(1): 142, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135110

RESUMEN

BACKGROUND: Closing the control loop between users and their prostheses by providing artificial sensory feedback is a fundamental step toward the full restoration of lost sensory-motor functions. METHODS: We propose a novel approach to provide artificial proprioceptive feedback about two degrees of freedom using a single array of 8 vibration motors (compact solution). The performance afforded by the novel method during an online closed-loop control task was compared to that achieved using the conventional approach, in which the same information was conveyed using two arrays of 8 and 4 vibromotors (one array per degree of freedom), respectively. The new method employed Gaussian interpolation to modulate the intensity profile across a single array of vibration motors (compact feedback) to convey wrist rotation and hand aperture by adjusting the mean and standard deviation of the Gaussian, respectively. Ten able-bodied participants and four transradial amputees performed a target achievement control test by utilizing pattern recognition with compact and conventional vibrotactile feedback to control the Hannes prosthetic hand (test conditions). A second group of ten able-bodied participants performed the same experiment in control conditions with visual and auditory feedback as well as no-feedback. RESULTS: Conventional and compact approaches resulted in similar positioning accuracy, time and path efficiency, and total trial time. The comparison with control condition revealed that vibrational feedback was intuitive and useful, but also underlined the power of incidental feedback sources. Notably, amputee participants achieved similar performance to that of able-bodied participants. CONCLUSIONS: The study therefore shows that the novel feedback strategy conveys useful information about prosthesis movements while reducing the number of motors without compromising performance. This is an important step toward the full integration of such an interface into a prosthesis socket for clinical use.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Mano , Propiocepción , Vibración , Muñeca , Humanos , Retroalimentación Sensorial/fisiología , Propiocepción/fisiología , Adulto , Masculino , Muñeca/fisiología , Femenino , Mano/fisiología , Amputados/rehabilitación , Rotación , Adulto Joven , Persona de Mediana Edad , Tacto/fisiología
13.
J Neural Eng ; 21(4)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39079541

RESUMEN

Objective.The use of electromyogram (EMG) signals recorded from the wrist is emerging as a desirable input modality for human-machine interaction (HMI). Although forearm-based EMG has been used for decades in prosthetics, there has been comparatively little prior work evaluating the performance of wrist-based control, especially in online, user-in-the-loop studies. Furthermore, despite different motivating use cases for wrist-based control, research has mostly adopted legacy prosthesis control evaluation frameworks.Approach.Gaining inspiration from rhythm games and the Schmidt's law speed-accuracy tradeoff, this work proposes a new temporally constrained evaluation environment with a linearly increasing difficulty to compare the online usability of wrist and forearm EMG. Compared to the more commonly used Fitts' Law-style testing, the proposed environment may offer different insights for emerging use cases of EMG as it decouples the machine learning algorithm's performance from proportional control, is easily generalizable to different gesture sets, and enables the extraction of a wide set of usability metrics that describe a users ability to successfully accomplish a task at a certain time with different levels of induced stress.Main results.The results suggest that wrist EMG-based control is comparable to that of forearm EMG when using traditional prosthesis control gestures and can even be better when using fine finger gestures. Additionally, the results suggest that as the difficulty of the environment increased, the online metrics and their correlation to the offline metrics decreased, highlighting the importance of evaluating myoelectric control in real-time evaluations over a range of difficulties.Significance.This work provides valuable insights into the future design and evaluation of myoelectric control systems for emerging HMI applications.


Asunto(s)
Electromiografía , Antebrazo , Muñeca , Humanos , Electromiografía/métodos , Antebrazo/fisiología , Muñeca/fisiología , Masculino , Adulto , Femenino , Adulto Joven , Sistemas en Línea , Juegos de Video , Algoritmos
14.
Int J Occup Saf Ergon ; 30(3): 927-935, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38961651

RESUMEN

Objectives. This study aimed to investigate the consistency between results of the American Conference for Governmental Occupational Hygienists (ACGIH) threshold limit value (TLV) for hand activity and proposed action levels of objective measurements in risk assessments of work-related musculoskeletal disorders. Methods. Wrist velocities and forearm muscular load were measured for 11 assemblers during one working day. Simultaneously, each assembler's hand activity level (HAL) during three sub-cycles was rated twice on two separate occasions by two experts, using a HAL scale. Arm/hand exertion was also rated by the assemblers themselves using a Borg scale. In total, 66 sub-cycles were assessed and assigned to three exposure categories: A) below ACGIH action limit (AL) (green); B) between AL and TLV (yellow); and C) above TLV (red). The median wrist velocity and the 90th percentile of forearm muscular load obtained from the objective measurements corresponding to the sub-cycles were calculated and assigned to two exposure categories: A) below or C) above the proposed action level. Results. The agreement between ACGIH TLV for hand activity and the proposed action level for wrist velocity was 87%. Conclusions. The proposed action level for wrist velocity is highly consistent with the TLV. Additional studies are needed to confirm the results.


Asunto(s)
Antebrazo , Mano , Muñeca , Humanos , Muñeca/fisiología , Mano/fisiología , Antebrazo/fisiología , Masculino , Adulto , Valores Limites del Umbral , Enfermedades Profesionales , Esfuerzo Físico/fisiología , Enfermedades Musculoesqueléticas , Músculo Esquelético/fisiología , Medición de Riesgo/métodos , Salud Laboral
15.
Eur J Sport Sci ; 24(7): 987-998, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956788

RESUMEN

Physical activity (PA) during childhood and adolescence is important for the accrual of maximal peak bone mass. The precise dose that benefits bone remains unclear as methods commonly used to analyze PA data are unsuitable for measuring bone-relevant PA. Using improved accelerometry methods, this study identified the amount and intensity of PA most strongly associated with bone outcomes in 11-12-year-olds. Participants (n = 770; 382 boys) underwent tibial peripheral quantitative computed tomography to assess trabecular and cortical density, endosteal and periosteal circumference and polar stress-strain index. Seven-day wrist-worn raw acceleration data averaged over 1-s epochs was used to estimate time accumulated above incremental PA intensities (50 milli-gravitational unit (mg) increments from 200 to 3000 mg). Associations between time spent above each 50 mg increment and bone outcomes were assessed using multiple linear regression, adjusted for age, sex, height, weight, maturity, socioeconomic position, muscle cross-sectional area and PA below the intensity of interest. There was a gradual increase in mean R2 change across all bone-related outcomes as the intensity increased in 50 mg increments from >200 to >700 mg. All outcomes became significant at >700 mg (R2 change = 0.6%-1.3% and p = 0.001-0.02). Any further increases in intensity led to a reduction in mean R2 change and associations became non-significant for all outcomes >1500 mg. Using more appropriate accelerometry methods (1-s epochs; no a priori application of traditional cut-points) enabled us to identify that ∼10 min/day of PA >700 mg (equivalent to running ∼10 km/h) was positively associated with pQCT-derived measures of bone density, geometry and strength in 11-12-year-olds.


Asunto(s)
Acelerometría , Densidad Ósea , Ejercicio Físico , Humanos , Niño , Masculino , Estudios Transversales , Femenino , Ejercicio Físico/fisiología , Australia , Tibia/fisiología , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Muñeca/fisiología , Muñeca/diagnóstico por imagen
16.
J Neuroeng Rehabil ; 21(1): 123, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030574

RESUMEN

BACKGROUND: Blood flow restriction (BFR) resistance training has demonstrated efficacy in promoting strength gains beneficial for rehabilitation. Yet, the distinct functional advantages of BFR strength training using high-load and low-load protocols remain unclear. This study explored the behavioral and neurophysiological mechanisms that explain the differing effects after volume-matched high-load and low-load BFR training. METHODS: Twenty-eight healthy participants were randomly assigned to the high-load blood flow restriction (BFR-HL, n = 14) and low-load blood flow restriction (BFR-LL, n = 14) groups. They underwent 3 weeks of BFR training for isometric wrist extension at intensities of 25% or 75% of maximal voluntary contraction (MVC) with matched training volume. Pre- and post-tests included MVC and trapezoidal force-tracking tests (0-75%-0% MVC) with multi-channel surface electromyography (EMG) from the extensor digitorum. RESULTS: The BFR-HL group exhibited a greater strength gain than that of the BFR-LL group after training (BFR_HL: 26.96 ± 16.33% vs. BFR_LL: 11.16 ± 15.34%)(p = 0.020). However, only the BFR-LL group showed improvement in force steadiness for tracking performance in the post-test (p = 0.004), indicated by a smaller normalized change in force fluctuations compared to the BFR-HL group (p = 0.048). After training, the BFR-HL group activated motor units (MUs) with higher recruitment thresholds (p < 0.001) and longer inter-spike intervals (p = 0.002), contrary to the BFR-LL group, who activated MUs with lower recruitment thresholds (p < 0.001) and shorter inter-spike intervals (p < 0.001) during force-tracking. The discharge variability (p < 0.003) and common drive index (p < 0.002) of MUs were consistently reduced with training for the two groups. CONCLUSIONS: BFR-HL training led to greater strength gains, while BFR-LL training better improved force precision control due to activation of MUs with lower recruitment thresholds and higher discharge rates.


Asunto(s)
Electromiografía , Entrenamiento de Fuerza , Muñeca , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Femenino , Muñeca/fisiología , Adulto Joven , Adulto , Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Fuerza Muscular/fisiología , Terapia de Restricción del Flujo Sanguíneo/métodos
17.
Medicina (Kaunas) ; 60(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39064613

RESUMEN

Background and Objectives: Biodex System® is an advanced dynamometer used for testing various biomechanical parameters of muscles. Test outcomes allow for the identification of muscle pathology and consequently lead to a clinical diagnosis. Despite being widely used for the testing and rehabilitation of the human musculoskeletal system, no universal and acceptable protocol for wrist examination has been proposed for patients with wrist pathology. In this study, the authors aim to identify the most appropriate protocol for testing the biomechanical parameters of flexors and extensors of the wrist. Materials and Methods: A group of 20 patients with symptomatic tennis elbow and 26 healthy volunteers were examined using three different protocols: isokinetic, isometric and isotonic. Protocol order for each study participant was assigned at random with a minimum of a 24 h break between protocols. All protocol parameters were set according to data obtained from a literature review and an earlier pilot study. Following completion of each protocol, participants filled out a questionnaire-based protocol, assessing pain intensity during the exam, difficulty with exam performance and post-exam muscle fatigue. Results: The isotonic protocol showed the best patient tolerance and the highest questionnaire score. There was a significant difference (p < 0.05) between the three protocols in average pain intensity reported by study participants. All participants completed the isotonic protocol, but not all patients with symptomatic tennis elbow were able to complete the isometric and isokinetic protocols. The isotonic protocol was deemed "difficult but possible to complete" by study participants. Conclusions: The isotonic protocol is most suitable for testing the flexors and extensors of the wrist. It gives the most biomechanical data of all protocols, is well tolerated by patients and rarely causes pain during examination even in symptomatic participants.


Asunto(s)
Dinamómetro de Fuerza Muscular , Codo de Tenista , Muñeca , Humanos , Masculino , Adulto , Femenino , Fenómenos Biomecánicos , Codo de Tenista/fisiopatología , Codo de Tenista/diagnóstico , Muñeca/fisiología , Muñeca/fisiopatología , Persona de Mediana Edad , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Contracción Isométrica/fisiología , Encuestas y Cuestionarios , Contracción Isotónica/fisiología
18.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000951

RESUMEN

Hand-intensive work is strongly associated with work-related musculoskeletal disorders (WMSDs) of the hand/wrist and other upper body regions across diverse occupations, including office work, manufacturing, services, and healthcare. Addressing the prevalence of WMSDs requires reliable and practical exposure measurements. Traditional methods like electrogoniometry and optical motion capture, while reliable, are expensive and impractical for field use. In contrast, small inertial measurement units (IMUs) may provide a cost-effective, time-efficient, and user-friendly alternative for measuring hand/wrist posture during real work. This study compared six orientation algorithms for estimating wrist angles with an electrogoniometer, the current gold standard in field settings. Six participants performed five simulated hand-intensive work tasks (involving considerable wrist velocity and/or hand force) and one standardised hand movement. Three multiplicative Kalman filter algorithms with different smoothers and constraints showed the highest agreement with the goniometer. These algorithms exhibited median correlation coefficients of 0.75-0.78 for flexion/extension and 0.64 for radial/ulnar deviation across the six subjects and five tasks. They also ranked in the top three for the lowest mean absolute differences from the goniometer at the 10th, 50th, and 90th percentiles of wrist flexion/extension (9.3°, 2.9°, and 7.4°, respectively). Although the results of this study are not fully acceptable for practical field use, especially for some work tasks, they indicate that IMU-based wrist angle estimation may be useful in occupational risk assessments after further improvements.


Asunto(s)
Algoritmos , Muñeca , Humanos , Muñeca/fisiología , Masculino , Adulto , Femenino , Rango del Movimiento Articular/fisiología , Fenómenos Biomecánicos , Movimiento/fisiología , Mano/fisiología , Articulación de la Muñeca/fisiología
19.
J Sports Sci ; 42(8): 708-719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38861612

RESUMEN

This study aimed to investigate inter- and intra-athlete technique variability in pre-elite and elite Australian fast bowlers delivering new ball conventional swing bowling. Ball grip angle and pelvis, torso, shoulder, elbow, wrist, upper arm, forearm, and hand kinematics were investigated at the point of ball release for inswing and outswing deliveries. Descriptive evaluations of group and individual data and k-means cluster analyses were used to assess inter- and intra-bowler technique variability. Inter-athlete technique and ball grip variability were identified, demonstrating that skilled bowlers use individualised strategies to generate swing. Functional movement variability was demonstrated by intra-athlete variability in successful swing bowling trials. Bowlers demonstrated stable technique parameters in large proximal body segments of the pelvis and torso, providing a level of repeatability to their bowling action. Greater variation was observed in bowling arm kinematics, allowing athletes to manipulate the finger and ball position to achieve the desired seam orientation at the point of ball release. This study demonstrates that skilled bowlers use individualised techniques and grips to generate swing and employ technique variations in successive deliveries. Coaches should employ individualised training strategies and use constraints-led approaches in training environments to encourage bowlers to seek adaptive movement solutions to generate swing.


Asunto(s)
Críquet , Destreza Motora , Torso , Humanos , Masculino , Fenómenos Biomecánicos , Destreza Motora/fisiología , Adulto Joven , Torso/fisiología , Críquet/fisiología , Australia , Movimiento/fisiología , Pelvis/fisiología , Estudios de Tiempo y Movimiento , Mano/fisiología , Muñeca/fisiología , Adulto , Hombro/fisiología , Extremidad Superior/fisiología
20.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894155

RESUMEN

Nocturnal scratching substantially impairs the quality of life in individuals with skin conditions such as atopic dermatitis (AD). Current clinical measurements of scratch rely on patient-reported outcomes (PROs) on itch over the last 24 h. Such measurements lack objectivity and sensitivity. Digital health technologies (DHTs), such as wearable sensors, have been widely used to capture behaviors in clinical and real-world settings. In this work, we develop and validate a machine learning algorithm using wrist-wearing actigraphy that could objectively quantify nocturnal scratching events, therefore facilitating accurate assessment of disease progression, treatment effectiveness, and overall quality of life in AD patients. A total of seven subjects were enrolled in a study to generate data overnight in an inpatient setting. Several machine learning models were developed, and their performance was compared. Results demonstrated that the best-performing model achieved the F1 score of 0.45 on the test set, accompanied by a precision of 0.44 and a recall of 0.46. Upon satisfactory performance with an expanded subject pool, our automatic scratch detection algorithm holds the potential for objectively assessing sleep quality and disease state in AD patients. This advancement promises to inform and refine therapeutic strategies for individuals with AD.


Asunto(s)
Actigrafía , Algoritmos , Dermatitis Atópica , Aprendizaje Automático , Prurito , Muñeca , Humanos , Actigrafía/métodos , Actigrafía/instrumentación , Muñeca/fisiología , Masculino , Femenino , Adulto , Prurito/fisiopatología , Prurito/diagnóstico , Dispositivos Electrónicos Vestibles , Calidad de Vida , Sueño/fisiología , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA