Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142.291
Filtrar
1.
Biomaterials ; 312: 122707, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121729

RESUMEN

Polypyrimidine tract-binding protein 1 (PTBP1) regulates numerous alternative splicing events during tumor progression and neurogenesis. Previously, PTBP1 downregulation was reported to convert astrocytes into functional neurons; however, how PTBP1 regulates astrocytic physiology remains unclear. In this study, we revealed that PTBP1 modulated glutamate uptake via ATP1a2, a member of Na+/K+-ATPases, and glutamate transporters in astrocytes. Ptbp1 knockdown altered mitochondrial function and energy metabolism, which involved PTBP1 regulating mitochondrial redox homeostasis via the succinate dehydrogenase (SDH)/Nrf2 pathway. The malfunction of glutamate transporters following Ptbp1 knockdown resulted in enhanced excitatory synaptic transmission in the cortex. Notably, we developed a biomimetic cationic triblock polypeptide system, i.e., polyethylene glycol44-polylysine30-polyleucine10 (PEG44-PLL30-PLLeu10) with astrocytic membrane coating to deliver Ptbp1 siRNA in vitro and in vivo, which approach allowed Ptbp1 siRNA to efficiently cross the blood-brain barrier and target astrocytes in the brain. Collectively, our findings suggest a framework whereby PTBP1 serves as a modulator in glutamate transport machinery, and indicate that biomimetic methodology is a promising route for in vivo siRNA delivery.


Asunto(s)
Astrocitos , Ácido Glutámico , Ribonucleoproteínas Nucleares Heterogéneas , Homeostasis , Factor 2 Relacionado con NF-E2 , Proteína de Unión al Tracto de Polipirimidina , ARN Interferente Pequeño , Animales , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ratones , Transducción de Señal , Membrana Celular/metabolismo , Ratones Endogámicos C57BL , Masculino , Humanos , Mitocondrias/metabolismo
2.
Biomaterials ; 313: 122764, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190941

RESUMEN

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Asunto(s)
Hidrógeno , Degeneración del Disco Intervertebral , Mitocondrias , Estrés Oxidativo , Hidrógeno/química , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regeneración/efectos de los fármacos , Disco Intervertebral/efectos de los fármacos , Humanos , Mitofagia/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Núcleo Pulposo/metabolismo , Ratas
3.
J Ethnopharmacol ; 336: 118714, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181289

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY: The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS: We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS: Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS: These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.


Asunto(s)
Supervivencia Celular , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Adenosina Trifosfato/metabolismo , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Relación Dosis-Respuesta a Droga , Superóxidos/metabolismo
4.
Food Chem ; 462: 141003, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208735

RESUMEN

Recently, the increasing incidence of malignant melanoma has become a major public health concern owing to its poor prognosis and impact on quality of life. Consuming foods with potent antitumor compounds can help prevent melanoma and maintain skin health. Fucoxanthin (FX), a naturally occurring carotenoid found in brown algae, possesses antitumor properties. However, its bioavailability, safety risks, and in vivo effects and mechanisms against melanoma remain unclear. This research focused on evaluating the safety and prospective antimelanoma impact of simulated gastrointestinal digestion products (FX-ID) on HaCaT and A375 cells.The results indicate that FX-ID exerts negative effects on mitochondria in A375 cells, increases Bax expression, releases Cytochrome C, and activates cleaved caspase-3, ultimately promoting apoptosis. Additionally, FX-ID influences the mitogen-activated protein kinase (MAPK) pathway by enhancing cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels, consequently facilitating apoptosis and inflammation without significantly impacting HaCaT cells. These findings provide insight into inhibitory mechanism of FX-ID against melanoma, guiding the development of functional foods for prevention.


Asunto(s)
Apoptosis , Queratinocitos , Melanoma , Xantófilas , Humanos , Melanoma/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Apoptosis/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/química , Línea Celular Tumoral , FN-kappa B/metabolismo , FN-kappa B/genética , Digestión , Modelos Biológicos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Antineoplásicos/farmacología , Antineoplásicos/química , Phaeophyceae/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 3/genética
5.
J Ethnopharmacol ; 336: 118684, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127117

RESUMEN

ETHNOPHARMACOLOGICAL PREVALENCE: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS: Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 µL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 µg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT: In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION: SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Factor 2 Relacionado con NF-E2 , Syzygium , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Syzygium/química , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células HEK293 , Estrés Oxidativo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Productos Finales de Glicación Avanzada/metabolismo , Estreptozocina , Ratas Wistar , Antioxidantes/farmacología , Ratas Sprague-Dawley
6.
Results Probl Cell Differ ; 73: 25-42, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242373

RESUMEN

Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.


Asunto(s)
Mitocondrias , Oocitos , Oocitos/metabolismo , Oocitos/fisiología , Humanos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Animales , Femenino , Orgánulos/metabolismo , Orgánulos/fisiología , Envejecimiento/fisiología
7.
Results Probl Cell Differ ; 73: 43-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242374

RESUMEN

The sequestration of enzymes and associated processes into sub-cellular domains, called organelles, is considered a defining feature of eukaryotic cells. However, what leads to specific outcomes and allows a eukaryotic cell to function singularly is the interactivity and exchanges between discrete organelles. Our ability to observe and assess sub-cellular interactions in living plant cells has expanded greatly following the creation of fluorescent fusion proteins targeted to different organelles. Notably, organelle interactivity changes quickly in response to stress and reverts to a normal less interactive state as homeostasis is re-established. Using key observations of some of the organelles present in a plant cell, this chapter provides a brief overview of our present understanding of organelle interactions in plant cells.


Asunto(s)
Orgánulos , Células Vegetales , Orgánulos/metabolismo , Células Vegetales/metabolismo , Células Vegetales/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Retículo Endoplásmico/metabolismo , Peroxisomas/metabolismo
8.
Cell Biochem Funct ; 42(7): e4117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243192

RESUMEN

Elevated circulating branched-chain amino acids (BCAA) have been linked with the severity of insulin resistance across numerous populations, implicating heightened BCAA metabolism as a potential therapy for insulin resistance. Recently, the angiotensin II type 1 receptor (AT1R) inhibitor Valsartan (VAL) was identified as a potent inhibitor of branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), a negative regulator of BCAA metabolism. This work investigated the effect of VAL on myotube metabolism and insulin sensitivity under both insulin sensitive and insulin resistant conditions. C2C12 myotubes were treated with or without VAL at 8 µM for 24 h, both with and without hyperinsulinemic-induced insulin resistance. Oxygen consumption and extracellular acidification were used to measure mitochondrial and glycolytic metabolism, respectively. Gene expression was assessed via qRT-PCR, and insulin sensitivity was assessed via Western blot. Insulin resistance significantly reduced both basal and peak mitochondrial function which were rescued to control levels by concurrent VAL. Changes in mitochondrial function occurred without substantial changes in mitochondrial content or related gene expression. Insulin sensitivity and glycolytic metabolism were unaffected by VAL, as was lipogenic signaling and lipid content. Additionally, both VAL and insulin resistance depressed Bckdha expression. Interestingly, an interaction effect was observed for extracellular isoleucine, valine, and total BCAA (but not leucine), suggesting VAL may alter BCAA utilization in an insulin sensitivity-dependent manner. Insulin resistance appears to suppress mitochondrial function in a myotube model which can be rescued by VAL. Further research will be required to explore the implications of these findings in more complex models.


Asunto(s)
Resistencia a la Insulina , Mitocondrias , Fibras Musculares Esqueléticas , Valsartán , Valsartán/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/farmacología
9.
Int J Biol Sci ; 20(11): 4476-4495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247815

RESUMEN

Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.


Asunto(s)
Mitocondrias , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Serotonina , Serotonina/metabolismo , Animales , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mitocondrias/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL
10.
Int J Biol Sci ; 20(11): 4382-4406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247814

RESUMEN

Mitophagy selectively eliminates damaged or dysfunctional mitochondria, playing a crucial role in maintaining mitochondrial quality control. However, it remains unclear whether mitophagy can be fully activated and how it evolves after SCI. Our RNA-seq analysis of animal samples from sham and 1, 3, 5, and 7 days post-SCI indicated that mitophagy was indeed inhibited during the acute and subacute early stages. In vitro experiments showed that this inhibition was closely related to excessive production of reactive oxygen species (ROS) and the downregulation of BNIP3. Excessive ROS led to the blockage of mitophagy flux, accompanied by further mitochondrial dysfunction and increased neuronal apoptosis. Fortunately, ligustilide (LIG) was found to have the ability to reverse the oxidative stress-induced downregulation of BNIP3 and enhance mitophagy through BNIP3-LC3 interaction, alleviating mitochondrial dysfunction and ultimately reducing neuronal apoptosis. Further animal experiments demonstrated that LIG alleviated oxidative stress and mitophagy inhibition, rescued neuronal apoptosis, and promoted tissue repair, ultimately leading to improved motor function. In summary, this study elucidated the state of mitophagy inhibition following SCI and its potential mechanisms, and confirmed the effects of LIG-enhanced mitophagy through BNIP3-LC3, providing new therapeutic targets and strategies for repairing SCI.


Asunto(s)
4-Butirolactona , Apoptosis , Proteínas de la Membrana , Mitofagia , Neuronas , Estrés Oxidativo , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Neuronas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Asociadas a Microtúbulos
11.
Int J Biol Sci ; 20(11): 4551-4565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247825

RESUMEN

Cisplatin, a chemotherapeutic drug, can result in acute kidney injury (AKI). Currently, there are no effective prevention methods. An incomplete understanding of the pathogenesis of AKI is a major barrier to the development of effective therapies. Metabolism reprogramming shift to glycolysis was involved in AKI pathogenesis. Glycolysis results in the pyruvate production. The mitochondrial pyruvate carrier (MPC) conveys cytosol pyruvate into mitochondria, promoting the tricarboxylic acid cycle. In this current study, we found a reduction in MPC2 expression in mice and cultured HK2 cells with cisplatin-induced AKI. MPC2 overexpression attenuated cisplatin-mediated nephrotoxicity both in vitro and in vivo via restoring pyruvate metabolism and mitochondrial function. Knockdown of MPC2 reversed this effect. Furthermore, artemether, an MPC2 potential activator, could mitigate AKI via regulating MPC2-mediated pyruvate metabolism. Our findings revealed that MPC2-pyruvate metabolism axis was a promising strategy to alleviate AKI induced by cisplatin.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Mitocondrias , Lesión Renal Aguda/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Cisplatino/efectos adversos , Humanos , Masculino , Ácido Pirúvico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ratones Endogámicos C57BL , Línea Celular , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
12.
Vestn Oftalmol ; 140(4): 49-58, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39254390

RESUMEN

Many key aspects of retinal ganglion cell (RGC) neurodegeneration in glaucoma are associated with mitochondrial dysfunction. Understanding the mechanisms and relationships between structural and functional changes in mitochondria would be beneficial for developing mitochondria-targeted therapeutic strategies to protect RGCs from glaucomatous neurodegeneration. PURPOSE: This study determines the extent of mitochondrial dysfunction in patients with primary open-angle glaucoma (POAG) and evaluates the potential for stabilizing the glaucomatous process by improving mitochondrial functional activity and energy production by therapy with Mexidol and Mexidol FORTE 250. MATERIAL AND METHODS: The study included 80 patients with moderate POAG with compensated intraocular pressure and 20 healthy volunteers. The extent of mitochondrial dysfunction was assessed by measuring the activity levels of mitochondrial enzymes: succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (α-GPDH) in peripheral blood lymphocytes using cytochemical analysis and cytometric morphology and density analysis (cytomorphodensitometry). Patients in the main group received sequential therapy with Mexidol as follows: Mexidol solution for intravenous and intramuscular administration at 50 mg/ml, 300 mg daily intramuscularly for 14 days, followed by Mexidol FORTE 250 tablets, one tablet three times daily for 56 days. Stabilization of glaucomatous optic neuropathy during treatment was evaluated using a comprehensive set of perimetric, electrophysiological, and structural-topographical methods at 14, 56, and 90 days. RESULTS: Sequential therapy in the main group resulted in a significant increase in mitochondrial enzyme activity at 14 and 56 days compared to baseline, with a gradual regression by the end of the observation period (90 days). This was accompanied by an increase in the number of mitochondria and an increase in their optical density as measured by cytomorphodensitometry. The improvement in mitochondrial enzyme activity at 14 and 56 days was associated with positive changes in the structural and functional parameters of the retina, as evidenced by static perimetry, optical coherence tomography, and a series of electrophysiological tests. CONCLUSION: The obtained data can be used to optimize POAG therapy by reducing mitochondrial dysfunction and stabilizing glaucomatous optic neuropathy.


Asunto(s)
Glaucoma de Ángulo Abierto , Mitocondrias , Picolinas , Humanos , Masculino , Glaucoma de Ángulo Abierto/fisiopatología , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Persona de Mediana Edad , Femenino , Mitocondrias/metabolismo , Picolinas/administración & dosificación , Presión Intraocular/fisiología , Presión Intraocular/efectos de los fármacos , Células Ganglionares de la Retina/patología , Resultado del Tratamiento , Antioxidantes/administración & dosificación , Succinato Deshidrogenasa/metabolismo , Anciano
13.
Theriogenology ; 229: 214-224, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39217650

RESUMEN

Vitrification of oocyte has become an important component of assisted reproductive technology and has important implications for animal reproduction and the preservation of biodiversity. However, vitrification adversely affects mitochondrial function and oocyte developmental potential, mainly because of oxidative damage. Rutin is a highly effective antioxidant, but no information is available to the effect of rutin on the mitochondrial function and development in vitrified oocytes. Therefore, we studied the effects of rutin supplementation of vitrification solution on mitochondrial function and developmental competence of ovine germinal vesicle (GV) stage oocytes post vitrification. The results showed that supplementation of vitrification solution with 0.6 mM rutin significantly increased the cleavage rate (71.6 % vs. 59.3 %) and blastocyst rate (18.9 % vs. 6.8 %) compared to GV-stage oocytes in the vitrified group. Then, we analyzed the reactive oxygen species (ROS), glutathione (GSH), mitochondrial activity and membrane potential (ΔΨm), endoplasmic reticulum (ER) Ca2+, and annexin V (AV) of vitrified sheep GV-stage oocytes. Vitrified sheep oocytes exhibited increased levels of ROS and Ca2+, higher rate of AV-positive oocytes, and decreased mitochondrial activity, GSH and ΔΨm levels. However, rutin supplementation in vitrification solution decreased the levels of ROS, Ca2+ and AV-positive oocytes rate, and increased the GSH and ΔΨm levels in vitrified oocytes. Results revealed that rutin restored mitochondrial function, regulated Ca2+ homeostasis and decreased apoptosis potentially caused by mitophagy in oocytes. To understand the mechanism of rutin functions in vitrified GV-stage oocytes in sheep, we analyzed the transcriptome and found that rutin mediated oocytes development and mitochondrial function, mainly by affecting oxidative phosphorylation and the mitophagy pathways. In conclusion, supplementing with 0.6 mM rutin in vitrification solution significantly enhanced developmental potential through improving mitochondrial function and decreased apoptosis potentially caused by mitophagy after vitrification of ovine GV-stage oocytes.


Asunto(s)
Criopreservación , Mitocondrias , Oocitos , Rutina , Vitrificación , Animales , Rutina/farmacología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Ovinos/fisiología , Mitocondrias/efectos de los fármacos , Vitrificación/efectos de los fármacos , Criopreservación/veterinaria , Especies Reactivas de Oxígeno/metabolismo , Femenino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Antioxidantes/farmacología , Desarrollo Embrionario/efectos de los fármacos
14.
J Med Virol ; 96(9): e29886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246064

RESUMEN

Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.


Asunto(s)
Antivirales , COVID-19 , ADN Mitocondrial , Mitocondrias , Virosis , Humanos , Antivirales/uso terapéutico , Mitocondrias/efectos de los fármacos , ADN Mitocondrial/genética , COVID-19/virología , Virosis/tratamiento farmacológico , Virosis/virología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
15.
Traffic ; 25(9): e12951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238078

RESUMEN

Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/metabolismo , Animales , Comunicación Celular , Vesículas Extracelulares/metabolismo , Transporte Biológico , Endocitosis/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia
16.
Nanotechnology ; 35(47)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240071

RESUMEN

Inflammation involving adipose macrophages is an important inducer of obesity. Regulating macrophages polarization and improving the inflammatory microenvironment of adipose tissue is a new strategy for the treatment of obesity. An amphiphilic chondroitin sulfate phenylborate derivative (CS-PBE) was obtained by modifying the main chain of chondroitin sulfate with the hydrophobic small molecule phenylborate. Using CS-PBE self-assembly, macrophage targeting, reactive oxygen species (ROS) release and celastrol (CLT) encapsulation were achieved. The cytotoxicity, cellular uptake, internalization pathways and transmembrane transport efficiency of CS-PBE micelles were studied in Caco-2 and RAW264.7 cells. Hemolysis and organotoxicity tests were performed to assess the safety of the platform, while its therapeutic efficacy was investigated in high-fat diet-induced obese mice. Multifunctional micelles with macrophage targeting and ROS clearance capabilities were developed to improve the efficacy of CLT in treating obesity.In vitrostudies indicated that CS-PBE micelles had better ability to target M1 macrophages, better protective effects on mitochondrial function, better ability to reduce the number of LPS-stimulated M1 macrophages, better ability to reduce the number of M2 macrophages, and better ability to scavenge ROS in inflammatory macrophages.In vivostudies have shown that CS-PBE micelles improve inflammation and significantly reduce toxicity of CLT in the treatment of obesity. In summary, CS-PBE micelles could significantly improve the ability to target inflammatory macrophages and scavenge ROS in adipose tissue to alleviate inflammation, suggesting that CS-PBE micelles are a highly promising approach for the treatment of obesity.


Asunto(s)
Macrófagos , Micelas , Mitocondrias , Obesidad , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Células CACO-2 , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Ratones Endogámicos C57BL , Masculino , Dieta Alta en Grasa/efectos adversos , Triterpenos/farmacología , Triterpenos/química
17.
Int J Med Sci ; 21(11): 2040-2051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239540

RESUMEN

Myofibrillar myopathy (MFM) is a group of hereditary myopathies that mainly involves striated muscles. This study aimed to use tandem mass tag (TMT)-based proteomics to investigate the underlying pathomechanisms of two of the most common MFM subtypes, desminopathy and titinopathy. Muscles from 7 patients with desminopathy, 5 with titinopathy and 5 control individuals were included. Samples were labelled with TMT and then underwent high-resolution liquid chromatography-mass spectrometry analysis. Compared with control samples, there were 436 differentially abundant proteins (DAPs) in the desminopathy group and 269 in the titinopathy group. When comparing the desminopathy with the titinopathy group, there were 113 DAPs. In desminopathy, mitochondrial ATP production, muscle contraction, and cytoskeleton organization were significantly suppressed. Activated cellular components and pathways were mostly related to extracellular matrix (ECM). In titinopathy, mitochondrial-related pathways and the cellular component ECM were downregulated, while gluconeogenesis was activated. Direct comparison between desminopathy and titinopathy revealed hub genes that were all involved in glycolytic process. The disparity in glycolysis in the two MFM subtypes is likely due to fiber type switching. This study has revealed disorganization of cytoskeleton and mitochondrial dysfunction as the common pathophysiological processes in MFM, and glycolysis and ECM as the differential pathomechanism between desminopathy and titinopathy. This offers a future direction for targeted therapy for MFM.


Asunto(s)
Conectina , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Conectina/genética , Conectina/metabolismo , Proteómica/métodos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Desmina/genética , Desmina/metabolismo , Glucólisis/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Distrofias Musculares , Cardiomiopatías
18.
Int J Med Sci ; 21(11): 2139-2148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239543

RESUMEN

Myocardial ischemia-reperfusion (I/R) injury exacerbates cellular damage upon restoring blood flow to ischemic cardiac tissue, causing oxidative stress, inflammation, and apoptosis. This study investigates Nicotinamide Riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD+), for its cardioprotective effects. Administering NR to mice before I/R injury and evaluating heart function via echocardiography showed that NR significantly improved heart function, increased left ventricular ejection fraction (LVEF) and fractional shortening (FS), and reduced left ventricular end-diastolic (LVDd) and end-systolic diameters (LVSd). NR also restored E/A and E/e' ratios. It reduced cardiomyocyte apoptosis both in vivo and in vitro, inhibiting elevated caspase-3 activity and returning Bax protein levels to normal. In vitro, NR reduced the apoptotic rate in hydrogen peroxide (H2O2)-treated HL-1 cells from 30% to 10%. Mechanistically, NR modulated the SIRT3/mtROS/JNK pathway, reversing H2O2-induced SIRT3 downregulation, reducing mitochondrial reactive oxygen species (mtROS), and inhibiting JNK activation. Using SIRT3-knockout (SIRT3-KO) mice, we confirmed that NR's cardioprotective effects depend on SIRT3. Echocardiography showed that NR's benefits were abrogated in SIRT3-KO mice. In conclusion, NR provides significant cardioprotection against myocardial I/R injury by enhancing NAD+ levels and modulating the SIRT3/mtROS/JNK pathway, suggesting its potential as a novel therapeutic agent for ischemic heart diseases, meriting further clinical research.


Asunto(s)
Apoptosis , Ratones Noqueados , Daño por Reperfusión Miocárdica , Niacinamida , Compuestos de Piridinio , Especies Reactivas de Oxígeno , Sirtuina 3 , Animales , Sirtuina 3/metabolismo , Sirtuina 3/genética , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico , Ratones , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Humanos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
19.
Int J Med Sci ; 21(11): 2189-2200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239553

RESUMEN

In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.


Asunto(s)
Adenosina Trifosfato , Infarto de la Arteria Cerebral Media , Cinesinas , Mitocondrias , Células Precursoras de Oligodendrocitos , Transducción de Señal , Animales , Transducción de Señal/genética , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Cinesinas/genética , Cinesinas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ratas , Proteínas Proto-Oncogénicas
20.
Parasit Vectors ; 17(1): 381, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242536

RESUMEN

BACKGROUND: Trypanosoma cruzi is transmitted to humans by hematophagous bugs belonging to the Triatominae subfamily. Its intra-vectorial cycle is complex and occurs exclusively in the insect's midgut. Dissecting the elements involved in the cross-talk between the parasite and its vector within the digestive tract should provide novel targets for interrupting the parasitic life cycle and affecting vectorial competence. These interactions are shaped by the strategies that parasites use to infect and exploit their hosts, and the host's responses that are designed to detect and eliminate parasites. The objective of the current study is to characterize the impact of T. cruzi establishment within its vector on the dynamics of its midgut. METHODS: In this study, we evaluated the impact of T. cruzi infection on protein expression within the anterior midgut of the model insect Rhodnius prolixus at 6 and 24 h post-infection (hpi) using high-throughput quantitative proteomics. RESULTS: Shortly after its ingestion, the parasite modulates the proteome of the digestive epithelium by upregulating 218 proteins and negatively affecting the expression of 11 proteins involved in a wide array of cellular functions, many of which are pivotal due to their instrumental roles in cellular metabolism and homeostasis. This swift response underscores the intricate manipulation of the vector's cellular machinery by the parasite. Moreover, a more in-depth analysis of proteins immediately induced by the parasite reveals a pronounced predominance of mitochondrial proteins, thereby altering the sub-proteomic landscape of this organelle. This includes various complexes of the respiratory chain involved in ATP generation. In addition to mitochondrial metabolic dysregulation, a significant number of detoxifying proteins, such as antioxidant enzymes and P450 cytochromes, were immediately induced by the parasite, highlighting a stress response. CONCLUSIONS: This study is the first to illustrate the response of the digestive epithelium upon contact with T. cruzi, as well as the alteration of mitochondrial sub-proteome by the parasite. This manipulation of the vector's physiology is attributable to the cascade activation of a signaling pathway by the parasite. Understanding the elements of this response, as well as its triggers, could be the foundation for innovative strategies to control the transmission of American trypanosomiasis, such as the development of targeted interventions aimed at disrupting parasite proliferation and transmission within the triatomine vector.


Asunto(s)
Enfermedad de Chagas , Insectos Vectores , Mitocondrias , Rhodnius , Trypanosoma cruzi , Animales , Rhodnius/parasitología , Rhodnius/metabolismo , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/metabolismo , Insectos Vectores/parasitología , Mitocondrias/metabolismo , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/parasitología , Tracto Gastrointestinal/parasitología , Proteómica , Interacciones Huésped-Parásitos , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA