Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Physiol (Oxf) ; 240(9): e14203, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39023008

RESUMEN

AIM: The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM). METHODS: Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy. RESULTS: Our results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM. CONCLUSION: The findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.


Asunto(s)
Mitofagia , Músculo Esquelético , Humanos , Mitofagia/fisiología , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Adulto , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Entrenamiento de Fuerza , Adulto Joven , Proteínas de la Membrana/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38735623

RESUMEN

Aquatic environments are subject to ultraviolet B (UVB) radiation incidence, and its effects on organisms are dose-dependent. Besides DNA, mitochondria are an important target of this radiation that causes structural damage and impairs its functional dynamics. Here, we hypothesize that mitophagy acts as an organelle quality control mechanism to mitigate UVB impacts in embryonic cells. Then, freshwater prawn Macrobrachium olfersii embryos was used as a model to investigate the effects of UVB on genes (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) and proteins (TOM20, PINK1, p62 and LC3B) involved in mitophagy modulation. The choice of genes and proteins was based on the identification of mitochondrial membrane (Tomm20, Opa1 and TOM20), mediation of mitophagy (Pink1, Prkn and PINK1), and recognition of mitochondria by the autophagosome membrane (Sqstm1, Map1lc3, p62 and LC3B). First, the phylogeny of all genes presented bootstrap values >80 and conserved domains among crustacean species. Gene expression was inherently modulated during development, with transcripts (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) overexpressed in the initial and final stages of development. Moreover, UVB radiation induced upregulation of Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3 genes at 6 h after exposure. Interestingly, after 12 h, the protein content of PINK1, p62, and LC3B increased, while TOM20 was not responsive. Despite UVB radiation's harmful effects on embryonic cells, the chronology of gene expression and protein content indicates rapid activation of mitophagy, serving as an organelle quality control mechanism, given the analyzed cells' integrity.


Asunto(s)
Mitofagia , Palaemonidae , Rayos Ultravioleta , Animales , Rayos Ultravioleta/efectos adversos , Mitofagia/efectos de la radiación , Palaemonidae/efectos de la radiación , Palaemonidae/embriología , Palaemonidae/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Embrión no Mamífero/efectos de la radiación , Embrión no Mamífero/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Filogenia , Orgánulos/metabolismo , Orgánulos/efectos de la radiación
3.
Biol Res ; 57(1): 10, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494498

RESUMEN

BACKGROUND: The senescence of renal tubular epithelial cells (RTECs) is crucial in the progression of diabetic kidney disease (DKD). Accumulating evidence suggests a close association between insufficient mitophagy and RTEC senescence. Yeast mitochondrial escape 1-like 1 (YME1L), an inner mitochondrial membrane metalloprotease, maintains mitochondrial integrity. Its functions in DKD remain unclear. Here, we investigated whether YME1L can prevent the progression of DKD by regulating mitophagy and cellular senescence. METHODS: We analyzed YME1L expression in renal tubules of DKD patients and mice, explored transcriptomic changes associated with YME1L overexpression in RTECs, and assessed its impact on RTEC senescence and renal dysfunction using an HFD/STZ-induced DKD mouse model. Tubule-specific overexpression of YME1L was achieved through the use of recombinant adeno-associated virus 2/9 (rAAV 2/9). We conducted both in vivo and in vitro experiments to evaluate the effects of YME1L overexpression on mitophagy and mitochondrial function. Furthermore, we performed LC-MS/MS analysis to identify potential protein interactions involving YME1L and elucidate the underlying mechanisms. RESULTS: Our findings revealed a significant decrease in YME1L expression in the renal tubules of DKD patients and mice. However, tubule-specific overexpression of YME1L significantly alleviated RTEC senescence and renal dysfunction in the HFD/STZ-induced DKD mouse model. Moreover, YME1L overexpression exhibited positive effects on enhancing mitophagy and improving mitochondrial function both in vivo and in vitro. Mechanistically, our LC-MS/MS analysis uncovered a crucial mitophagy receptor, BCL2-like 13 (BCL2L13), as an interacting partner of YME1L. Furthermore, YME1L was found to promote the phosphorylation of BCL2L13, highlighting its role in regulating mitophagy. CONCLUSIONS: This study provides compelling evidence that YME1L plays a critical role in protecting RTECs from cellular senescence and impeding the progression of DKD. Overexpression of YME1L demonstrated significant therapeutic potential by ameliorating both RTEC senescence and renal dysfunction in the DKD mice. Moreover, our findings indicate that YME1L enhances mitophagy and improves mitochondrial function, potentially through its interaction with BCL2L13 and subsequent phosphorylation. These novel insights into the protective mechanisms of YME1L offer a promising strategy for developing therapies targeting DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Ratones , Animales , Mitofagia/fisiología , Saccharomyces cerevisiae , Cromatografía Liquida , Espectrometría de Masas en Tándem , Células Epiteliales/metabolismo , Modelos Animales de Enfermedad , Senescencia Celular , Diabetes Mellitus/metabolismo , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/farmacología
4.
Acta Cir Bras ; 39: e391424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511762

RESUMEN

PURPOSE: XinJiaCongRongTuSiZiWan (XJCRTSZW) is a traditional Chinese medicine compound for invigorating the kidney, nourishing blood, and promoting blood circulation. This study aimed to explore the effect of XJCRTSZW on triptolide (TP)-induced oxidative stress injury. METHODS: Adult female Sprague-Dawley rats and human ovarian granulosa cell lines were treated with TP and XJCRTSZW. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, flow cytometry, CCK-8, JC-1 staining, transmission electron microscopy, reverse transcription-quantitative polymerase chain reaction, and Western blotting were performed in this study. RESULTS: XJCRTSZW treatment observably ameliorated the TP-induced pathological symptoms. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of estradiol, anti-Mullerian hormone, progesterone, superoxide dismutase, ATP content, mitochondrial membrane potential, p62, and Hsp60 mRNA, and protein levels in vivo and in vitro (p < 0.05). However, TP-induced elevation of follicle stimulating hormone and luteinizing hormone concentrations, malondialdehyde levels, reactive oxygen species levels, apoptosis rate, mitophagy, and the mRNA and protein expressions of LC3-II/LC3-I, PTEN-induced kinase 1 (PINK1), and Parkin were decreased (p < 0.05). In addition, XJCRTSZW treatment markedly increased cell viability in vitro (p < 0.05). CONCLUSIONS: XJCRTSZW protects TP-induced rats from oxidative stress injury via the mitophagy-mediated PINK1/Parkin pathway.


Asunto(s)
Diterpenos , Mitocondrias , Mitofagia , Fenantrenos , Adulto , Ratas , Femenino , Humanos , Animales , Ratas Sprague-Dawley , Estrés Oxidativo , Ubiquitina-Proteína Ligasas , Transducción de Señal , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Compuestos Epoxi
5.
Autophagy ; 20(5): 985-993, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38361280

RESUMEN

Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.


Asunto(s)
Mitocondrias , Mitofagia , Mitofagia/fisiología , Mitocondrias/metabolismo , Humanos , Animales , Prohibitinas , Membranas Mitocondriales/metabolismo , Transducción de Señal
6.
FEBS J ; 291(2): 338-357, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846201

RESUMEN

StarD7 is a member of the START protein family required for phosphatidylcholine delivery to the mitochondria, thus key to maintain mitochondrial structure. Its deficiency has been associated with an impairment of cellular processes, such as proliferation and migration, and it has also been reported that it is needed in myogenic differentiation. Here, we show that StarD7 deficiency in C2C12 muscle cells results in the accumulation of abnormal mitochondria, a reduced number of mitochondria per cell area and increased glycolysis. In addition, StarD7-deficient cells undergo an increase in mitochondria-ER contact sites, reduced connexin 43 expression, and disturbances in lipid handling, evidenced by lipid droplet accumulation and decreased levels in phosphatidylserine synthase 1 and 2 expression. Interestingly, StarD7-deficient cells showed alterations in mitophagy markers. We observed accumulation of LC3B-II and BNIP3 proteins in mitochondria-enriched fractions and accumulation of autophagolysosomal and lysosomal vesicles in StarD7-deficient cells. Furthermore, live-cell imaging experiments of StarD7 knockdown cells expressing mitochondria-targeted mKeima indicated an enhanced mitochondria delivery into lysosomes. Importantly, StarD7 reconstitution in StarD7-deficient cells restores LC3B-II expression in mitochondria-enriched fractions at similar levels to those observed in control cells. Collectively, these findings suggest that StarD7-deficient C2C12 myoblasts are associated with altered cristae structure, disturbances in neutral lipid accumulation, glucose metabolism, and increased mitophagy flux. The alterations mentioned above allow for the maintenance of mitochondrial function.


Asunto(s)
Proteínas Portadoras , Mitofagia , Proteínas Portadoras/metabolismo , Glucólisis/genética , Lípidos , Mitofagia/genética , Mioblastos/metabolismo , Animales , Ratones
7.
Acta cir. bras ; Acta cir. bras;39: e391424, 2024. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1556674

RESUMEN

Purpose: XinJiaCongRongTuSiZiWan (XJCRTSZW) is a traditional Chinese medicine compound for invigorating the kidney, nourishing blood, and promoting blood circulation. This study aimed to explore the effect of XJCRTSZW on triptolide (TP)-induced oxidative stress injury. Methods: Adult female Sprague-Dawley rats and human ovarian granulosa cell lines were treated with TP and XJCRTSZW. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, flow cytometry, CCK-8, JC-1 staining, transmission electron microscopy, reverse transcription-quantitative polymerase chain reaction, and Western blotting were performed in this study. Results: XJCRTSZW treatment observably ameliorated the TP-induced pathological symptoms. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of estradiol, anti-Mullerian hormone, progesterone, superoxide dismutase, ATP content, mitochondrial membrane potential, p62, and Hsp60 mRNA, and protein levels in vivo and in vitro (p < 0.05). However, TP-induced elevation of follicle stimulating hormone and luteinizing hormone concentrations, malondialdehyde levels, reactive oxygen species levels, apoptosis rate, mitophagy, and the mRNA and protein expressions of LC3-II/LC3-I, PTEN-induced kinase 1 (PINK1), and Parkin were decreased (p < 0.05). In addition, XJCRTSZW treatment markedly increased cell viability in vitro (p < 0.05). Conclusions: XJCRTSZW protects TP-induced rats from oxidative stress injury via the mitophagy-mediated PINK1/Parkin pathway.


Asunto(s)
Animales , Ratas , Heridas y Lesiones , Estrés Oxidativo , Mitofagia , Animales de Laboratorio , Medicina Tradicional China
8.
Arq Bras Cardiol ; 120(10): e20220750, 2023 10.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-37909577

RESUMEN

BACKGROUND: Dexmedetomidine (DEX), a specific α2-adrenergic receptor agonist, is protective against myocardial ischemia/reperfusion injury (MIRI). However, the association between DEX preconditioning-induced cardioprotection and mitophagy suppression remains unclear. OBJECTIVE: Hence, we aimed to investigate whether DEX preconditioning alleviates MIRI by suppressing mitophagy via α2-adrenergic receptor activation. METHOD: Sixty isolated rat hearts were treated with or without DEX before inducing ischemia and reperfusion; an α2-adrenergic receptor antagonist, yohimbine (YOH), was also administered before ischemia, alone or with DEX. The heart rate (HR), left ventricular diastolic pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximal and minimal rate of left ventricular pressure development (±dp/dtmax), and myocardial infarction size were measured. The mitochondrial ultrastructure and autophagosomes were assessed using transmission electron microscopy. Mitochondrial membrane potential and reactive oxygen species (ROS) levels were measured using JC-1 and dichloride hydrofluorescein diacetate assays, respectively. The expression levels of the mitophagy-associated proteins Beclin1, LC3II/I ratio, p62, PINK1, and Parkin were detected by western blotting. RESULTS: Compared with the control group, in the ischemia/reperfusion group, the HR, LVDP, and ±dp/dtmax were remarkably decreased (p< 0.05), whereas LVEDP and infarct sizes were significantly increased (p< 0.05). DEX preconditioning significantly improved cardiac dysfunction reduced myocardial infarction size, maintained mitochondrial structural integrity, increased mitochondrial membrane potential, inhibited autophagosomes formation, and decreased ROS production and Beclin1, LC3II/I ratio, PINK1, Parkin, and p62 expression(p< 0.05). When DEX and YOH were combined, YOH canceled the effect of DEX, whereas the use of YOH alone had no effect. CONCLUSION: Therefore, DEX preconditioning was cardioprotective against MIRI in rats by suppressing mitophagy via α2-adrenergic receptor activation.


FUNDAMENTO: A dexmedetomidina (DEX), um agonista específico do receptor α2-adrenérgico, é protetora contra lesão de isquemia/reperfusão miocárdica (I/R). No entanto, a associação entre a cardioproteção induzida pelo pré-condicionamento DEX e a supressão da mitofagia permanece pouco clara. OBJETIVO: Portanto, nosso objetivo foi investigar se o pré-condicionamento com DEX alivia a I/R, suprimindo a mitofagia via ativação do receptor α2-adrenérgico. MÉTODO: Sessenta corações de ratos isolados foram tratados com ou sem DEX antes de induzir isquemia e reperfusão; um antagonista do receptor α2-adrenérgico, a ioimbina (YOH), também foi administrado antes da isquemia, isoladamente ou com DEX. A frequência cardíaca (FC), pressão diastólica do ventrículo esquerdo (PDVE), pressão diastólica final do ventrículo esquerdo (PDFVE), taxa máxima e mínima de desenvolvimento da pressão ventricular esquerda (±dp/dtmax) e tamanho do infarto do miocárdio foram medidos. A ultraestrutura mitocondrial e as autofagossomas foram avaliadas por microscopia eletrônica de transmissão. O potencial de membrana mitocondrial e os níveis de espécies reativas de oxigênio (ROS) foram medidos usando os ensaios JC-1 e diacetato de diclorodi hidrofluoresceína, respectivamente. Os níveis de expressão das proteínas associadas à mitofagia Beclin1, relação LC3II/I, p62, PINK1 e Parkin foram detectados por western blotting. RESULTADOS: Em comparação com o grupo controle, no grupo isquemia/reperfusão, a FC, PDVE e ±dp/dtmax foram notavelmente diminuídas (p<0,05), enquanto os tamanhos da PDFVE e do infarto aumentaram significativamente (p<0,05). O pré-condicionamento com DEX melhorou significativamente a disfunção cardíaca, reduziu o tamanho do infarto do miocárdio, manteve a integridade estrutural mitocondrial, aumentou o potencial de membrana mitocondrial, inibiu a formação de autofagossomas e diminuiu a produção de ROS e a relação Beclin1, relação LC3II/I, expressão PINK1, Parkin e p62(p<0,05). Quando DEX e YOH foram combinados, o YOH cancelou o efeito da DEX, enquanto o uso de YOH sozinha não teve efeito. CONCLUSÃO: Portanto, o pré-condicionamento DEX foi cardioprotetor contra I/R em ratos, suprimindo a mitofagia por meio da ativação do receptor α2-adrenérgico.


Asunto(s)
Dexmedetomidina , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Beclina-1 , Mitofagia , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas , Receptores Adrenérgicos
9.
Nat Struct Mol Biol ; 30(12): 1902-1912, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857822

RESUMEN

Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.


Asunto(s)
Glutaminasa , Mitofagia , Ratones , Humanos , Animales , Glutaminasa/química , Glutaminasa/metabolismo , Glutamina/metabolismo , Mitocondrias/metabolismo
10.
Nutrients ; 14(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35565950

RESUMEN

In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria-inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with "healthy" new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.


Asunto(s)
Berberina , Degeneración Macular , Melatonina , Ácido Tióctico , Proteínas Quinasas Activadas por AMP/metabolismo , Berberina/farmacología , ADN Mitocondrial/metabolismo , Suplementos Dietéticos , Glucosamina , Humanos , Inflamasomas/metabolismo , Degeneración Macular/tratamiento farmacológico , Melatonina/metabolismo , Mitocondrias/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , PPAR alfa/metabolismo , ARN/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Sirtuina 1/metabolismo
11.
Clin Transl Oncol ; 24(8): 1492-1500, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35278199

RESUMEN

Multidrug resistance (MDR) is a significant cause of tumor treatment failure. Accumulating evidence suggests that autophagy plays a significant role in the development of MDR. Autophagy is a conserved mechanism that maintains tumor homeostasis by removing damaged mitochondria. However, the specific regulatory mechanism is unclear. Here, we summarize recent studies on the role of autophagy in the development of MDR and the initiation of mitophagy by Bcl-2-associated athanogene (BAG) family proteins. Additionally, this mini-review emphasizes the regulatory role of BAG family proteins, which maintain mitochondrial homeostasis by regulating the PINK1/Parkin pathway. Elucidation of the regulatory mechanisms of mitophagy may foster the development of clinical therapeutic strategies for MDR tumors.


Asunto(s)
Neoplasias , Proteínas Quinasas , Autofagia , Resistencia a Múltiples Medicamentos , Humanos , Mitofagia , Neoplasias/tratamiento farmacológico , Proteínas Quinasas/metabolismo
12.
Autophagy ; 18(10): 2397-2408, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35220898

RESUMEN

Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.


Asunto(s)
Mitofagia , NADP Transhidrogenasas , Adenosina Trifosfato , Adulto , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Autofagia/genética , Dióxido de Carbono/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Citocromos b/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales , NAD/metabolismo , NADP Transhidrogenasas/metabolismo , PPAR alfa/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína Sequestosoma-1/metabolismo , Succinato Deshidrogenasa/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Ubiquinona , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
13.
Antioxid Redox Signal ; 36(13-15): 844-863, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35044229

RESUMEN

Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Insuficiencia Cardíaca/metabolismo , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia , Infarto del Miocardio/metabolismo
14.
Appl Environ Microbiol ; 88(5): e0206821, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35044803

RESUMEN

Ethanolic fermentation is frequently performed under conditions of low nitrogen. In Saccharomyces cerevisiae, nitrogen limitation induces macroautophagy, including the selective removal of mitochondria, also called mitophagy. Previous research showed that blocking mitophagy by deletion of the mitophagy-specific gene ATG32 increased the fermentation performance during the brewing of Ginjo sake. In this study, we tested if a similar strategy could enhance alcoholic fermentation in the context of fuel ethanol production from sugarcane in Brazilian biorefineries. Conditions that mimic the industrial fermentation process indeed induce Atg32-dependent mitophagy in cells of S. cerevisiae PE-2, a strain frequently used in the industry. However, after blocking mitophagy, no significant differences in CO2 production, final ethanol titers, or cell viability were observed after five rounds of ethanol fermentation, cell recycling, and acid treatment, which is commonly performed in sugarcane biorefineries. To test if S. cerevisiae's strain background influenced this outcome, cultivations were carried out in a synthetic medium with strains PE-2, Ethanol Red (industrial), and BY (laboratory) with and without a functional ATG32 gene and under oxic and oxygen restricted conditions. Despite the clear differences in sugar consumption, cell viability, and ethanol titers, among the three strains, we did not observe any significant improvement in fermentation performance related to the blocking of mitophagy. We concluded, with caution, that the results obtained with Ginjo sake yeast were an exception and cannot be extrapolated to other yeast strains and that more research is needed to ascertain the role of autophagic processes during fermentation. IMPORTANCE Bioethanol is the largest (per volume) ever biobased bulk chemical produced globally. The fermentation process is well established, and industries regularly attain nearly 85% of maximum theoretical yields. However, because of the volume of fuel produced, even a small improvement will have huge economic benefits. To this end, besides already implemented process improvements, various free energy conservation strategies have been successfully exploited at least in laboratory strains to increase ethanol yields and decrease byproduct formation. Cellular housekeeping processes have been an almost unexplored territory in strain improvement. It was previously reported that blocking mitophagy by deletion of the mitophagy receptor gene ATG32 in Saccharomyces cerevisiae led to a 2.1% increase in final ethanol titers during Japanese sake fermentation. We found in two commercially used bioethanol strains (PE-2 and Ethanol Red) that ATG32 deficiency does not lead to a significant improvement in cell viability or ethanol levels during fermentation with molasses or in a synthetic complete medium. More research is required to ascertain the role of autophagic processes during fermentation conditions.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bebidas Alcohólicas , Proteínas Relacionadas con la Autofagia , Etanol , Fermentación , Microbiología Industrial , Mitofagia , Receptores Citoplasmáticos y Nucleares , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Front Immunol ; 12: 782074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887870

RESUMEN

Mitochondria are essential organelles for cell metabolism, growth, and function. Mitochondria in lung cells have important roles in regulating surfactant production, mucociliary function, mucus secretion, senescence, immunologic defense, and regeneration. Disruption in mitochondrial physiology can be the central point in several pathophysiologic pathways of chronic lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and interaction with the endoplasmic reticulum are involved in chronic lung diseases and highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested as a potential therapeutic target for lung diseases.


Asunto(s)
Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Animales , Biomarcadores , Enfermedad Crónica , Diagnóstico Diferencial , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/terapia , Dinámicas Mitocondriales , Mitofagia , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Transducción de Señal
16.
Biomolecules ; 11(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34439810

RESUMEN

Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.


Asunto(s)
Lesión Renal Aguda/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Apoptosis/genética , Ácidos Grasos/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Mitocondrias/genética , Mitocondrias/patología , Dinámicas Mitocondriales , Mitofagia/genética , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación Oxidativa , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
17.
FASEB J ; 35(8): e21796, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34324238

RESUMEN

Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1+/- ) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Mitofagia/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Animales Recién Nacidos , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Mitocondrias/metabolismo , Mitofagia/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPP/genética
18.
Free Radic Biol Med ; 172: 358-371, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34175439

RESUMEN

Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.


Asunto(s)
Obstrucción Ureteral , Animales , Fibrosis , Mitocondrias , Mitofagia , Biogénesis de Organelos , Ratas
19.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166053, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385519

RESUMEN

Mevalonate kinase deficiency (MKD) is an autosomal recessive disorder in humans that causes systemic autoinflammatory problems to children. Previously, we used a yeast model to show that MKD results in mitochondrial malfunctioning that may finally induce mitophagy. Here, we proved that MKD indeed induced general autophagy as well as mitophagy in yeast, but these mechanisms did not go to completion. Therefore, the limitation of mevalonate kinase activity produces dysfunctional mitochondria that might not be recycled, causing metabolic dysfunctions in the cells. Understanding this mechanism may provide a piece in solving the nonspecific autoinflammatory response puzzle observed in MKD patients.


Asunto(s)
Deficiencia de Mevalonato Quinasa/genética , Mitofagia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Eliminación de Gen , Humanos , Deficiencia de Mevalonato Quinasa/patología
20.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118916, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276010

RESUMEN

BACKGROUND: Different animal species have different characteristics regarding the transmission of mitochondrial DNA. While some species have biparental mitochondrial inheritance, others have developed pathways to remove paternal mtDNA. These pathways guarantee the uniparental mitochondrial inheritance, so far well known in mammals, avoiding heteroplasmy, which may have the potential to cause certain mitochondrial diseases in the offspring. SCOPE OF REVIEW: This review aims to address the main mechanisms that involve mitochondrial degradation in different animal species, as well as to describe what is present in the literature on the mechanisms involved in mitochondrial inheritance. MAJOR CONCLUSIONS: Two theories are proposed to explain the uniparental inheritance of mtDNA: (i) active degradation, where mechanisms for paternal mitochondrial DNA elimination involve mitochondrial degradation pathway by autophagy and, in some species, may also involve the endocytic degradation pathway; and (ii) passive dilution, where the paternal mitochondria are diluted in the cells of the embryo according to cell division, until becoming undetectable. GENERAL SIGNIFICANCE: This work brings a wide review of the already published evidence on mitochondrial inheritance in the animal kingdom and the possible mechanisms to mtDNA transmission already described in literature.


Asunto(s)
ADN Mitocondrial/metabolismo , Embrión de Mamíferos/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Espermatozoides/metabolismo , Animales , Endocitosis/fisiología , Fertilización/fisiología , Masculino , Ubiquitinación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA