Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.640
Filtrar
1.
Biomaterials ; 312: 122742, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106821

RESUMEN

Hypertrophic scar (HS) tends to raised above skin level with high inflammatory microenvironment and excessive proliferation of myofibroblasts. The HS therapy remains challenging due to dense scar tissue which makes it hard to penetrate, and the side effects resulting from intralesional corticosteroid injection which is the mainstay treatment in clinic. Herein, bilayer microneedle patches combined with dexamethasone and colchicine (DC-MNs) with differential dual-release pattern is designed. Two drugs loaded in commercially available materials HA and PLGA, respectively. Specifically, after administration, outer layer rapidly releases the anti-inflammatory drug dexamethasone, which inhibits macrophage polarization to pro-inflammatory phenotype in scar tissue. Subsequently, inner layer degrades sustainedly, releasing antimicrotubular agent colchicine, which suppresses the overproliferation of myofibroblasts with extremely narrow therapeutic window, and inhibits the overexpression of collagen, as well as promotes the regular arrangement of collagen. Only applied once, DC-MNs directly delivered drugs to the scar tissue. Compared to traditional treatment regimen, DC-MNs significantly suppressed HS at lower dosage and frequency by differential dual-release design. Therefore, this study put forward the idea of integrated DC-MNs accompany the development of HS, providing a non-invasive, self-applicable, more efficient and secure strategy for treatment of HS.


Asunto(s)
Antiinflamatorios , Cicatriz Hipertrófica , Colchicina , Dexametasona , Miofibroblastos , Agujas , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/patología , Animales , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Dexametasona/farmacología , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Antiinflamatorios/uso terapéutico , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Colchicina/farmacología , Colchicina/administración & dosificación , Ratones , Sistemas de Liberación de Medicamentos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
2.
Sci Rep ; 14(1): 21623, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284829

RESUMEN

Fibrosis is involved in 45% of deaths in the United States, and no treatment exists to reverse the progression of lung or kidney fibrosis. Myofibroblasts are key to the progression and maintenance of fibrosis. We investigated features of cell adhesion necessary for monocytes to differentiate into myofibroblasts, seeking to identify pathways key to myofibroblast differentiation. Blocking antibodies against integrins α3, αM, and αMß2 de-differentiate myofibroblasts in vitro, lower the pro-fibrotic secretome of myofibroblasts, and treat lung fibrosis and inhibit kidney fibrosis in vivo. Decorin's collagen-binding peptide can be used to direct functionalized blocking antibodies (against integrins-α3, -αM, -αMß2) to both fibrotic lungs and fibrotic kidneys, reducing the dose of antibody necessary to treat fibrosis. This targeted immunotherapy blocking key integrins may be an effective therapeutic for the treatment of fibrosis.


Asunto(s)
Fibrosis , Miofibroblastos , Fibrosis Pulmonar , Miofibroblastos/metabolismo , Miofibroblastos/patología , Animales , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Humanos , Ratones , Anticuerpos Bloqueadores/farmacología , Diferenciación Celular , Integrina alfa3/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Riñón/patología , Riñón/metabolismo
3.
Nat Cardiovasc Res ; 3(9): 1158-1176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39271818

RESUMEN

The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.


Asunto(s)
Fibrosis , Inmunidad Innata , Factor 88 de Diferenciación Mieloide , Regeneración , Transducción de Señal , Proteínas de Pez Cebra , Pez Cebra , Animales , Animales Modificados Genéticamente , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Endocardio/metabolismo , Endocardio/patología , Endocardio/inmunología , Corazón/fisiopatología , Inmunidad Innata/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Infiltración Neutrófila , Neutrófilos/metabolismo , Neutrófilos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Nat Commun ; 15(1): 7638, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266515

RESUMEN

Chronic fibrotic tissue disrupts various organ functions. Despite significant advances in therapies, mortality and morbidity due to heart failure remain high, resulting in poor quality of life. Beyond the cardiomyocyte-centric view of heart failure, it is now accepted that alterations in the interstitial extracellular matrix (ECM) also play a major role in the development of heart failure. Here, we show that protein kinase N (PKN) is expressed in cardiac fibroblasts. Furthermore, PKN mediates the conversion of fibroblasts into myofibroblasts, which plays a central role in secreting large amounts of ECM proteins via p38 phosphorylation signaling. Fibroblast-specific deletion of PKN led to a reduction of myocardial fibrotic changes and cardiac dysfunction in mice models of ischemia-reperfusion or heart failure with preserved ejection fraction. Our results indicate that PKN is a therapeutic target for cardiac fibrosis in heart failure.


Asunto(s)
Fibroblastos , Fibrosis , Insuficiencia Cardíaca , Miocardio , Miofibroblastos , Proteína Quinasa C , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Miocardio/patología , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Masculino , Humanos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Matriz Extracelular/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal
5.
Invest Ophthalmol Vis Sci ; 65(11): 13, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39240550

RESUMEN

Purpose: Transdifferentiation of corneal fibroblasts to myofibroblasts in the stroma is a central mechanistic event in corneal wound healing. This study sought to characterize genes and pathways influencing transdifferentiation of human corneal fibroblasts (hCSFs) to human corneal myofibroblasts (hCMFs) using RNA sequencing (RNA-seq) to develop comprehensive mechanistic information and identify newer targets for corneal fibrosis management. Methods: Primary hCSFs were derived from donor human corneas. hCMFs were generated by treating primary hCSFs with transforming growth factor ß1 (TGFß1; 5 ng/mL) for 72 hours under serum-free conditions. RNA was extracted using the RNeasy Plus Mini Kit and subjected to RNA-seq analysis after quality control testing. Differential gene expression, pathway enrichment, and protein-protein network analyses were performed using DESeq2, GSEA/PANTHER/Reactome, and Cytoscape/cytoHubba, respectively. Results: RNA-seq analysis of hCMFs and hCSFs identified 3843 differentially expressed genes and transcripts (adjusted P < 0.05). The log(fold change) ≥ ±1.5 filter showed 816 upregulated and 739 downregulated genes between two cell types. Pathway enrichment analysis showed the highest normalized enrichment score for epithelial-to-mesenchymal transition (5.569), followed by mTORC1 signaling (2.949), angiogenesis (2.176), and TGFß signaling (2.008). Protein-protein interaction network analysis identified the top 20 nodes influencing corneal myofibroblast development. The expression of a novel MXRA5 in corneal stroma and its association with corneal fibrosis was verified by real-time quantitative reverse transcription PCR and immunofluorescence. RNA-seq and gene count files were submitted to the NCBI Gene Expression Omnibus (GSE260476). Conclusions: This study identified several novel genes involved in myofibroblast development, offering potential targets for developing newer therapeutic strategies for corneal fibrosis.


Asunto(s)
Miofibroblastos , RNA-Seq , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/genética , Miofibroblastos/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Transdiferenciación Celular/genética , Regulación de la Expresión Génica , Córnea/metabolismo , Córnea/patología , Lesiones de la Cornea/genética , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Factor de Crecimiento Transformador beta1/genética , Transducción de Señal , Análisis de Secuencia de ARN , Masculino , Femenino
6.
Cells ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273045

RESUMEN

Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts.


Asunto(s)
Cisplatino , Fibroblastos , Riñón , Miofibroblastos , Proteínas Señalizadoras YAP , Cisplatino/farmacología , Animales , Proteínas Señalizadoras YAP/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Ratas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Línea Celular , Senescencia Celular/efectos de los fármacos , Verteporfina/farmacología , Factores de Transcripción de Dominio TEA , Proteínas Adaptadoras Transductoras de Señales/metabolismo
7.
Biomol Biomed ; 24(5): 1199-1215, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39213416

RESUMEN

Cardiac arrhythmias are often linked to the overactivity of cardiac fibroblasts (CFs). Investigating the impact of poly (ADP-ribose) polymerase 9 (PARP9) on Angiotensin II (Ang II)-induced fibroblast activation and the therapeutic effects of pirfenidone (PFD) offers valuable insights into cardiac arrhythmias. This study utilized weighted gene co-expression network analysis (WGCNA), differential gene expression (DEG) analysis, protein-protein interaction (PPI), and receiver operating characteristic (ROC) analysis on the GSE42955 dataset to identify the hub gene with a significant diagnostic value. The ImmuCellAI tool revealed an association between PARP9 and immune cell infiltration. Our in vitro assessments focused on the influence of PFD on myofibroblast differentiation, transforming growth factor-beta (TGF-ß) expression, and Ang II-induced proliferation and migration in CFs. Additionally, we explored the impact on fibrosis markers and the TGF-ß/Smad signaling pathway in the context of PARP9 overexpression. Analysis of the GSE42955 dataset revealed PARP9 as a central gene with high clinical diagnostic value, linked to seven types of immune cells. The in vitro studies demonstrated that PFD significantly mitigates Ang II-induced CF proliferation, migration, and fibrosis. It also reduces Ang II-induced PARP9 expression and decreases fibrosis markers, including TGF-ß, collagen I, collagen III, and α-SMA. Notably, PARP9 overexpression can partially counteract PFD's inhibitory effects on CFs and modify the expression of fibronectin, CTGF, α-SMA, collagen I, collagen III, MMP2, MMP9, TGF-ß, and p-Smad2/3 in the TGF-ß/Smad signaling pathway. In summary, our findings suggest that PFD effectively counteracts the adverse effects of Ang II-induced CF proliferation and fibrosis, and modulates the TGF-ß/Smad signaling pathway and PARP9 expression. This identifies a potential therapeutic approach for managing myocardial fibrosis.


Asunto(s)
Angiotensina II , Miocardio , Piridonas , Transducción de Señal , Proteínas Smad , Factor de Crecimiento Transformador beta , Piridonas/farmacología , Piridonas/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Miocardio/metabolismo , Miocardio/patología , Angiotensina II/farmacología , Angiotensina II/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Fibrosis/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Movimiento Celular/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Diferenciación Celular/efectos de los fármacos , Ratas
8.
Nat Cardiovasc Res ; 3(7): 869-882, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39196175

RESUMEN

Differentiation of cardiac fibroblasts to myofibroblasts is necessary for matrix remodeling and fibrosis in heart failure. We previously reported that mitochondrial calcium signaling drives α-ketoglutarate-dependent histone demethylation, promoting myofibroblast formation. Here we investigate the role of ATP-citrate lyase (ACLY), a key enzyme for acetyl-CoA biosynthesis, in histone acetylation regulating myofibroblast fate and persistence in cardiac fibrosis. We show that inactivation of ACLY prevents myofibroblast differentiation and reverses myofibroblasts towards quiescence. Genetic deletion of Acly in post-activated myofibroblasts prevents fibrosis and preserves cardiac function in pressure-overload heart failure. TGFß stimulation enhances ACLY nuclear localization and ACLY-SMAD2/3 interaction, and increases H3K27ac at fibrotic gene loci. Pharmacological inhibition of ACLY or forced nuclear expression of a dominant-negative ACLY mutant prevents myofibroblast formation and H3K27ac. Our data indicate that nuclear ACLY activity is necessary for myofibroblast differentiation and persistence by maintaining histone acetylation at TGFß-induced myofibroblast genes. These findings provide targets to prevent and reverse pathological fibrosis.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Diferenciación Celular , Fibrosis , Histonas , Miofibroblastos , Proteína Smad2 , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Animales , Fibrosis/metabolismo , Diferenciación Celular/efectos de los fármacos , Histonas/metabolismo , Proteína Smad2/metabolismo , Proteína Smad2/genética , Acetilación/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Proteína smad3/metabolismo , Proteína smad3/genética , Células Cultivadas , Cromatina/metabolismo , Ratones Noqueados , Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Ratones Endogámicos C57BL , Masculino , Ratones , Regulación de la Expresión Génica/efectos de los fármacos
9.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201399

RESUMEN

Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.


Asunto(s)
Mecanotransducción Celular , Células Madre Mesenquimatosas , Miofibroblastos , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Miofibroblastos/metabolismo , Miofibroblastos/citología , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Regeneración , Diferenciación Celular , Epigénesis Genética
10.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39201548

RESUMEN

The mechanism underlying intestinal fibrosis, the main complication of inflammatory bowel disease (IBD), is not yet fully understood, and there is no therapy to prevent or reverse fibrosis. We evaluated, in in vitro cellular models, the ability of different classes of drugs currently used in IBD to counteract two pivotal processes of intestinal fibrosis, the differentiation of intestinal fibroblasts to activated myofibroblasts using CCD-18Co cells, and the epithelial-to-mesenchymal transition (EMT) of intestinal epithelial cells using Caco-2 cells (IEC), both being processes induced by transforming growth factor-ß1 (TGF-ß1). The drugs tested included mesalamine, azathioprine, methotrexate, prednisone, methylprednisolone, budesonide, infliximab, and adalimumab. The expression of fibrosis and EMT markers (collagen-I, α-SMA, pSmad2/3, occludin) was assessed by Western blot analysis and by immunofluorescence. Of the drugs used, only prednisone, methylprednisolone, budesonide, and adalimumab were able to antagonize the pro-fibrotic effects induced by TGF-ß1 on CCD-18Co cells, reducing the fibrosis marker expression. Methylprednisolone, budesonide, and adalimumab were also able to significantly counteract the TGF-ß1-induced EMT process on Caco-2 IEC by increasing occludin and decreasing α-SMA expression. This is the first study that evaluates, using in vitro cellular models, the direct antifibrotic effects of drugs currently used in IBD, highlighting which drugs have potential antifibrotic effects.


Asunto(s)
Budesonida , Transición Epitelial-Mesenquimal , Fibrosis , Enfermedades Inflamatorias del Intestino , Factor de Crecimiento Transformador beta1 , Humanos , Células CACO-2 , Transición Epitelial-Mesenquimal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Budesonida/farmacología , Adalimumab/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Metilprednisolona/farmacología , Mesalamina/farmacología , Prednisona/farmacología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Antiinflamatorios/farmacología , Infliximab/farmacología , Infliximab/uso terapéutico , Azatioprina/farmacología , Metotrexato/farmacología , Intestinos/efectos de los fármacos , Intestinos/patología , Diferenciación Celular/efectos de los fármacos
11.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39201678

RESUMEN

Skin wounds, primarily in association with type I diabetes mellitus, are a public health problem generating significant health impacts. Therefore, identifying the main pathways/mechanisms involved in differentiating fibroblasts into myofibroblasts is fundamental to guide research into effective treatments. Adopting the PRISMA guidelines, this study aimed to verify the main pathways/mechanisms using diabetic murine models and analyze the advances and limitations of this area. The Medline (PubMed), Scopus, and Web of Science platforms were used for the search. The studies included were limited to those that used diabetic murine models with excisional wounds. Bias analysis and methodological quality assessments were undertaken using the SYRCLE bias risk tool. Eighteen studies were selected. The systematic review results confirm that diabetes impairs the transformation of fibroblasts into myofibroblasts by affecting the expression of several growth factors, most notably transforming growth factor beta (TGF-beta) and NLRP3. Diabetes also compromises pathways such as the SMAD, c-Jun N-terminal kinase, protein kinase C, and nuclear factor kappa beta activating caspase pathways, leading to cell death. Furthermore, diabetes renders the wound environment highly pro-oxidant and inflammatory, which is known as OxInflammation. As a consequence of this OxInflammation, delays in the collagenization process occur. The protocol details for this systematic review were registered with PROSPERO: CRD42021267776.


Asunto(s)
Transdiferenciación Celular , Inflamación , Miofibroblastos , Cicatrización de Heridas , Miofibroblastos/metabolismo , Miofibroblastos/patología , Animales , Inflamación/patología , Inflamación/metabolismo , Humanos , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología
12.
Sci Adv ; 10(32): eadl5473, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121212

RESUMEN

Despite advancements in antifibrotic therapy, idiopathic pulmonary fibrosis (IPF) remains a medical condition with unmet needs. Single-cell RNA sequencing (scRNA-seq) has enhanced our understanding of IPF but lacks the cellular tissue context and gene expression localization that spatial transcriptomics provides. To bridge this gap, we profiled IPF and control patient lung tissue using spatial transcriptomics, integrating the data with an IPF scRNA-seq atlas. We identified three disease-associated niches with unique cellular compositions and localizations. These include a fibrotic niche, consisting of myofibroblasts and aberrant basaloid cells, located around airways and adjacent to an airway macrophage niche in the lumen, containing SPP1+ macrophages. In addition, we identified an immune niche, characterized by distinct lymphoid cell foci in fibrotic tissue, surrounded by remodeled endothelial vessels. This spatial characterization of IPF niches will facilitate the identification of drug targets that disrupt disease-driving niches and aid in the development of disease relevant in vitro models.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Transcriptoma , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/genética , Humanos , Pulmón/patología , Pulmón/metabolismo , Macrófagos/metabolismo , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Miofibroblastos/metabolismo , Miofibroblastos/patología
13.
Biomed Pharmacother ; 178: 117246, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096617

RESUMEN

Idiopathic pulmonary fibrosis is a progressive lung disease characterized by excessive extracellular matrix accumulation and myofibroblast proliferation with limited treatment options available. M2 macrophages are pivotal in pulmonary fibrosis, where they induce the epithelial-to-mesenchymal and fibroblast-to-myofibroblast transitions. In this study, we evaluated whether MEL-dKLA, a hybrid peptide that can eliminate M2 macrophages, could attenuate pulmonary fibrosis in a cell co-culture system and in a bleomycin-induced mouse model. Our findings demonstrated that the removal of M2 macrophages using MEL-dKLA stimulated reprogramming to an antifibrotic environment, which effectively suppressed epithelial-to-mesenchymal and fibroblast-to-myofibroblast transition responses in lung epithelial and fibroblast cells and reduced extracellular matrix accumulation both in vivo and in vitro. Moreover, MEL-dKLA exhibited antifibrotic efficacy without damaging tissue-resident macrophages in the bleomycin-induced mouse model. Collectively, our findings suggest that MEL-dKLA may be a new therapeutic option for the treatment of idiopathic pulmonary fibrosis.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Macrófagos , Animales , Humanos , Masculino , Ratones , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Miofibroblastos/patología , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/tratamiento farmacológico , Células RAW 264.7
14.
Int Immunopharmacol ; 141: 112947, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213871

RESUMEN

BACKGROUND: Irreversible pulmonary fibrosis induced by paraquat is the most prevalent cause of death in patients with paraquat poisoning. Pulmonary fibrosis is characterized by abnormal deposition of extracellular matrix (ECM). Currently, the role of fibrotic ECM microenvironment in paraquat-induced pulmonary fibrosis has not been established. METHODS: Rat pulmonary fibrosis model was induced by paraquat, ATN-161 (an integrin-ß1 antagonist) was given to investigate their effect on Rat survival and pulmonary fibrosis. Lungs were decellularized to generate normal and fibrotic acellular ECM scaffolds using Triton and SDS. Fibroblasts were cocultured with ECM scaffolds to established 3D culture systems to investigate the relationship between fibrotic ECM and the differentiation of fibroblasts. Then we explored the effect of fibrotic ECM microenvironment systematically promoting on integrin-ß1/FAK/ERK1/2 pathway and established 3D culture systems to investigate the relationship between fibrotic ECM and the differentiation of fibroblasts. RESULTS: Antagonism of integrin-ß1 could alleviate paraquat-induced pulmonary fibrosis and ameliorate survival status of rats. Compared to normal ECM, fibrotic extracellular microenvironment promoted the differentiation of fibroblasts to myofibroblasts. Antagonism of integrin-ß1 could also ameliorate the promotion of fibrotic extracellular microenvironment on differentiation of fibroblasts to myofibroblasts. Fibrotic ECM microenvironment promotes fibroblasts transforming into myofibroblasts through integrin-ß1/FAK/ERK1/2 signaling pathway. Moreover, this phenomenon holds independent on exogenous integrin-ß1. CONCLUSIONS: Activation of integrin-ß1/FAK/ERK1/2 pathway aggravates paraquat-induced pulmonary fibrosis depend on fibrotic ECM and integrin-ß1 may be a prospective therapeutic target for paraquat-induced pulmonary fibrosis in the future.


Asunto(s)
Matriz Extracelular , Fibroblastos , Integrina beta1 , Sistema de Señalización de MAP Quinasas , Paraquat , Fibrosis Pulmonar , Ratas Sprague-Dawley , Animales , Paraquat/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Matriz Extracelular/metabolismo , Masculino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/metabolismo , Ratas , Integrina beta1/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Miofibroblastos/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad
15.
Matrix Biol ; 133: 14-32, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39098433

RESUMEN

BACKGROUND: Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS: Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS: These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.


Asunto(s)
Cicatriz , Colágeno , Proteína 61 Rica en Cisteína , Fibrosis , Infarto del Miocardio , Miofibroblastos , Animales , Humanos , Masculino , Ratones , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/genética , Colágeno/metabolismo , Colágeno/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transducción de Señal
16.
Int J Biol Macromol ; 278(Pt 2): 134491, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111495

RESUMEN

The macrophage to myofibroblasts transition (MMT) has been reported as a newly key target in renal fibrosis. Lycium barbarum L. is a traditional Chinese medicine for improving renal function, in which its polysaccharides (LBPs) are the mainly active components. However, whether the role of LBPs in treating renal fibrosis is related to MMT process remain unclear. The purpose of this study was to explore the relationship between the regulating effect on MMT process and the anti-fibrotic effect of LBPs. Initially, small molecular weight LBPs fractions (LBP-S) were firstly isolated via Sephadex G-100 column. Then, the potent inhibitory effect of LBP-S on MMT process was revealed on bone marrow-derived macrophages (BMDM) model induced by TGF-ß. Subsequently, the chemical structure of LBP-S was elucidated through monosaccharide, methylation and NMR spectrum analysis. In vivo biodistribution characteristics studies demonstrated that LBP-S exhibited effectively accumulation in kidney via intraperitoneal administration. Finally, LBP-S showed a satisfactory anti-renal fibrotic effect on unilateral ureteral obstruction operation (UUO) mice, which was significantly reduced following macrophage depletion. Overall, our findings indicated that LPB-S could alleviate renal fibrosis through regulating MMT process and providing new candidate agents for chronic kidney disease (CKD) related fibrosis treatment.


Asunto(s)
Fibrosis , Lycium , Macrófagos , Miofibroblastos , Polisacáridos , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Lycium/química , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Mananos/farmacología , Mananos/química , Masculino , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química
17.
Biol Direct ; 19(1): 61, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095835

RESUMEN

Myofibroblast buildup and prostatic fibrosis play a crucial role in the development of benign prostatic hyperplasia (BPH). Treatments specifically targeting myofibroblasts could be a promising approach for treating BPH. Tadalafil, a phosphodiesterase type 5 (PDE5) inhibitor, holds the potential to intervene in this biological process. This study employs prostatic stromal fibroblasts to induce myofibroblast differentiation through TGFß1 stimulation. As a result, tadalafil significantly inhibited prostatic stromal fibroblast proliferation and fibrosis process, compared to the control group. Furthermore, our transcriptome sequencing results revealed that tadalafil inhibited FGF9 secretion and simultaneously improved miR-3126-3p expression via TGFß1 suppression. Overall, TGFß1 can trigger pro-fibrotic signaling through miR-3126-3p in the prostatic stroma, and the use of tadalafil can inhibit this process.


Asunto(s)
Factor 9 de Crecimiento de Fibroblastos , Fibrosis , MicroARNs , Inhibidores de Fosfodiesterasa 5 , Hiperplasia Prostática , Tadalafilo , Masculino , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/genética , MicroARNs/genética , MicroARNs/metabolismo , Tadalafilo/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Humanos , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/genética , Próstata/efectos de los fármacos , Próstata/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proliferación Celular/efectos de los fármacos
18.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092889

RESUMEN

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Asunto(s)
Transdiferenciación Celular , Dexametasona , Glaucoma , Miofibroblastos , Factores de Intercambio de Guanina Nucleótido Rho , Malla Trabecular , Dexametasona/farmacología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Transdiferenciación Celular/efectos de los fármacos , Animales , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Glaucoma/patología , Glaucoma/metabolismo , Células Cultivadas , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Masculino
19.
Int Immunopharmacol ; 141: 112920, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137631

RESUMEN

Pulmonary fibrosis (PF) results from excessive extracellular matrix (ECM) deposition and tissue remodeling after activation of fibroblasts into myofibroblasts. Abnormally deposited fibrotic ECM, in turn, promotes fibroblast activation and accelerates loss of lung structure and function. However, the molecular mediators and exact mechanisms by which fibrotic ECM promotes fibroblast activation are unclear. In a bleomycin-induced PF mouse model, we found Galectin-1 (Gal-1) expression was significantly increased in lung tissue, and overexpression of Gal-1 plasmid-transfected fibroblasts were activated into myofibroblasts. Using the decellularization technique to prepare decellularized fibrotic ECM and constructing a 3D in vitro co-culture system with fibroblasts, we found that decellularized fibrotic ECM induced a high expression of Gal-1 and promoted the activation of fibroblasts into myofibroblasts. Therefore, Gal-1 has been identified as a pivotal mediator in PF. Further, we found that decellularized fibrotic ECM delivered mechanical signals to cells through the Gal-1-mediated FAK-Src-P130Cas mechanical signalling pathway, while the CYP450 enzymes (mainly involved in CYP1A1, CYP24A1, CYP3A4, and CYP2D6 isoforms) acted as a chemical signalling pathway to receive mechanical signals transmitted from upstream Gal-1, thereby promoting fibroblast activation. The Gal-1 inhibitor OTX008 or the CYP1A1 inhibitor 7-Hydroxyflavone prevented PF in mice and inhibited the role of fibrotic ECM in promoting fibroblast activation into myofibroblasts, preventing PF. These results reveal novel molecular mechanisms of lung fibrosis formation and identify Gal-1 and its downstream CYP1A1 as potential therapeutic targets for PF disease treatmnts.


Asunto(s)
Bleomicina , Diferenciación Celular , Sistema Enzimático del Citocromo P-450 , Fibroblastos , Galectina 1 , Ratones Endogámicos C57BL , Miofibroblastos , Fibrosis Pulmonar , Animales , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Ratones , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Galectina 1/metabolismo , Galectina 1/genética , Pulmón/patología , Pulmón/metabolismo , Masculino , Matriz Extracelular/metabolismo , Humanos , Transducción de Señal , Modelos Animales de Enfermedad , Células Cultivadas , Técnicas de Cocultivo
20.
Exp Cell Res ; 442(1): 114221, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39182665

RESUMEN

Inflammation-induced choroidal neovascularization followed by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) is a cause of neovascular age-related macular degeneration (nAMD). RPE-derived myofibroblasts overproduce extracellular matrix, leading to subretinal fibrosis. We already have demonstrated that benzylphenylurea (BPU) derivatives inhibit the function of cancer-associated fibroblasts. Here, we investigated the anti-myofibroblast effects of BPU derivatives and examined such BPU activity on subretinal fibrosis. A BPU derivative, BPU17, exhibits the most potent anti-myofibroblast activity among dozens of BPU derivatives and inhibits subretinal fibrosis in a mouse model of retinal degeneration. Investigations with primary cultured RPEs reveal that BPU17 suppresses cell motility and collagen synthesis in RPE-derived myofibroblasts. These effects depend on repressing the serum response factor (SRF)/CArG-box-dependent transcription. BPU17 inhibits the expression of SRF cofactor, cysteine and glycine-rich protein 2 (CRP2), which activates the SRF function. Proteomics analysis reveals that BPU17 binds to prohibitin 1 (PHB1) and inhibits the PHB1-PHB2 interaction, resulting in mild defects in mitochondrial function. This impairment causes a decrease in the expression of CRP2 and suppresses collagen synthesis. Our findings suggest that BPU17 is a promising agent against nAMD and the close relationship between PHB function and EMT.


Asunto(s)
Fibrosis , Miofibroblastos , Prohibitinas , Proteínas Represoras , Animales , Proteínas Represoras/metabolismo , Humanos , Ratones , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fibrosis/tratamiento farmacológico , Antifibróticos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Movimiento Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Degeneración Macular/patología , Células Cultivadas , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA