Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147.359
Filtrar
1.
Biomaterials ; 312: 122731, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39153324

RESUMEN

Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-ß (CSF1R/CCR2/TGF-ß Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.


Asunto(s)
Monocitos , Receptor de Factor Estimulante de Colonias de Macrófagos , Receptores CCR2 , Microambiente Tumoral , Humanos , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inhibidores , Monocitos/metabolismo , Monocitos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Femenino , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Ratones , Movimiento Celular/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/patología
2.
J Ethnopharmacol ; 336: 118711, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181286

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of Qi and blood in Traditional Chinese Medicine (TCM), the combination of Qi-reinforcing herbs and blood-activating herbs has a synergistic effect in improving blood stasis syndrome, especially in tumor treatment. The classic "Radix Astragali - Salvia miltiorrhiza" duo exemplifies this principle, renowned for invigorating Qi and activating blood flow, employed widely in tumor therapies. Our prior research underscores the potent inhibition of pancreatic tumor xenografts by the combination of Formononetin (from Radix Astragali) and Salvianolic acid B (from Salvia miltiorrhiza) in vitro. However, it remains unclear whether this combination can inhibit the abnormal vascularization of pancreatic tumors to achieve its anti-cancer effect. AIM OF THE STUDY: Abnormal vasculature, known to facilitate tumor growth and metastasis. Strategies to normalize tumor-associated blood vessels provide a promising avenue for anti-tumor therapy. This study aimed to unravel the therapeutic potential of Formononetin combined with Salvianolic acid B (FcS) in modulating pancreatic cancer's impact on endothelial cells, illuminate the underlying mechanisms that govern this therapeutic interaction, thereby advancing strategies to normalize tumor vasculature and combat cancer progression. MATERIALS AND METHODS: A co-culture system involving Human Umbilical Vein Endothelial Cells (HUVECs) and PANC-1 cells was established to investigate the potential of targeting abnormal vasculature as a novel anti-tumor therapeutic strategy. We systematically compared HUVEC proliferation, migration, invasion, and lumenogenesis in both mono- and co-culture conditions with PANC-1 (H-P). Subsequently, FcS treatment of the H-P system was evaluated for its anti-angiogenic properties. Molecular docking was utilized to predict the interactions between Formononetin and Salvianolic acid B with RhoA, and the post-treatment expression of RhoA in HUVECs was assessed. Furthermore, we utilized shRhoA lentivirus to elucidate the role of RhoA in FcS-mediated effects on HUVECs. In vivo, a zebrafish xenograft tumor model was employed to assess FcS's anti-tumor potential, focusing on cancer cell proliferation, migration, apoptosis, and vascular development. RESULTS: FcS treatment demonstrated a significant, dose-dependent inhibition of PANC-1-induced alterations in HUVECs, including proliferation, migration, invasion, and tube formation capabilities. Molecular docking analyses indicated potential interactions between FcS and RhoA. Further, FcS treatment was found to downregulate RhoA expression and modulated the PI3K/AKT signaling pathway in PANC-1-induced HUVECs. Notably, the phenotypic inhibitory effects of FcS on HUVECs were attenuated by RhoA knockdown. In vivo zebrafish studies validated FcS's anti-tumor activity, inhibiting cancer cell proliferation, metastasis, and vascular sprouting, while promoting tumor cell apoptosis. CONCLUSIONS: This study underscores the promising potential of FcS in countering pancreatic cancer-induced endothelial alterations. FcS exhibits pronounced anti-abnormal vasculature effects, potentially achieved through downregulation of RhoA and inhibition of the PI3K/Akt signaling pathway, thereby presenting a novel therapeutic avenue for pancreatic cancer management.


Asunto(s)
Benzofuranos , Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana , Isoflavonas , Neoplasias Pancreáticas , Proteína de Unión al GTP rhoA , Isoflavonas/farmacología , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Animales , Benzofuranos/farmacología , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Pez Cebra , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Antineoplásicos Fitogénicos/farmacología , Depsidos
3.
J Ethnopharmacol ; 336: 118632, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39069028

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lobostemon fruticosus (L.) H.Buek is a perennial and woody shrub of the Boraginaceae family, found in the Cape region of South Africa. The leaves and twigs are used to treat dermatological conditions such as wounds, burns, ringworm, erysipelas and eczema. Anti-inflammatory, antibacterial, antiviral and anti-proliferative activities of L. fruticosus have been reported. However, there is a void in research which reports on the wound healing properties of this plant. AIM OF THE STUDY: Aligned with the traditional use of L. fruticosus, our study aimed to use in vitro and in vivo bioassays to confirm the wound healing potential of the plant. MATERIALS AND METHODS: An aqueous methanol extract (80% v/v) of L. fruticosus was prepared using a sample collected from the Western Cape Province of South Africa and chromatographically profiled by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay was performed to determine the non-toxic concentrations of the extract for subsequent use in the in vitro scratch assay. Both the human keratinocyte (HaCaT) and fibroblast (BJ-5ta) cell lines were employed in the in vitro scratch assay. The in vivo caudal fin amputation assay was used to assess the wound healing potential of L. fruticosus, by monitoring fin regeneration in zebrafish larvae treated with the plant extract at various concentrations. RESULTS: Six major compounds were tentatively identified in the L. fruticosus extract namely; globoidnan A, globoidnan B, rutin, rabdosiin, sagerinic acid and rosmarinic acid. The potentially toxic pyrrolizidine alkaloids were also identified and quantitatively confirmed to be present at a low concentration of 119.58 ppm (m/m). Treatment of HaCaT and BJ-5ta cells with the plant extract in the scratch assay resulted in an increase in cell migration, which translates to accelerated wound closure. After 24 hr treatment with 100 µg/mL of extract, wound closure was recorded to be 91.1 ± 5.7% and 94.1 ± 1.3% for the HaCaT and BJ-5ta cells, respectively, while the untreated (medium) controls showed 72.3 ± 3.3% and 73.0 ± 4.3% for the two cell lines, respectively. Complete wound closure was observed between 24 and 36 hr, while the untreated control group did not achieve 100% wound closure by the end of the observation period (48 hr). In vivo, the crude extract at 100 µg/mL accelerated zebrafish caudal fin regeneration achieving 100.5 ± 3.8% regeneration compared to 68.3 ± 6.6% in the untreated control at two days post amputation. CONCLUSIONS: The study affirms the wound healing properties, as well as low toxicity of L. fruticosus using both in vitro and in vivo assays, which supports the traditional medicinal use. Other in vitro assays that target different mechanisms involved in wound healing should be investigated to support the current findings.


Asunto(s)
Boraginaceae , Extractos Vegetales , Cicatrización de Heridas , Pez Cebra , Cicatrización de Heridas/efectos de los fármacos , Animales , Extractos Vegetales/farmacología , Humanos , Boraginaceae/química , Bioensayo , Línea Celular , Queratinocitos/efectos de los fármacos , Sudáfrica , Células HaCaT , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
4.
Gene ; 932: 148900, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209180

RESUMEN

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance. In the present study, the effects of the siRNA-mediated lncRNA PVT1 gene silencing along with paclitaxel treatment on the rate of apoptosis, growth, and migration of AGS GC cells were investigated. AGS cells were cultured and then transfected with siRNA PVT1 using electroporation. The MTT test was used to examine the effect of treatments on the viability of cultured cells. Furthermore, the flow cytometry method was used to evaluate the impact of treatments on the cell cycle process and apoptosis induction in GC cells. Finally, the mRNA expression of target genes was assessed using the qRT-PCR method. The results showed that lncRNA PVT1 gene suppression, along with paclitaxel treatment, reduces the viability of cancer cells and significantly increases the apoptosis rate of cancer cells and the number of cells arrested in the G2/M phase compared to the control group. Based on the results of qRT-PCR, combined treatment significantly decreased the expression of MMP3, MMP9, MDR1, MRP1, Bcl-2, k-Ras, and c-Myc genes and increased the expression of the Bax gene compared to the control group. The results of our study showed that lncRNA PVT1 gene targeting, together with paclitaxel treatment, induces apoptosis, inhibits growth, alleviates drug resistance, and reduces the migratory capability of GC cells. Therefore, there is a need for further investigations to evaluate the feasibility and effectiveness of this approach in vivo in animal models.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Silenciador del Gen , Paclitaxel , ARN Largo no Codificante , Neoplasias Gástricas , ARN Largo no Codificante/genética , Paclitaxel/farmacología , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , ARN Interferente Pequeño/genética
5.
Gene ; 932: 148904, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39218415

RESUMEN

BACKGROUND: Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS: The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS: E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 µg/ml) to 6.71 × 10-8 M (26.66 µg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 µg/ml) to 8.206 × 10-5 M (21.43 µg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION: The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.


Asunto(s)
Apoptosis , Papillomavirus Humano 16 , Ifosfamida , Oxaliplatino , ARN Interferente Pequeño , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología , Oxaliplatino/farmacología , Femenino , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Ifosfamida/farmacología , Apoptosis/efectos de los fármacos , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Supervivencia Celular/efectos de los fármacos , Proteínas Oncogénicas Virales/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
6.
J Biochem Mol Toxicol ; 38(9): e23846, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243204

RESUMEN

As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.


Asunto(s)
Proliferación Celular , Glucólisis , MicroARNs , Osteosarcoma , ARN Circular , Factor de Transcripción 4 , Humanos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Circular/genética , ARN Circular/metabolismo , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Transducción de Señal
7.
Int J Biol Sci ; 20(11): 4532-4550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247808

RESUMEN

Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Ratones Noqueados , Receptor de Adenosina A2A , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Cicatrización de Heridas/genética , Animales , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Sistema de Señalización de MAP Quinasas/fisiología , Proliferación Celular/genética , Movimiento Celular/genética , Angiogénesis
8.
J Biochem Mol Toxicol ; 38(9): e23778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252517

RESUMEN

Hepatocellular carcinoma (HCC) is a lethal form of liver cancer, and the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays a critical role in its progression. This study aimed to elucidate the mechanism by which CAF-derived exosomes regulate the development of HCC. The study employed quantitative real-time polymerase chain reaction for mRNA expression analysis and western blot analysis for protein expression detection. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to investigate the relationship between zinc finger protein 250 (ZNF250) and programmed cell death 1 ligand 1 (PD-L1). Transmission electron microscopy and western blot analysis were used to characterize the isolated exosomes. The transferability of CAF-derived exosomes and normal fibroblasts (NFs)-derived exosomes into HCC cells was analyzed using a green fluorescent labeling dye PKH67. Cell proliferation was assessed via a 5-Ethynyl-2'-deoxyuridine assay, while Transwell assays were conducted to evaluate cell migration and invasion. Flow cytometry was performed to measure cell apoptosis, while enzyme-linked immunosorbent assays were used to assess the levels of tumor necrosis factor-α and perforin. Finally, a xenograft mouse model was constructed to examine the effects of exosomes derived from ZNF250-deficient CAFs on the tumor properties of HCC cells. The study revealed increased expression of ZNF250 in HCC tissues and cells, with ZNF250 transcriptionally activating PD-L1 in HCC cells. ZNF250 expression was associated with HbsAg, clinical stage and tumor size of HCC patients. CAF-derived exosomal ZNF250 can regulate PD-L1 expression in HCC cells. Furthermore, exosomes derived from ZNF250-deficient CAFs inhibited the proliferation, migration, invasion, and immune escape of HCC cells by downregulating PD-L1 expression. Moreover, CAF-derived exosomal ZNF250 promoted tumor formation in vivo. These findings provide insights into the role of CAF-derived exosomes in the suppression of HCC development, highlighting the significance of ZNF250 and PD-L1 regulation in tumor progression.


Asunto(s)
Antígeno B7-H1 , Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Exosomas , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Humanos , Exosomas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Animales , Ratones , Invasividad Neoplásica , Línea Celular Tumoral , Escape del Tumor , Ratones Desnudos , Masculino , Activación Transcripcional , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica
9.
Eur J Histochem ; 68(3)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252536

RESUMEN

Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Supervivencia Celular , Ozono , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Ozono/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Células MCF-7 , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Movimiento Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Antineoplásicos Hormonales/farmacología
10.
Dis Model Mech ; 17(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39253784

RESUMEN

The cardiac outflow tract (OFT) transiently links the ventricles to the aortic sac and forms the arterial valves. Abnormalities in these valves, such as bicuspid aortic valve (BAV), are common congenital anomalies. GATA6-inactivating variants cause cardiac OFT defects and BAV, but their mechanisms are unclear. We generated Gata6STOP/+ mice using CRISPR-Cas9, which show highly penetrant BAV (70%) and membranous ventricular septal defects (43%). These mice exhibited decreased proliferation and increased ISL1-positive progenitor cells in the OFT, indicating abnormal cardiovascular differentiation. Gata6 deletion with the Mef2cCre driver line recapitulated Gata6STOP/+ phenotypes, indicating a cell-autonomous role for Gata6 in the second heart field. Gata6STOP/+ mice showed reduced OFT length and caliber, associated with deficient cardiac neural crest cell contribution, which may cause valvulo-septal defects. RNA-sequencing analysis showed depletion in pathways related to cell proliferation and migration, highlighting Cxcr7 (also known as Ackr3) as a candidate gene. Reduced mesenchymal cell migration and invasion were observed in Gata6STOP/+ OFT tissue. CXCR7 agonists reduced mesenchymal cell migration and increased invasion in wild-type but not in Gata6STOP/+ explants, indicating the GATA6-dependent role of CXCR7 in OFT development and its potential link to BAV.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Proliferación Celular , Factor de Transcripción GATA6 , Receptores CXCR , Transducción de Señal , Animales , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Enfermedad de la Válvula Aórtica Bicúspide/patología , Receptores CXCR/metabolismo , Receptores CXCR/genética , Cresta Neural/metabolismo , Cresta Neural/patología , Ratones , Movimiento Celular , Válvula Aórtica/anomalías , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/genética , Fenotipo , Ratones Endogámicos C57BL
11.
Carbohydr Polym ; 346: 122629, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245497

RESUMEN

The impact of electrical stimulation has been widely investigated on the wound healing process; however, its practicality is still challenging. This study explores the effect of electrical stimulation on fibroblasts in a culture medium containing different electrically-charged polysaccharide derivatives including alginate, hyaluronate, and chitosan derivatives. For this aim, an electrical stimulation, provided by a zigzag triboelectric nanogenerator (TENG), was exerted on fibroblasts in the presence of polysaccharides' solutions. The analyses showed a significant increase in cell proliferation and an improvement in wound closure (160 % and 90 %, respectively) for the hyaluronate-containing medium by a potential of 3 V after 48 h. In the next step, a photo-crosslinkable hydrogel was prepared based on hyaluronic acid methacrylate (HAMA). Then, the cells were cultured on HAMA hydrogel and treated by an electrical stimulation. Surprisingly, the results showed a remarkable increase in cell growth (280 %) and migration (82 %) after 24 h. Attributed to the electroosmosis phenomenon and an amplified transfer of soluble growth factors, a dramatic promotion was underscored in cell activities. These findings highlight the role of electroosmosis in wound healing, where TENG-based electrical stimulation is combined with bioactive polysaccharide-based hydrogels to promote wound healing.


Asunto(s)
Alginatos , Proliferación Celular , Fibroblastos , Ácido Hialurónico , Hidrogeles , Cicatrización de Heridas , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Alginatos/química , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Estimulación Eléctrica , Polielectrolitos/química , Animales , Ratones , Quitosano/química , Movimiento Celular/efectos de los fármacos , Humanos , Células 3T3 NIH
12.
Funct Integr Genomics ; 24(5): 157, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237822

RESUMEN

Aberrant long non-coding RNA (lncRNA) expression has been shown to be involved in the pathological process of pre-eclampsia (PE), yet only a small portion of lncRNAs has been characterized concerning the function and molecular mechanisms involved in PE. This study aimed to investigate the regulatory mechanism of the lncRNA AC092100.1 (AC092100.1) in angiogenesis in PE. In our study, bioinformatics analysis was performed to screen for differentially expressed lncRNAs between normal subjects and PE patients. The levels of AC092100.1 in placental tissues of patients with or without PE were validated using qRT-PCR. The effect of AC092100.1 overexpression on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) was investigated. The binding of AC092100.1 and YT521-B homology domain-containing 2 (YTHDC2) was predicted and verified. The effect of AC092100.1/YTHDC2 on the expression of vascular endothelial growth factor-A (VEGFA) in HUVECs was determined. Finally, a PE mice model was conducted. Fetal mouse growth, the abundance of mesenchymal morphology markers, including hypoxia-inducible factor 1-alpha (HIF-1α), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), Slug, and Vimentin, and endothelial markers, including placental growth factor (PLGF), CD31, and vascular endothelial (VE)-cadherin, in placental tissues were assessed. Here, we found that AC092100.1 was abnormally downregulated in placental tissues from PE patients. We established that AC092100.1 overexpression promoted HUVEC proliferation, migration, and tube formation in vitro. Mechanistically, AC092100.1 induced the accumulation of YTHDC2 and VEGFA through binding to YTHDC2 in HUVECs. Inhibition of YTHDC2 or VEGFA reversed AC092100.1-promoted tube formation. AC092100.1 overexpression contributed to alleviating fetal growth disorder, decreased levels of sEng, HIF-1α, sFlt-1, Slug, and Vimentin, and increased levels of VEGFA, PLGF, CD31, and VE-cadherin in PE mice. Our findings provided evidence supporting the role of the AC092100.1/YTHDC2/VEGFA axis in regulating angiogenesis, which demonstrated a therapeutic pathway for PE targeting angiogenesis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Preeclampsia , ARN Largo no Codificante , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Preeclampsia/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Femenino , Embarazo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proliferación Celular , Movimiento Celular , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Placenta/metabolismo , Angiogénesis
13.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39239747

RESUMEN

Cholangiocarcinoma (CCA) is an extremely aggressive malignancy arising from the epithelial cells lining the bile ducts. It presents a substantial global health issue, with the highest incidence rates, ranging from 40­100 cases/100,000 individuals, found in Southeast Asia, where liver fluke infection is endemic. In Europe and America, incidence rates range from 0.4­2 cases/100,000 individuals. Globally, mortality rates range from 0.2­2 deaths/100,000 person­years and are increasing in most countries. Chemotherapy is the primary treatment for advanced CCA due to limited options from late­stage diagnosis, but its efficacy is hindered by drug­resistant phenotypes. In a previous study, proteomics analysis of drug­resistant CCA cell lines (KKU­213A­FR and KKU­213A­GR) and the parental KKU­213A line identified cullin 3 (Cul3) as markedly overexpressed in drug­resistant cells. Cul3, a scaffold protein within CUL3­RING ubiquitin ligase complexes, is crucial for ubiquitination and proteasome degradation, yet its role in drug­resistant CCA remains to be elucidated. The present study aimed to elucidate the role of Cul3 in drug­resistant CCA cell lines. Reverse transcription­quantitative PCR and western blot analyses confirmed significantly elevated Cul3 mRNA and protein levels in drug­resistant cell lines compared with the parental control. Short interfering RNA­mediated Cul3 knockdown sensitized cells to 5­fluorouracil and gemcitabine and inhibited cell proliferation, colony formation, migration and invasion. In addition, Cul3 knockdown induced G0/G1 cell cycle arrest and suppressed key cell cycle regulatory proteins, cyclin D, cyclin­dependent kinase (CDK)4 and CDK6. Bioinformatics analysis of CCA patient samples using The Cancer Genome Atlas data revealed Cul3 upregulation in CCA tissues compared with normal bile duct tissues. STRING analysis of upregulated proteins in drug­resistant CCA cell lines identified a highly interactive Cul3 network, including COMM Domain Containing 3, Ariadne RBR E3 ubiquitin protein ligase 1, Egl nine homolog 1, Proteasome 26S Subunit Non­ATPase 13, DExH­box helicase 9 and small nuclear ribonucleoprotein polypeptide G, which showed a positive correlation with Cul3 in CCA tissues. Knocking down Cul3 significantly suppressed the mRNA expression of these genes, suggesting that Cul3 may act as an upstream regulator of them. Gene Ontology analysis revealed that the majority of these genes were categorized under binding function, metabolic process, cellular anatomical entity, protein­containing complex and protein­modifying enzyme. Taken together, these findings highlighted the biological and clinical significance of Cul3 in drug resistance and progression of CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Proliferación Celular , Colangiocarcinoma , Proteínas Cullin , Resistencia a Antineoplásicos , Humanos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Fenotipo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gemcitabina , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Antineoplásicos/farmacología
14.
Int J Med Sci ; 21(11): 2170-2188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239548

RESUMEN

Purpose: Matrix metalloproteinase-11 (MMP11), which belongs to the stromelysin subgroup, has been reported to play a role in the progression of colorectal cancer (CRC). However, the significance of MMP11 in the tumor microenvironment, immune/stromal cells, and its mechanism in CRC remain unclear. Methods: The impact of MMP11 knockdown using specific short hairpin RNAs (shRNAs) on the metastasis and invasion of colorectal cancer RKO and SW480 cells was investigated using western blot, quantitative real-time polymerase chain reaction (qRT-PCR), transwell assays, and immunohistochemistry. Results: MMP11 mRNA expression was significantly higher in CRC cells than in normal cells, and its expression was stimulated in CCD-18Co fibroblasts. Additionally, MMP11 expression was found to be higher in individuals aged ≤ 65 years, the T4/T3 group, and Stage III/IV patients. Overall survival (OS) and disease-free survival rates were significantly different between the high and low MMP11 groups. Furthermore, the receiver operating characteristic (ROC) curves for MMP11 at 1-, 3-, and 5-years were 0.450, 0.552, and 0.560, respectively. Moreover, MMP11 promoted the migration and invasion of CRC cells by elevating the expression of Slug protein. Most importantly, MMP11 was positively associated with M0-macrophages and negatively associated with M1-macrophages, NK cells activated, NK cells resting, T cells CD4 memory activated, and T cells follicular helper, indicating the remarkable interactions of MMP11 with tumor immunology. Conclusions: MMP11 plays an important role in colorectal cancer development, and its mechanism in CRC needs to be further explored in the future.


Asunto(s)
Movimiento Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 11 de la Matriz , Invasividad Neoplásica , Factores de Transcripción de la Familia Snail , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Metaloproteinasa 11 de la Matriz/genética , Metaloproteinasa 11 de la Matriz/metabolismo , Invasividad Neoplásica/genética , Movimiento Celular/genética , Masculino , Línea Celular Tumoral , Femenino , Persona de Mediana Edad , Anciano , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Supervivencia sin Enfermedad
15.
Sci Adv ; 10(36): eadn6858, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241071

RESUMEN

Migration of endothelial and many other cells requires spatiotemporal regulation of protrusive and contractile cytoskeletal rearrangements that drive local cell shape changes. Unexpectedly, the small GTPase Rho, a crucial regulator of cell movement, has been reported to be active in both local cell protrusions and retractions, raising the question of how Rho activity can coordinate cell migration. Here, we show that Rho activity is absent in local protrusions and active during retractions. During retractions, Rho rapidly activated ezrin-radixin-moesin proteins (ERMs) to increase actin-membrane attachment, and, with a delay, nonmuscle myosin 2 (NM2). Rho activity was excitable, with NM2 acting as a slow negative feedback regulator. Strikingly, inhibition of SLK/LOK kinases, through which Rho activates ERMs, caused elongated cell morphologies, impaired Rho-induced cell contractions, and reverted Rho-induced blebbing. Together, our study demonstrates that Rho activity drives retractions by sequentially enhancing ERM-mediated actin-membrane attachment for force transmission and NM2-dependent contractility.


Asunto(s)
Actomiosina , Movimiento Celular , Forma de la Célula , Proteínas del Citoesqueleto , Actomiosina/metabolismo , Humanos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de la Membrana/metabolismo , Actinas/metabolismo , Animales , Miosina Tipo II/metabolismo
16.
Sci Rep ; 14(1): 20837, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242641

RESUMEN

Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.


Asunto(s)
Movimiento Celular , Quimiotaxis , Esferoides Celulares , Microambiente Tumoral , Esferoides Celulares/patología , Animales , Ratones , Línea Celular Tumoral , Proliferación Celular , Nutrientes/metabolismo , Invasividad Neoplásica , Humanos
17.
J Nanobiotechnology ; 22(1): 550, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243057

RESUMEN

Non-healing skin wounds pose significant clinical challenges, with biologic products like exosomes showing promise for wound healing. Saliva and saliva-derived exosomes, known to accelerate wound repair, yet their extraction is difficult due to the complex environment of oral cavity. In this study, as a viable alternative, we established human minor salivary gland organoids (hMSG-ORG) to produce exosomes (MsOrg-Exo). In vitro, MsOrg-Exo significantly enhanced cell proliferation, migration, and angiogenesis. When incorporated into a GelMA-based controlled-release system, MsOrg-Exo demonstrated controlled release, effectively improving wound closure, collagen synthesis, angiogenesis, and cellular proliferation in a murine skin wound model. Further molecular analyses revealed that MsOrg-Exo promotes proliferation, angiogenesis and the secretion of growth factors in wound sites. Proteomic profiling showed that MsOrg-Exo's protein composition is similar to human saliva and enriched in proteins essential for wound repair, immune modulation, and coagulation. Additionally, MsOrg-Exo was found to modulate macrophage polarization, inducing a shift towards M1 and M2 phenotypes in vitro within 48 h and predominantly towards the M2 phenotype in vivo after 15 days. In conclusion, our study successfully extracted MsOrg-Exo from hMSG-ORGs, confirmed the effectiveness of the controlled-release system combining MsOrg-Exo with GelMA in promoting skin wound healing, and explored the potential role of macrophages in this action.


Asunto(s)
Exosomas , Macrófagos , Organoides , Cicatrización de Heridas , Exosomas/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Humanos , Animales , Macrófagos/metabolismo , Organoides/metabolismo , Ratones , Proliferación Celular , Hidrogeles/química , Hidrogeles/farmacología , Glándulas Salivales/metabolismo , Saliva/química , Saliva/metabolismo , Movimiento Celular , Piel/metabolismo , Piel/lesiones
18.
Pathol Res Pract ; 262: 155563, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217772

RESUMEN

BACKGROUND: The actin-binding protein anillin (ANLN) functions as an oncogene in various cancers but has not been fully studied in oral squamous cell carcinoma (OSCC). This study aimed to investigate the expression of ANLN in OSCC tissues and cell lines, to better understand its role in mediating proliferative, angiogenic, invasive, and metastatic capabilities in this type of cancer. METHODS: ANLN mRNA and protein levels were assessed using qPCR and western immunoblotting. The expression intensity of ANLN was evaluated using immunohistochemical (IHC) staining. Biological functional assays were employed to characterize the behavior of OSCC cells influenced by ANLN. Additionally, comprehensive bioinformatics analysis, including GO analysis and KEGG enrichment analysis, was performed on differentially expressed genes in ANLN-mediated pathways. RESULTS: OSCC tumors and cell lines exhibited higher ANLN expression. Silencing of ANLN significantly suppressed OSCC cell proliferation, as evidenced by a significant reduction in the Ki-67 index both in vitro and in vivo. The migration and invasive ability of OSCC cells were markedly diminished, coinciding with a decrease in epithelial-mesenchymal transition activity. ANLN was also found to promote angiogenic activity in OSCC cells, partly through synergistic effects mediated by vascular endothelial growth factor A (VEGFA). Downregulation of ANLN expression led to decreased VEGFA levels, resulting in reduced angiogenesis characterized by fewer vascular branches. CONCLUSIONS: Our findings highlight the promising role of ANLN as a biomarker for both diagnostic and prognostic in OSCC. Targeting ANLN with inhibitory strategies could impede the oncogenesis processes at the core of OSCC development, presenting significant opportunities for advancing therapeutic interventions.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas de Microfilamentos , Neoplasias de la Boca , Invasividad Neoplásica , Neovascularización Patológica , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Proliferación Celular/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/metabolismo , Movimiento Celular/genética , Invasividad Neoplásica/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Silenciador del Gen , Ratones , Transición Epitelial-Mesenquimal/genética , Femenino , Masculino , Angiogénesis
19.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219260

RESUMEN

Previous studies have highlighted the antitumor effects of mesenchymal stem cell­derived extracellular vesicles (MSC­EVs), positioning them as a promising therapeutic avenue for cancer treatment. However, some researchers have proposed a bidirectional influence of MSC­EVs on tumors, determined by the specific tissue origin of the MSCs and the types of tumors involved. The present study aimed to elucidate the effects of human placenta MSC­derived extracellular vesicles (hPMSC­EVs) on the malignant behavior of a mouse breast cancer model of 4T1 cells in vitro and in vivo. The findings revealed that hPMSC­EVs significantly inhibited the proliferation, migration and colony formation of cultured 4T1 mouse breast cancer cells without inducing apoptosis. Exposure to conditioned medium from 4T1 cells pretreated with hPMSC­EVs resulted in decreased angiogenic activity, accompanied by the downregulation of angiogenesis­promoting genes in human umbilical vein endothelial cells. In murine xenograft models derived from the 4T1 cell line, local administration of hPMSC­EVs substantially hindered tumor growth. Further results revealed that hPMSC­EVs inhibited angiogenesis in vivo, as reflected by the use of a vascular growth factor receptor 2­Fluc transgenic mouse model. In summary, the results confirmed that hPMSC­EVs negatively modulated breast cancer growth by suppressing tumor cell proliferation and migration via an indirect antiangiogenic mechanism. These results underscored the therapeutic potential of EVs, suggesting a promising avenue for alternative anticancer treatments in the future.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Vesículas Extracelulares , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Neovascularización Patológica , Vesículas Extracelulares/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Neovascularización Patológica/metabolismo , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Medios de Cultivo Condicionados/farmacología , Ratones Endogámicos BALB C , Placenta/metabolismo , Placenta/citología , Apoptosis , Angiogénesis
20.
Cell Commun Signal ; 22(1): 425, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223652

RESUMEN

BACKGROUND: Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells. METHODS: Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis. RESULTS: POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6- (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen. CONCLUSIONS: Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Factores de Transcripción SOXB1 , Tamoxifeno , Compuestos de Tungsteno , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Tamoxifeno/farmacología , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Compuestos de Tungsteno/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA