Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414.914
Filtrar
1.
Methods Mol Biol ; 2848: 117-134, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240520

RESUMEN

Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.


Asunto(s)
Células Ependimogliales , Retina , Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Retina/metabolismo , Células Ependimogliales/metabolismo , Regeneración/genética , Análisis de Secuencia de ARN/métodos , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , RNA-Seq/métodos , Modelos Animales de Enfermedad
2.
Methods Mol Biol ; 2848: 75-84, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240517

RESUMEN

Zebrafish maintain a remarkable ability to regenerate their neural retina following rapid and extensive loss of retinal neurons. This is mediated by Müller glial cells (MG), which re-enter the cell cycle to produce amplifying progenitor cells that eventually differentiate into the lost retinal neurons. For example, exposing adult albino zebrafish to intense light destroys large numbers of rod and cone photoreceptors, which are then restored by MG-mediated regeneration. Here, we describe an updated method for performing these acute phototoxic lesions to adult zebrafish retinas. Next, we contrast this method to a chronic, low light lesion model that results in a more muted and sustained damage to photoreceptors and does not trigger a MG-mediated regeneration response. Thus, these two methods can be used to compare and contrast the genetic and morphological changes associated with acute and chronic methods of photoreceptor degeneration.


Asunto(s)
Modelos Animales de Enfermedad , Degeneración Retiniana , Pez Cebra , Animales , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Células Ependimogliales/patología , Células Ependimogliales/metabolismo , Luz , Células Fotorreceptoras de Vertebrados/patología , Retina/patología , Retina/metabolismo
3.
Methods Mol Biol ; 2848: 59-71, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240516

RESUMEN

Glaucoma is one of the leading causes of irreversible blindness. Stem cell therapy has shown promise in the treatment of primary open-angle glaucoma in animal models. Stem cell-free therapy using stem cell-derived trophic factors might be in demand in patients with high-risk conditions or religious restrictions. In this chapter, we describe methods for trabecular meshwork stem cell (TMSC) cultivation, secretome harvesting, and protein isolation, as well as assays to ensure the health of TMSC post-secretome harvesting and for secretome periocular injection into mice for therapeutic purposes.


Asunto(s)
Células Madre , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/citología , Animales , Ratones , Humanos , Células Madre/citología , Células Madre/metabolismo , Regeneración , Glaucoma/terapia , Trasplante de Células Madre/métodos , Secretoma , Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/terapia , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Técnicas de Cultivo de Célula/métodos
4.
Methods Mol Biol ; 2848: 151-167, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240522

RESUMEN

High-quality imaging of the retina is crucial to the diagnosis and monitoring of disease, as well as for evaluating the success of therapeutics in human patients and in preclinical animal models. Here, we describe the basic principles and methods for in vivo retinal imaging in rodents, including fundus imaging, fluorescein angiography, optical coherence tomography, fundus autofluorescence, and infrared imaging. After providing a concise overview of each method and detailing the retinal diseases and conditions that can be visualized through them, we will proceed to discuss the advantages and disadvantages of each approach. These protocols will facilitate the acquisition of optimal images for subsequent quantification and analysis. Additionally, a brief explanation will be given regarding the potential results and the clinical significance of the detected abnormalities.


Asunto(s)
Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Retina , Enfermedades de la Retina , Tomografía de Coherencia Óptica , Animales , Tomografía de Coherencia Óptica/métodos , Enfermedades de la Retina/diagnóstico por imagen , Enfermedades de la Retina/patología , Enfermedades de la Retina/diagnóstico , Retina/diagnóstico por imagen , Retina/patología , Angiografía con Fluoresceína/métodos , Ratones , Ratas , Roedores , Imagen Óptica/métodos , Humanos , Fondo de Ojo
5.
Methods Mol Biol ; 2852: 171-179, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235744

RESUMEN

Studying host-pathogen interactions is essential for understanding infectious diseases and developing possible treatments, especially for priority pathogens with increased virulence and antibiotic resistance, such as Klebsiella pneumoniae. Over time, this subject has been approached from different perspectives, often using mammal host models and invasive endpoint measurements (e.g., sacrifice and organ extraction). However, taking advantage of technological advances, it is now possible to follow the infective process by noninvasive visualization in real time, using optically amenable surrogate hosts. In this line, this chapter describes a live-cell imaging approach to monitor the interaction of K. pneumoniae and potentially other bacterial pathogens with zebrafish larvae in vivo. This methodology is based on the microinjection of fluorescent bacteria into the otic vesicle, followed by time-lapse observation by automated fluorescence microscopy with environmental control, monitoring the dynamics of immune cell recruitment, bacterial load, and larvae survival.


Asunto(s)
Interacciones Huésped-Patógeno , Infecciones por Klebsiella , Klebsiella pneumoniae , Larva , Microinyecciones , Microscopía Fluorescente , Pez Cebra , Animales , Pez Cebra/microbiología , Klebsiella pneumoniae/inmunología , Microinyecciones/métodos , Larva/microbiología , Larva/inmunología , Microscopía Fluorescente/métodos , Interacciones Huésped-Patógeno/inmunología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/inmunología , Modelos Animales de Enfermedad
6.
Methods Mol Biol ; 2854: 221-236, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192133

RESUMEN

Zebrafish is a widely used model organism in genetics, developmental biology, pathology, and immunology research. Due to their fast reproduction, large numbers, transparent early embryos, and high genetic conservation with the human genome, zebrafish have been used as a model for studying human and fish viral diseases. In particular, the ability to easily perform forward and reverse genetics and lacking a functional adaptive immune response during the early period of development establish the zebrafish as a favored option to assess the functional implication of specific genes in the antiviral innate immune response and the pathogenesis of viral diseases. In this chapter, we detail protocols for the antiviral innate immunity analysis using the zebrafish model, including the generation of gene-overexpression zebrafish, generation of gene-knockout zebrafish by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, methods of viral infection in zebrafish larvae, analyzing the expression of antiviral genes in zebrafish larvae using qRT-PCR, Western blotting and transcriptome sequencing, and in vivo antiviral assays. These experimental protocols provide effective references for studying the antiviral immune response in the zebrafish model.


Asunto(s)
Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Inmunidad Innata , Pez Cebra , Animales , Pez Cebra/inmunología , Pez Cebra/genética , Pez Cebra/virología , Inmunidad Innata/genética , Virosis/inmunología , Virosis/genética , Técnicas de Inactivación de Genes , Animales Modificados Genéticamente
7.
J Ethnopharmacol ; 336: 118718, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179056

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tackling phlegm and improving blood circulation is vital in the treatment of ischemic stroke (IS), culminating in the development of Zhongfeng Decoction (ZFD), a method grounded in this approach and serving as an effective therapy for IS. Nonetheless, the defensive mechanism of the ZFD in preventing cerebral ischemia-reperfusion damage remains ambiguous. AIM OF THE STUDY: Determine the active ingredients in ZFD that have neuroprotective effects, and identify its mechanism of action against IS. MATERIALS AND METHODS: A cerebral ischemia model in rats was developed, utilizing TTC, Nissl staining, and an oxidative stress kit to evaluate the neuroprotective impact of ZFD on this rat model. Following this, an amalgamation of LC-MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of ZFD in treating IS. Finally, key targets and signaling pathways were detected using qRT-PCR, ELISA, Western blotting, electron microscopy, and other methods. RESULTS: Through LC-MS and network analysis, 15 active ingredients and 6 hub targets were identified from ZFD. Analysis of pathway enrichment revealed that ZFD predominantly engages in the AGE-RAGE signaling route. Kaempferol, quercetin, luteolin, baicalein, and nobiletin in ZFD are the main active ingredients for treating IS. In vivo validation showed that ZFD can improve nerve damage in cerebral ischemic rats, reduce the mRNA expression of IL6, SERPINE1, CCL2, and TGFB1 related to inflammation. Furthermore, we also confirmed that ZFD can inhibit the protein expression of AGEs, RAGE, p-IKBα/IKBα, p-NF-κB p65/NF-κB p65, reduce autophagy levels, and thus decrease neuronal apoptosis. CONCLUSIONS: The mechanism of action of ZFD in treating IS primarily includes inflammation suppression, oxidative stress response alleviation, post-stroke cell autophagy and apoptosis regulation, and potential mediation of the AGE-RAGE signaling pathway. This study elucidates how ZFD functions in treating IS, establishing a theoretical basis for its clinical application.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Daño por Reperfusión , Transducción de Señal , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Autofagia/efectos de los fármacos , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo
8.
J Ethnopharmacol ; 336: 118743, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209000

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE: To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS: The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS: In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS: We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.


Asunto(s)
Modelos Animales de Enfermedad , PPAR alfa , Transducción de Señal , Pez Cebra , Animales , Transducción de Señal/efectos de los fármacos , PPAR alfa/metabolismo , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cricetinae , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Mesocricetus , Células Hep G2 , Benzofuranos/farmacología , Hígado Graso/tratamiento farmacológico
9.
J Ethnopharmacol ; 336: 118759, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209003

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY: The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS: A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS: Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION: CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.


Asunto(s)
Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Hipercolesterolemia , Metabolómica , Farmacología en Red , Ratas Sprague-Dawley , Salvia miltiorrhiza , Animales , Hipercolesterolemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Cromatografía Líquida de Alta Presión , Salvia miltiorrhiza/química , Ratas , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Canfanos , Panax notoginseng
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124975, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154402

RESUMEN

Epilepsy is one of the most commonly-seen neurological disorders, and both endoplasmic reticulum stress (ERS) and oxidative stress (OS) have been demonstrated to be associated with epileptic seizures. As one of the three endogenous thiol-containing amino acids, cysteine (Cys) is recognized not only as an important biomarker of various biological processes but also widely used as a significant additive in the food industry. However, the exact role that Cys plays in ERS has not been well answered up to now. In this paper, we reported the first flavone-based fluorescent probe (namely BFC) with nice endoplasmic reticulum (ER)-targeting ability, which was capable of monitoring Cys in a fast response (3.0 min), large stokes shift (130 nm) and low detection limit (10.4 nM). The recognition mechanism of Cys could be attributed to the addition-cyclization reaction involving a Cys residue and an acrylate group, resulting in the release of the strong excited-state intramolecular proton transfer (ESIPT) emission molecule of benzoflavonol (BF). The low cytotoxicity and good biocompatibility of the probe BFC allowed for monitoring the fluctuation of endogenous Cys levels under both ERS and OS processes, as well as in zebrafish models of epilepsy. Quantitative determination of Cys with the probe BFC was also achieved in three different food samples. Additionally, a probe-immersed test strips integrated with a smartphone device was successfully constructed for on-site colorimetric detection of Cys. Undoubtedly, our work provided a valuable tool for tracking Cys levels in both an epilepsy model and real food samples.


Asunto(s)
Cisteína , Retículo Endoplásmico , Epilepsia , Flavonas , Colorantes Fluorescentes , Análisis de los Alimentos , Pez Cebra , Colorantes Fluorescentes/química , Cisteína/análisis , Animales , Epilepsia/diagnóstico , Flavonas/análisis , Flavonas/química , Retículo Endoplásmico/metabolismo , Análisis de los Alimentos/métodos , Espectrometría de Fluorescencia/métodos , Humanos , Modelos Animales de Enfermedad , Límite de Detección , Estrés del Retículo Endoplásmico
11.
J Ethnopharmacol ; 336: 118716, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179055

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng flowers, which are the buds of the traditional Chinese medicinal herb Sanqi, are widely used in China for their cough-ameliorating properties, with demonstrated therapeutic effects in the treatment of both acute and chronic coughs. However, both the antitussive mechanism and active compound basis of P. notoginseng flowers remain poorly understood. AIM OF THE STUDY: We investigated the antitussive effects of P. notoginseng flowers, identified the bioactive constituents responsible for alleviating cough symptoms, and elucidated the underlying pharmacological mechanisms. MATERIALS AND METHODS: We analyzed the major chemical constituents of aqueous extracts of P. notoginseng flowers using liquid chromatography-mass spectrometry and quantitatively analyzed the key component, 20S-ginsenoside Rh2, using high-performance liquid chromatography. Using a cough reflex model in healthy mice and an ovalbumin-induced, highly sensitive guinea pig cough model, we verified the suppressive effects of P. notoginseng flowers and their saponin constituents on coughing. Furthermore, we explored the mechanisms of action of the key ion channels, NaV1.7 and TRPV1, using whole-cell patch-clamp techniques and molecular docking. Finally, the therapeutic mechanisms of P. notoginseng flowers on pathological cough were revealed using hematoxylin and eosin staining, immunohistochemistry, and western blotting. RESULTS: The active components of P. notoginseng flowers were primarily protopanaxadiol-type saponins, among which 20S-ginsenoside Rh2 had the highest content (51.46 mg/g). In the mouse model, P. notoginseng flowers exhibited antitussive effects comparable to those of pentoxyverine citrate. Although its main saponin component, 20S-ginsenoside Rh2, showed slightly weaker effects, it still demonstrated concentration-dependent inhibition of channel activity. The whole-cell patch-clamp technique and virtual molecular docking showed that Rh2 might exert its effects by directly binding to the NaV1.7 and TRPV1 channels. In the guinea pig model, P. notoginseng flowers and their saponin components not only reduced cough frequency and prolonged the latency period before cough onset, but also significantly inhibited tracheal and pulmonary inflammation and the overexpression of TRPV1. CONCLUSIONS: 20S-Ginsenoside Rh2, the major bioactive saponin in P. notoginseng flowers, exhibits potent antitussive effects. The potential mechanism of action of 20S-Ginsenoside Rh2 in the treatment of cough may involve inhibiting NaV1.7 and TRPV1 channel currents through direct binding to core protein active sites and downregulating TRPV1 expression.


Asunto(s)
Antitusígenos , Tos , Regulación hacia Abajo , Flores , Ginsenósidos , Canal de Sodio Activado por Voltaje NAV1.7 , Panax notoginseng , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Cobayas , Flores/química , Tos/tratamiento farmacológico , Ginsenósidos/farmacología , Antitusígenos/farmacología , Masculino , Ratones , Panax notoginseng/química , Regulación hacia Abajo/efectos de los fármacos , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Células HEK293 , Simulación del Acoplamiento Molecular , Cricetulus , Modelos Animales de Enfermedad , Células CHO , Saponinas/farmacología , Ovalbúmina
12.
J Ethnopharmacol ; 336: 118715, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Ni-San (SNS), a traditional Chinese medicinal formula derived from Treatise on Febrile Diseases, is considered effective in the treatment of inflammatory bowel diseases based upon thousands of years of clinical practice. However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. AIM OF THE STUDY: This study aimed to evaluate the effect, explore the bioactive ingredients and the underlying mechanisms of SNS in ameliorating ulcerative colitis (UC) and associated liver injury in dextran sodium sulphate (DSS)-induced mouse colitis models. MATERIALS AND METHODS: The effect of SNS (1.5, 3, 6 g/kg) on 3% DSS-induced acute murine colitis was evaluated by disease activity index (DAI), colon length, inflammatory cytokines, hematoxylin-eosin (H&E) staining, tight junction proteins expression, ALT, AST, and oxidative stress indicators. HPLC-ESI-IT/TOF MS was used to analyze the chemical components of SNS and the main xenobiotics in the colon of UC mice after oral administration of SNS. Network pharmacological study was then conducted based on the main xenobiotics. Flow cytometry and immunohistochemistry techniques were used to demonstrate the inhibitory effect of SNS on Th17 cells differentiation and the amelioration of Th17/Treg cell imbalance. LC-MS/MS, Real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting techniques were performed to investigate the oxysterol-Liver X receptor (LXRs) signaling activity in colon. Targeted bile acids metabolomics was conducted to reveal the change of the two major pathways of bile acid synthesis in the liver, and the expression of key metabolic enzymes of bile acids synthesis was characterized by RT-qPCR and western blotting techniques. RESULTS: SNS (1.5, 3, 6 g/kg) decreased the DAI scores, protected intestinal mucosa barrier, suppressed the production of pro-inflammatory cytokines, improved hepatic and splenic enlargement and alleviated liver injury in a dose-dependent manner. A total of 22 components were identified in the colon of SNS (6 g/kg) treated colitis mice, and the top 10 components ranked by relative content were regarded as the potential effective chemical components of SNS, and used to conduct network pharmacology research. The efficacy of SNS was mediated by a reduction of Th17 cell differentiation, restoration of Th17/Treg cell homeostasis in the colon and spleen, and the experimental results were consistent with our hypothesis and the biological mechanism predicted by network pharmacology. Mechanistically, SNS regulated the concentration of 25-OHC and 27-OHC by up-regulated CH25H, CYP27A1 protein expression in colon, thus affected the expression and activity of LXR, ultimately impacted Th17 differentiation and Th17/Treg balance. It was also found that SNS repressed the increase of hepatic cholesterol and reversed the shift of BA synthesis to the acidic pathway in UC mice, which decreased the proportion of non-12-OH BAs in total bile acids (TBAs) and further ameliorated colitis and concomitant liver injury. CONCLUSIONS: This study set the stage for considering SNS as a multi-organ benefited anti-colitis prescription based on the significant effect of ameliorating intestinal and liver damage, and revealed that derivatives of cholesterol, namely oxysterols and bile acids, were closely involved in the mechanism of SNS anti-colitis effect.


Asunto(s)
Colesterol , Colitis Ulcerosa , Sulfato de Dextran , Medicamentos Herbarios Chinos , Animales , Medicamentos Herbarios Chinos/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Ratones , Masculino , Colesterol/sangre , Células Th17/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Farmacología en Red , Citocinas/metabolismo , Linfocitos T Reguladores/efectos de los fármacos
13.
J Ethnopharmacol ; 336: 118730, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181280

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) can lead to respiratory failure and even death. KAT2A is a key target to suppress the development of inflammation. A herb, perilla frutescens, is an effective treatment for pulmonary inflammatory diseases with anti-inflammatory effects; however, its mechanism of action remains unclear. AIM OF THE STUDY: The purpose of this study was to investigate the therapeutic effect and underlying mechanism of perilla frutescens leaf extracts (PLE), in the treatment of ALI by focusing on its ability to treat inflammation. MATERIALS AND METHODS: In vivo and in vitro models of ALI induced by LPS. Respiratory function, histopathological changes of lung, and BEAS-2B cells damage were assessed upon PLE. This effect is also tested under conditions of KAT2A over expression and KAT2A silencing. RESULTS: PLE significantly attenuated LPS-induced histopathological changes in the lungs, improved respiratory function, and increased survival rate from LPS stimuation background in mice. PLE remarkably suppressed the phosphorylation of STAT3, AKT, ERK (1/2) and the release of cytokines (IL-6, TNF-α, and IL-1ß) induced by LPS via inhibiting the expression of KAT2A. CONCLUSIONS: PLE has a dose-dependent anti-inflammatory effect by inhibiting KAT2A expression to suppress LPS-induced ALI n mice. Our study expands the clinical indications of the traditional medicine PLE and provide a theoretical basis for clinical use of acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Perilla frutescens , Extractos Vegetales , Hojas de la Planta , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Perilla frutescens/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Masculino , Ratones , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Modelos Animales de Enfermedad
14.
J Ethnopharmacol ; 336: 118733, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181281

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.


Asunto(s)
Antiinflamatorios , Colitis , Enfermedad de Crohn , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Ácido Trinitrobencenosulfónico , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Flavonoles , Glicósidos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Smilax/química , Receptor Toll-Like 4/metabolismo
15.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181283

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Asunto(s)
Diferenciación Celular , Medicamentos Herbarios Chinos , Endometriosis , Endometrio , Fibrosis , Células Madre Mesenquimatosas , Ratones Desnudos , Comunicación Paracrina , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Endometriosis/metabolismo , Femenino , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/patología , Ratones , Células Cultivadas , Adulto , Modelos Animales de Enfermedad
16.
J Ethnopharmacol ; 336: 118726, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181279

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides), a traditional Tibetan medicinal herb, exhibits protective effects against cardiovascular and respiratory diseases. Although Sea buckthorn extract (SBE) has been confirmed to alleviate airway inflammation in mice, its therapeutic effect and underlying mechanism on chronic obstructive pulmonary disease (COPD) requires further clarification. AIM OF THE STUDY: To elucidate the alleviative effect and molecular mechanism of SBE on lipopolysaccharides (LPS)/porcine pancreatic elastase (PPE)-induced COPD by blocking ferroptosis. METHODS: The anti-ferroptotic effects of SBE were evaluated in human BEAS-2B bronchial epithelial cells using CCK8, RT-qPCR, western blotting, and transmission electron microscopy. Transwell was employed to detect chemotaxis of neutrophils. COPD model was induced by intranasally administration of LPS/PPE in mice and measured by alterations of histopathology, inflammation, and ferroptosis. RNA-sequencing, western blotting, antioxidant examination, flow cytometry, DARTS, CETSA, and molecular docking were then used to investigate its anti-ferroptotic mechanisms. RESULTS: In vitro, SBE not only suppressed erastin- or RSL3-induced ferroptosis by suppressing lipid peroxides (LPOs) production and glutathione (GSH) depletion, but also suppressed ferroptosis-induced chemotactic migration of neutrophils via reducing mRNA expression of chemokines. In vivo, SBE ameliorated LPS/PPE-induced COPD phenotypes, and inhibited the generation of LPOs, cytokines, and chemokines. RNA-sequencing showed that p53 pathway and mitogen-activated protein kinases (MAPK) pathway were implicated in SBE-mediated anti-ferroptotic action. SBE repressed erastin- or LPS/PPE-induced overactivation of p53 and MAPK pathway, thereby decreasing expression of diamine acetyltransferase 1 (SAT1) and arachidonate 15-lipoxygenase (ALOX15), and increasing expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Mechanistically, erastin-induced elevation of reactive oxygen species (ROS) was reduced by SBE through directly scavenging free radicals, thereby contributing to its inhibition of p53 and MAPK pathways. CETSA, DARTS, and molecular docking further showed that ROS-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) may be the target of SBE. Overexpression of NOX4 partially impaired the anti-ferroptotic activity of SBE. CONCLUSION: Our results demonstrated that SBE mitigated COPD by suppressing p53 and MAPK pro-ferroptosis pathways via directly scavenging ROS and blocking NOX4. These findings also supported the clinical application of Sea buckthorn in COPD therapy.


Asunto(s)
Ferroptosis , Hippophae , Extractos Vegetales , Enfermedad Pulmonar Obstructiva Crónica , Especies Reactivas de Oxígeno , Proteína p53 Supresora de Tumor , Ferroptosis/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Hippophae/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Línea Celular , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
17.
J Ethnopharmacol ; 336: 118699, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a serious health-threatening syndrome of intense inflammatory response in the lungs, with progression leading to acute respiratory distress syndrome (ARDS). Dachengqi decoction dispensing granule (DDG) has a pulmonary protective role, but its potential modulatory mechanism to alleviate ALI needs further excavation. AIM OF THE STUDY: This study aims to investigate the effect and potential mechanism of DDG on lipopolysaccharide (LPS)-induced ALI models in vivo and in vitro. MATERIALS AND METHODS: LPS-treated Balb/c mice and BEAS-2B cells were used to construct in vivo and in vitro ALI models, respectively. Hematoxylin-eosin (HE), Wet weight/Dry weight (W/D) calculation of lung tissue, and total protein and Lactic dehydrogenase (LDH) assays in BALF were performed to assess the extent of lung tissue injury and pulmonary edema. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) in BALF, serum, and cell supernatant. The qRT-PCR was used to detect inflammatory factors, Z-DNA binding protein 1 (ZBP1), and receptor-interacting protein kinase 1 (RIPK1) expression in lung tissues and BEAS-2B cells. Double immunofluorescence staining and co-immunoprecipitation were used to detect the relative expression and co-localization of ZBP1 and RIPK1. The effects of LPS and DDG on BEAS-2B cell activity were detected by Cell Counting Kit-8 (CCK-8). Western blot (WB) was performed to analyze the expression of PANoptosis-related proteins in lung tissues and BEAS-2B cells. RESULTS: In vivo, DDG pretreatment could dose-dependently improve the pathological changes of lung tissue in ALI mice, and reduce the W/D ratio of lung, total protein concentration, and LDH content in BALF. In vitro, DDG reversed the inhibitory effect of LPS on BEAS-2B cell viability. Meanwhile, DDG significantly reduced the levels of inflammatory factors in vitro and in vivo. In addition, DDG could inhibit the expression levels of PANoptosis-related proteins, especially the upstream key regulatory molecules ZBP1 and RIPK1. CONCLUSION: DDG could inhibit excessive inflammation and PANoptosis to alleviate LPS-induced ALI, thus possessing good anti-inflammatory and lung-protective effects. This study establishes a theoretical basis for the further development of DDG and provides a new prospect for ALI treatment by targeting PANoptosis.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Ratones Endogámicos BALB C , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lipopolisacáridos/toxicidad , Humanos , Masculino , Ratones , Línea Celular , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar/química , Extractos Vegetales/farmacología , Citocinas/metabolismo , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
18.
J Ethnopharmacol ; 336: 118731, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182698

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Calyptrochilum emarginatum (Afzel. Ex Sw.) Schltr. (Orchidaceae) is a traditional medicinal plant known for its antimicrobial properties and efficacy in managing convulsive fever and menstrual disorders and addressing conditions such as malaria, tuberculosis, and cough. AIM OF THE STUDY: The study aims to examine the memory-enhancing and neuroprotective properties of ethanol extract of Calyptrochilum emarginatum leaves (EECEL) in scopolamine-induced amnesia mice model. MATERIALS AND METHODS: Forty-two male mice were divided into six groups (n = 7). Group 1 served as control, administered distilled water (10 mL/kg, p. o), group 2 received scopolamine only (3 mg/kg, i. p.), groups 3 to 6 received pretreatments of EECEL (50, 100, and 200 mg/kg, p. o.) and donepezil (1 mg/kg, p. o.) 30 min before scopolamine (3 mg/kg), for seven days. Following treatments, behavioral (learning and memory) assessments were carried out, while biochemical (acetylcholinesterase activity, oxidative stress markers, inflammatory cytokines markers) and histological evaluations were done after euthanasia. RESULTS: Scopolamine significantly impaired spatial, long term and recognition memory. Nevertheless, administration of EECEL (50, 100, and 200 mg/kg orally) enhanced memory function in mice, as observed in the Y maze [F (5, 30) = 20.23, p < 0.0001], Morris water maze [F (10, 90) = 3.105, p = 0.0019; [F (5, 30) = 21.13, p < 0.0001]], and novel object recognition tasks [F (5, 30) = 37.22, p < 0.0001)]. Scopolamine-treated mice exhibited significant dysfunction in the cholinergic system, as evidenced by elevated AChE activity [0.099 ± 0.005 vs. 0.063 ± 0.004 mol/min/g] with an elevation in oxidative stress. On the other hand, administration of EECEL counteracted these consequences by reducing AChE activity, mitigating oxidative damage, reducing pro-inflammatory cytokines, and preventing degeneration of neurons. CONCLUSION: The results demonstrated that EECEL effectively mitigates scopolamine-induced memory impairment via an oxido-inflammatory mechanism and modulation of the central cholinergic system.


Asunto(s)
Amnesia , Etanol , Fármacos Neuroprotectores , Orchidaceae , Extractos Vegetales , Hojas de la Planta , Escopolamina , Animales , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratones , Amnesia/tratamiento farmacológico , Amnesia/inducido químicamente , Etanol/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/aislamiento & purificación , Orchidaceae/química , Estrés Oxidativo/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales de Enfermedad , Memoria/efectos de los fármacos , Solventes/química , Donepezilo/farmacología , Donepezilo/uso terapéutico
19.
J Ethnopharmacol ; 336: 118737, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182705

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pogostemonis Herba has long been used in traditional Chinese medicine to treat inflammatory disorders. Patchouli essential oil (PEO) is the primary component of Pogostemonis Herba, and it has been suggested to offer curative potential when applied to treat ulcerative colitis (UC). However, the pharmacological mechanisms of PEO for treating UC remain to be clarified. AIM OF THE STUDY: To elucidate the pharmacological mechanisms of PEO for treating UC. METHODS AND RESULTS: In the present study, transcriptomic and network pharmacology approaches were combined to clarify the mechanisms of PEO for treating UC. Our results reveal that rectal PEO administration in UC model mice significantly alleviated symptoms of UC. In addition, PEO effectively suppressed colonic inflammation and oxidative stress. Mechanistically, PEO can ameliorate UC mice by modulating gut microbiota, inhibiting inflammatory targets (OPTC, PTN, IFIT3, EGFR, and TLR4), and inhibiting the PI3K-AKT pathway. Next, the 11 potential bioactive components that play a role in PEO's anti-UC mechanism were identified, and the therapeutic efficacy of the pogostone (a bioactive component) in UC mice was partially validated. CONCLUSION: This study highlights the mechanisms through which PEO can treat UC, providing a rigorous scientific foundation for future efforts to develop and apply PEO for treating UC.


Asunto(s)
Colitis Ulcerosa , Aceites Volátiles , Animales , Colitis Ulcerosa/tratamiento farmacológico , Aceites Volátiles/farmacología , Ratones , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Pogostemon/química , Estrés Oxidativo/efectos de los fármacos , Farmacología en Red , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología
20.
J Ethnopharmacol ; 336: 118728, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186990

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese traditional medicine frankincense, which can promote blood circulation, is often used to treat skin lesions, including frostbite. AIM OF THE STUDY: To explore the properties of frankincense oil extract (FOE) and its active ingredients and their effect on frostbite wound recovery as an approach to understand the mechanism associated with microcirculation-improvement therapy. MATERIALS AND METHODS: The microcirculation-improving effects of FOE and its active ingredients were evaluated using liquid nitrogen-induced frostbite animal models. The rewarming capacity of FOE on the skin was determined through infrared detection, and frostbite wound healing was evaluated following haematoxylin and eosin (H&E) staining and fibre analysis. Moreover, related factors were examined to determine the anti-apoptotic, anti-inflammatory, and microcirculatory properties of FOE and its active ingredients on affected tissue in the context of frostbite. RESULTS: FOE and its active ingredients rapidly rewarmed wound tissue after frostbite by increasing the temperature. Moreover, these treatments improved wound healing and restored skin structure through collagen and elastin fibre remodelling. In addition, they exerted anti-apoptotic effects by decreasing the number of apoptotic cells, reducing caspase-3 expression, and eliciting anti-inflammatory effects by decreasing COX-2 and ß-catenin expression. They also improved microcirculatory disorders by decreasing HIF-1α expression and increasing CD31 expression. CONCLUSIONS: FOE and its active components can effectively treat frostbite by enhancing microcirculation, inhibiting the infiltration of inflammatory cells, decreasing cell apoptosis, and exerting antinociceptive effects. These findings highlight FOE as a new treatment option for frostbite, providing patients with an effective therapeutic strategy.


Asunto(s)
Congelación de Extremidades , Microcirculación , Cicatrización de Heridas , Congelación de Extremidades/tratamiento farmacológico , Animales , Microcirculación/efectos de los fármacos , Masculino , Cicatrización de Heridas/efectos de los fármacos , Piel/efectos de los fármacos , Piel/irrigación sanguínea , Piel/patología , Apoptosis/efectos de los fármacos , Ratas , Modelos Animales de Enfermedad , Ratones , Administración Tópica , Ratas Sprague-Dawley , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA