Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 9(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353975

RESUMEN

Radiation is a widely used treatment for cancer patients, with over half the cancer patients receiving radiation therapy during their course of treatment. Considerable evidence from both preclinical and clinical studies show that tumor recurrence gets restored following radiotherapy, due to the influx of circulating cells consisting primarily of monocytes. The attachment of monocyte to endothelial cell is the first step of the extravasation process. However, the exact molecules that direct the transmigration of monocyte from the blood vessels to the tumors remain largely unknown. The nerve injury-induced protein 1 (Ninjurin1 or Ninj1) gene, which encodes a homophilic adhesion molecule and cell surface protein, was found to be upregulated in inflammatory lesions, particularly in macrophages/monocytes, neutrophils, and endothelial cells. More recently Ninj1 was reported to be regulated following p53 activation. Considering p53 has been known to be activated by radiation, we wondered whether Ninj1 could be increased in the endothelial cells by radiation and it might contribute to the recruiting of monocytes in the tumor. Here we demonstrate that radiation-mediated up-regulation of Ninj1 in endothelial cell lines such as human umbilical vein endothelial cells (HUVECs), EA.hy926, and immortalized HUVECs. Consistent with this, we found over-expressed Ninj1 in irradiated xenograft tumors, and increased monocyte infiltration into tumors. Radiation-induced Ninj1 was transcriptionally regulated by p53, as confirmed by transfection of p53 siRNA. In addition, Ninj1 over-expression in endothelial cells accelerated monocyte adhesion. Irradiation-induced endothelial cells and monocyte interaction was inhibited by knock-down of Ninj1. Furthermore, over-expressed Ninj1 stimulated MMP-2 and MMP-9 expression in monocyte cell lines, whereas the MMP-2 and MMP-9 expression were attenuated by Ninj1 knock-down in monocytes. Taken together, we provide evidence that Ninj1 is a key molecule that generates an interaction between endothelial cells and monocytes. This result suggests that radiation-mediated Ninj1 expression in endothelial cells could be involved in the post-radiotherapy recurrence mechanism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/efectos de la radiación , Monocitos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/efectos de la radiación , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Leucocitos/metabolismo , Leucocitos/efectos de la radiación , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Monocitos/efectos de la radiación , Neoplasias/metabolismo , Neoplasias/radioterapia , Factores de Crecimiento Nervioso/efectos de la radiación , Radiación , Radioterapia/efectos adversos
2.
Microsc Res Tech ; 48(2): 97-106, 2000 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-10649510

RESUMEN

Directed growth cone movement is crucial for the correct wiring of the nervous system. This movement is governed by the concerted actions of cell surface receptors, signaling proteins, cytoskeleton-associated molecules, and molecular motors. In order to investigate the molecular basis of growth cone motility, we applied a new technique to functionally inactivate proteins: micro-scale Chromophore-Assisted Laser Inactivation [Diamond et al. (1993) Neuron 11:409-421]. Micro-CALI uses laser light of 620 nm, focused through microscope optics into a 10-microm spot. The laser energy is targeted via specific Malachite green-labeled, non-function-blocking antibodies, that generate short-lived protein-damaging hydroxyl radicals [Liao et al. (1994) Proc Natl Acad Sci USA 91:2659-2663]. Micro-CALI mediates specific loss of protein function with unachieved spatial and temporal resolution. Combined with time-lapse video microscopy, it offers the possibility to induce and observe changes in growth cone dynamics on a real time base. We present here the effects of the acute and localized inactivation of selected growth cone molecules on growth cone behavior and morphology. Based on our observations, we propose specific roles for these proteins in growth cone motility and neurite outgrowth.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/fisiología , Rayos Láser , Proteínas del Tejido Nervioso/fisiología , Actinas/fisiología , Animales , Calcineurina/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/fisiología , Moléculas de Adhesión Celular Neuronal/efectos de la radiación , Colorantes , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/efectos de la radiación , Daño del ADN , Conos de Crecimiento/química , Humanos , Complejo de Antígeno L1 de Leucocito , Glicoproteínas de Membrana/fisiología , Microscopía por Video/instrumentación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Asociadas a Microtúbulos/efectos de la radiación , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Proteínas Motoras Moleculares/efectos de la radiación , Miosinas/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/efectos de la radiación , Moléculas de Adhesión de Célula Nerviosa/fisiología , Neuritas/fisiología , Colorantes de Rosanilina , Transducción de Señal , Talina/fisiología , Vinculina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA