Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
AAPS PharmSciTech ; 25(7): 213, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266895

RESUMEN

To overcome the challenges associated with the co-delivery of AuNPs (gold nanoparticles) and miRNA as an anti-breast cancer combination therapy, niosomal systems were developed using Span 60, cholesterol, and a cationic lipid (CTAB), and the formulations were optimized using Box-Behnken experimental design. The niosomal formulations with the smallest size were selected for further optimization of size, surface charge, entrapment efficiency, and stability. To achieve this, AuNPs and DSPE-PEG2000 (2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000)were added to the formulation. The optimized niosomal formulation could effectively encapsulate AuNPs with an entrapment efficiency of 34.49% ± 0.84 and a spherical particle size of 153.6 ± 4.62 nm. The incorporation of PEG and CTAB led to notable enhancements in the overall characteristics of the delivery system. To evaluate the effectiveness of the combination therapy, various assessments such as cytotoxicity, apoptosis, and gene expression properties were conducted. The results demonstrated that the combination delivery using the new C-PEG-Nio-AuNPs (cationic pegylated niosomal gold nanoparticles) system and miRNA had the lowest IC50, the highest apoptosis rate, and the most significant upregulation of miRNA and BAX/BCL2 expression in MCF-7 cell growth. In conclusion, this innovative co-delivery approach represents a promising breakthrough in the development of therapeutic agents for breast cancer treatment. By combining multiple therapeutic agents within a single delivery system, this method has the potential to enhance treatment efficacy, reduce side effects, and improve patient outcomes.


Asunto(s)
Neoplasias de la Mama , Oro , Liposomas , Nanopartículas del Metal , MicroARNs , Tamaño de la Partícula , Polietilenglicoles , Oro/química , Humanos , MicroARNs/administración & dosificación , Células MCF-7 , Polietilenglicoles/química , Nanopartículas del Metal/química , Liposomas/química , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Cationes/química , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Supervivencia Celular/efectos de los fármacos , Fosfatidiletanolaminas/química
2.
Int J Nanomedicine ; 19: 9227-9253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267724

RESUMEN

Purpose: Oral squamous cell carcinoma is the most common type of malignant tumor in the head and neck region. Despite advancements, metastasis and recurrence rates remain high, and patient survival has not significantly improved. Although miRNA therapies are promising for cancer gene therapy, their applications in treating oral cancer are limited. Targeted medication delivery systems based on nanotechnology offer an efficient way to enhance oral cancer treatment efficacy. Methods: We synthesized nanosilver (AgNPs) and loaded them with the tumor suppressor miR-181a-5p. In vitro experiments were conducted to investigate the inhibitory effects of AgNPs and their composites on the malignant behavior of oral cancer cell lines. The xenograft experiment was utilized to examine their effects on tumorigenesis and the potential molecular mechanisms involved. Results: The nanosilver exhibited a spherical morphology with a size distribution ranging from 50 to 100 nm. They exhibited a distinct absorption peak at 330 nm and could be excited to emit green fluorescence. The biocompatible AgNPs effectively shielded miRNA from degradation by RNase and serum. The nanocomposites significantly inhibited the proliferation, invasion, migration, and colony formation of oral cancer cell lines. Notably, treatment with the nanocomposites resulted in substantial tumor growth suppression in the xenograft model. Mechanistically, these composites directly targeted BCL2 and exerted their antitumor effects by suppressing the ß-catenin signaling pathway and other downstream genes without inducing acute toxicity. Conclusion: Collectively, the findings demonstrate that the miR-181a-5p/AgNPs combination significantly impedes the growth and progression of oral cancer both in vitro and in vivo, highlighting a pivotal role for the ß-catenin signaling pathway. This multifaceted approach holds promise as a prospective therapeutic strategy for oral cancer management in the future.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Neoplasias de la Boca , Plata , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , MicroARNs/administración & dosificación , MicroARNs/genética , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Humanos , Línea Celular Tumoral , Nanopartículas del Metal/química , Ratones , Plata/química , Plata/farmacología , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética
3.
J Vis Exp ; (210)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39248512

RESUMEN

Metastatic breast cancer is a devastating disease with very limited therapeutic options, calling for new therapeutic strategies. Oncogenic miRNAs have been shown to be associated with the metastatic potential of breast cancer and are implicated in tumor cell migration, invasion, and viability. However, it can be difficult to deliver an inhibitory RNA molecule to the tissue of interest. To overcome this challenge and deliver active antisense oligonucleotides to tumors, we utilized magnetic iron oxide nanoparticles as a delivery platform. These nanoparticles target tissues with increased vascular permeability, such as sites of inflammation or cancer. Delivery of these nanoparticles can be monitored in vivo by magnetic resonance imaging (MRI) due to their magnetic properties. Translation of this therapeutic approach into the clinic will be more accessible because of its compatibility with this relevant imaging modality. They can also be labeled with other imaging reporters such as a Cy5.5 near-infrared optical dye for correlative optical imaging and fluorescence microscopy. Here, we demonstrate that nanoparticles labeled with Cy5.5 and conjugated to therapeutic oligomers targeting oncogenic miRNA-10b (termed MN-anti-miR10b, or "nanodrug") administered intravenously accumulate in metastatic sites, opening a possibility for therapeutic intervention of metastatic breast cancer.


Asunto(s)
Carbocianinas , MicroARNs , Animales , Femenino , Ratones , MicroARNs/genética , MicroARNs/administración & dosificación , Carbocianinas/química , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Nanopartículas Magnéticas de Óxido de Hierro/química , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/química
4.
J Exp Clin Cancer Res ; 43(1): 247, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215325

RESUMEN

BACKGROUND: Camptothecin (CPT) is one of the frequently used small chemotherapy drugs for treating hepatocellular carcinoma (HCC), but its clinical application is limited due to severe toxicities and acquired resistance. Combined chemo-gene therapy has been reported to be an effective strategy for counteracting drug resistance while sensitizing cancer cells to cytotoxic agents. Thus, we hypothesized that combining CPT with miR-145 could synergistically suppress tumor proliferation and enhance anti-tumor activity. METHODS: Lactobionic acid (LA) modified lipid nanoparticles (LNPs) were developed to co-deliver CPT and miR-145 into asialoglycoprotein receptors-expressing HCC in vitro and in vivo. We evaluated the synergetic antitumor effect of miR-145 and CPT using CCK8, Western blotting, apoptosis and wound scratch assay in vitro, and the mechanisms underlying the synergetic antitumor effects were further investigated. Tumor inhibitory efficacy, safety evaluation and MRI-visible ability were assessed using diethylnitrosamine (DEN) + CCl4-induced HCC mouse model. RESULTS: The LA modification improved the targeting delivery of cargos to HCC cells and tissues. The LA-CMGL-mediated co-delivery of miR-145 and CPT is more effective on tumor inhibitory than LA-CPT-L or LA-miR-145-L treatment alone, both in vitro and in vivo, with almost no side effects during the treatment period. Mechanistically, miR-145 likely induces apoptosis by targeting SUMO-specific peptidase 1 (SENP1)-mediated hexokinase (HK2) SUMOylation and glycolysis pathways and, in turn, sensitizing the cancer cells to CPT. In vitro and in vivo tests confirmed that the loaded Gd-DOTA served as an effective T1-weighted contrast agent for noninvasive tumor detection as well as real-time monitoring of drug delivery and biodistribution. CONCLUSIONS: The LA-CMGL-mediated co-delivery of miR-145 and CPT displays a synergistic therapy against HCC. The novel MRI-visible, actively targeted chemo-gene co-delivery system for HCC therapy provides a scientific basis and a useful idea for the development of HCC treatment strategies in the future.


Asunto(s)
Camptotecina , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Nanopartículas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Animales , Ratones , MicroARNs/genética , MicroARNs/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Nanopartículas/química , Camptotecina/farmacología , Camptotecina/análogos & derivados , Camptotecina/administración & dosificación , Camptotecina/uso terapéutico , Imagen por Resonancia Magnética/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lípidos/química , Liposomas
5.
Int J Nanomedicine ; 19: 8641-8660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188861

RESUMEN

Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.


Asunto(s)
Neoplasias Óseas , MicroARNs , Nanopartículas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/terapia , Humanos , MicroARNs/administración & dosificación , MicroARNs/genética , Neoplasias Óseas/genética , Neoplasias Óseas/terapia , Neoplasias Óseas/tratamiento farmacológico , Nanopartículas/química , Animales , Sistemas de Liberación de Medicamentos/métodos
6.
Drug Dev Ind Pharm ; 50(7): 671-686, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39099436

RESUMEN

OBJECTIVE: This study was aimed to develop a cationic lipoplex formulation loaded with Nintedanib and miR-29b (LP-NIN-miR) as an alternative approach in the combination therapy of idiopathic pulmonary dibrosis (IPF) by proving its additive anti-fibrotic therapeutic effects through in vitro lung fibrosis model. SIGNIFICANCE: This is the first research article reported that the LP-NIN-MIR formulations in the treatment of IPF. METHODS: To optimize cationic liposomes (LPs), quality by design (QbD) approach was carried out. Optimized blank LP formulation was prepared with DOTAP, CHOL, DOPE, and DSPE-mPEG 2000 at the molar ratio of 10:10:1:1. Nintedanib loaded LP (LPs-NIN) were produced by microfluidization method and were incubated with miR-29b at room temperature for 30 min to obtain LP-NIN-miR. To evaluate the cellular uptake of LP-NIN-miR, NIH/3T3 cells were treated with 20 ng.mL-1 transforming growth factor-ß1 (TGF-ß1) for 96 h to establish the in vitro IPF model and incubated with LP-NIN-miR for 48 h. RESULTS: The hydrodynamic diameter, polydispersity index (PDI), and zeta potential of the LP-NIN-miR were 87.3 ± 0.9 nm, 0.184 ± 0.003, and +24 ± 1 mV, respectively. The encapsulation efficiencies of Nintedanib and miR-29b were 99.8% ± 0.08% and 99.7% ± 1.2%, respectively. The results of the cytotoxicity study conducted with NIH/3T3 cells indicated that LP-NIN-miR is a safe delivery system. CONCLUSIONS: The outcome of the transfection study proved the additive anti-fibrotic therapeutic effect of LP-NIN-miR and suggested that lipoplexes are effective delivery systems for drug and nucleic acid to the NIH/3T3 cells in the treatment of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Indoles , Liposomas , MicroARNs , MicroARNs/administración & dosificación , Liposomas/química , Indoles/administración & dosificación , Indoles/química , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Animales , Ratones , Células 3T3 NIH , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética
7.
Int J Pharm ; 662: 124512, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39067547

RESUMEN

This study tried to develop the α-Hederin/Oxaliplatin (OXA) dual-loaded rHDL (α-Hederin-OXA-rHDL) modified liposomes to improve the therapeutic index on colon adenocarcinoma (COAD). The α-Hederin-OXA-rHDL were prepared and evaluated for characterizations, accumulate to tumor tissues, and antitumor activity. A thorough investigation into oxaliplatin resistant and KRAS-mutant related hub keg genes were identified and performed to assess the prognosis role of the genetic signature in COAD. The potential immune signatures and molecular docking for verifing the predicted targets of α-Hederin-OXA-rHDL in tumor-bearing mice. Results suggested that α-Hederin-OXA-rHDL could enhance the sensitivity of oxaliplatin in HCT116/L-OHP cells via the regulation of KEAP1/NRF2 -mediated signaling and HO1 or GPX4 proteins. Furthermore, α-Hederin-OXA-rHDL regulated the predicted targets of PRDM1 interaction with miR-140-5p, efficient activing CD8 T cell to improve therapeutic response in vivo. Collectively, this work provides drug delivery with rHDL dual-loaded α-Hederin and oxaliplatin synergistically targets cancer cells and effectory T cells combating COAD.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Liposomas , Oxaliplatino , Oxaliplatino/administración & dosificación , Oxaliplatino/farmacología , Animales , Humanos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Ratones , Células HCT116 , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química , Adenocarcinoma/tratamiento farmacológico , Línea Celular Tumoral , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Masculino , MicroARNs/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Ácido Oleanólico/análogos & derivados , Saponinas
8.
Mol Pharmacol ; 106(2): 84-91, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019572

RESUMEN

The remarkable potential of microRNAs (miRNAs) as a class of biotherapeutic agents in the treatment of diverse pathological conditions has garnered significant interest in recent years. To heal both acute and chronic wounds, miRNAs work by post-transcriptionally controlling various proteins and the pathways that are linked to them. Diabetes mellitus predisposes to several macro- and microvascular defects of end organs such as atherosclerosis, peripheral artery disease, retinopathy, nephropathy, neuropathy, and impaired wound healing. Here, miRNAs emerge as a beacon of hope, with the capacity to heal diabetic wounds by precisely modulating the expression of genes involved in the healing process. Despite the therapeutic promise, the journey to realizing the full potential of miRNAs is fraught with challenges. Their intrinsic instability and the inefficient delivery into target cells pose significant barriers to their clinical application. Consequently, a major focus of current research is the discovery of novel miRNAs and the development of innovative delivery systems that can effectively transport these nucleic acids into the cells where they are needed most. This review delves into the intricate roles that miRNAs play at various stages of diabetic wound healing, providing a comprehensive overview of the latest research findings. The review also addresses the obstacles and opportunities that come with translating miRNA-based strategies into clinical practice, offering a critical assessment of the field's advancements and the hurdles that remain to be overcome. SIGNIFICANCE STATEMENT: The potential of microRNA delivery using new biological or nonbiological carriers may create a revolutionary treatment method for chronic wounds of diabetes.


Asunto(s)
Diabetes Mellitus , MicroARNs , Cicatrización de Heridas , MicroARNs/genética , MicroARNs/administración & dosificación , Humanos , Cicatrización de Heridas/genética , Animales , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Técnicas de Transferencia de Gen , Complicaciones de la Diabetes/terapia , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Sistemas de Liberación de Medicamentos/métodos
9.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956062

RESUMEN

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Asunto(s)
MicroARNs , Infarto del Miocardio , Nanopartículas , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/administración & dosificación , Animales , Infarto del Miocardio/genética , Masculino , Ratas , Nanopartículas/administración & dosificación , Nanopartículas/química , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Contracción Miocárdica/efectos de los fármacos , Administración Intravenosa , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Isquemia Miocárdica/metabolismo
10.
Invest Ophthalmol Vis Sci ; 65(6): 16, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38856990

RESUMEN

Purpose: Corneal injury (CI) resulting in corneal opacity remains a clinical challenge. Exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs) have been proven effective in repairing various tissue injuries and are also considered excellent drug carriers due to their biological properties. Recently, microRNA-29b (miR-29b) was found to play an important role in the autophagy regulation which correlates with cell inflammation and fibrosis. However, the effects of miR-29b and autophagy on CI remain unclear. To find better treatments for CI, we used Exos to carry miR-29b and investigated its effects in the treatment of CI. Methods: BMSCs were transfected with miR-29b-3p agomir/antagomir and negative controls (NCs) to obtain Exos-29b-ago, Exos-29b-anta, and Exos-NC. C57BL/6J mice that underwent CI surgeries were treated with Exos-29b-ago, Exos-29b-anta, Exos-NC, or PBS. The autophagy, inflammation, and fibrosis of the cornea were estimated by slit-lamp, hematoxylin and eosin (H&E) staining, immunofluorescence, RT‒qPCR, and Western blot. The effects of miR-29b-3p on autophagy and inflammation in immortalized human corneal epithelial cells (iHCECs) were also investigated. Results: Compared to PBS, Exos-29b-ago, Exos-29b-anta, and Exos-NC all could ameliorate corneal inflammation and fibrosis. However, Exos-29b-ago, which accumulated a large amount of miR-29b-3p, exerted excellent potency via autophagy activation by inhibiting the PI3K/AKT/mTOR pathway and further inhibited corneal inflammation via the mTOR/NF-κB/IL-1ß pathway. After Exos-29b-ago treatment, the expressions of collagen type III, α-smooth muscle actin, fibronectin, and vimentin were significantly decreased than in other groups. In addition, overexpression of miR-29b-3p prevented iHCECs from autophagy impairment and inflammatory injury. Conclusions: Exos from BMSCs carrying miR-29b-3p can significantly improve the therapeutic effect on CI via activating autophagy and further inhibiting corneal inflammation and fibrosis.


Asunto(s)
Autofagia , Lesiones de la Cornea , Portadores de Fármacos , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Masculino , Ratones , Autofagia/efectos de los fármacos , Western Blotting , Células Cultivadas , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/genética , Lesiones de la Cornea/terapia , Modelos Animales de Enfermedad , Exosomas/química , Exosomas/metabolismo , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/administración & dosificación , MicroARNs/genética , MicroARNs/farmacología
11.
Int J Nanomedicine ; 19: 4977-4994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828204

RESUMEN

Purpose: Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods: To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the ß-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results: The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion: Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Antígeno CD47 , MicroARNs , Presenilina-1 , Receptores de Somatostatina , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Modelos Animales de Enfermedad , Exosomas/metabolismo , MicroARNs/administración & dosificación , MicroARNs/genética , MicroARNs/farmacología , Presenilina-1/genética , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina
12.
J Control Release ; 372: 221-233, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909697

RESUMEN

The utilization of platelet-rich plasma (PRP) has exhibited potential as a therapeutic approach for the management of diabetic foot ulcers (DFUs). However, it is currently not well understood how the diabetic environment may influence PRP-derived exosomes (PRP-Exos) and their potential impact on neutrophil extracellular traps (NETs). This study aims to investigate the effects of the diabetic environment on PRP-Exos, their communication with neutrophils, and the subsequent influence on NETs and wound healing. Through bulk-seq and Western blotting, we confirmed the increased expression of MMP-8 in DFUs. Additionally, we discovered that miRNA-26b-5p plays a significant role in the communication between DFUs and PRP-Exos. In our experiments, we found that PRP-Exos miR-26b-5p effectively improved diabetic wound healing by inhibiting NETs. Further tests validated the inhibitory effect of miR-26b-5p on NETs by targeting MMP-8. Both in vitro and in vivo experiments showed that miRNA-26b-5p from PRP-Exos promoted wound healing by reducing neutrophil infiltration through its targeting of MMP-8. This study establishes the importance of miR-26b-5p in the communication between DFUs and PRP-Exos, disrupting NETs formation in diabetic wounds by targeting MMP-8. These findings provide valuable insights for developing novel therapeutic strategies to enhance wound healing in individuals suffering from DFUs.


Asunto(s)
Pie Diabético , Exosomas , Trampas Extracelulares , Metaloproteinasa 8 de la Matriz , MicroARNs , Plasma Rico en Plaquetas , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/metabolismo , Pie Diabético/terapia , Pie Diabético/metabolismo , Pie Diabético/genética , Exosomas/metabolismo , Trampas Extracelulares/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/genética , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/administración & dosificación , Neutrófilos/metabolismo
13.
J Control Release ; 371: 298-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815703

RESUMEN

Wound management is a critical clinical challenge due to the dynamic and complex pathological characteristics of inflammation, proliferation, and matrix remodeling. To address this challenge, the regulation and management of this multi-stage pathological microenvironment may provide a feasible approach to wound healing. In this work, we synthesized a new lipid material (DA) with reactive oxygen species (ROS) scavenging effect to prepare DA-based liquid crystalline (DALC). Then, DALC was incorporated with adipose mesenchymal stem cells-derived extracellular vesicles (AMSC-EVs) to fabricate a novel scaffold dressing (EVs@DALC) for the treatment of the wound. DALC not only endowed EVs@DALC with ROS scavenging sites for relieving the oxidative stress and inflammation in the microenvironment of the wound site, but also facilitated cellular uptake and transfection of microRNA and growth factors contained in AMSC-EVs. Benefiting from DALC, AMSC-EVs effectively transferred microRNA and growth factors into the skin cells to induce cell proliferation and migration and accelerate angiogenesis. The results of wound healing effect in vivo indicate EVs@DALC achieved multi-stage pathological modulation for accelerating wound healing through alleviating inflammation, promoting cell proliferation and migration, and angiogenesis. Taken together, this work provides an effective strategy based on antioxidant lipid liquid crystalline delivering extracellular vesicles in treating skin wounds and paves a way for stem cell extracellular vesicles clinical translation.


Asunto(s)
Proliferación Celular , Vesículas Extracelulares , Lípidos , Cristales Líquidos , Células Madre Mesenquimatosas , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Cristales Líquidos/química , Animales , Especies Reactivas de Oxígeno/metabolismo , Humanos , Lípidos/química , Proliferación Celular/efectos de los fármacos , Masculino , Movimiento Celular/efectos de los fármacos , MicroARNs/administración & dosificación , Piel/metabolismo , Depuradores de Radicales Libres/administración & dosificación , Tejido Adiposo/citología , Ratones
14.
J Control Release ; 370: 798-810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754633

RESUMEN

Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide. Although clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) gene editing holds immense potential for genetic manipulation, its clinical application is hindered by the absence of an efficient heart-targeted drug delivery system. Herein, we developed CRISPR-Cas9 ribonucleoprotein (RNP)-loaded extracellular vesicles (EVs) conjugated with cardiac-targeting peptide (T) for precise cardiac-specific genome editing. RNP complexes containing Cas9 and single guide RNA targeting miR-34a, an MI-associated molecular target, were loaded into EVs (EV@RNP). Gene editing by EV@RNP attenuated hydrogen peroxide-induced apoptosis in cardiomyocytes via miR-34a inhibition, evidenced by increased B-cell lymphoma 2 levels, decreased Bcl-2-associated X protein levels, and the cleavage of caspase-3. Additionally, to improve cardiac targeting in vivo, we used click chemistry to form functional T-EV@RNP by conjugating T peptides to EV@RNP. Consequently, T-EV@RNP-mediated miR-34a genome editing might exert a protective effect against MI, reducing apoptosis, ameliorating MI injury, and facilitating the recovery of cardiac function. In conclusion, the genome editing delivery system established by loading CRISPR/Cas9 RNP with cardiac-targeting EVs is a powerful approach for precise and tissue-specific gene therapy for cardiovascular disease.


Asunto(s)
Sistemas CRISPR-Cas , Vesículas Extracelulares , Edición Génica , MicroARNs , Infarto del Miocardio , Miocitos Cardíacos , Ribonucleoproteínas , Edición Génica/métodos , Vesículas Extracelulares/metabolismo , Animales , Ribonucleoproteínas/genética , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/terapia , Infarto del Miocardio/genética , MicroARNs/administración & dosificación , MicroARNs/genética , Apoptosis/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Humanos , Proteína 9 Asociada a CRISPR/genética , Péptidos/química , Ratones
15.
Cell Prolif ; 57(8): e13637, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38671577

RESUMEN

Oral squamous cell carcinoma (OSCC), a type of malignant tumour that primarily occurs in the oral mucosa, has drawn considerable attention owing to its aggressive growth and potentially high metastatic rate. Surgical resection is the primary treatment method for OSCC and is typically combined with radiation therapy and chemotherapy. microRNA-149-3p (miR-149) is a negative regulator of the Pi3k/Akt pathway and can effectively inhibit the proliferation of tumour cells. However, the application of miR-149 is limited owing to its relatively low efficiency of cellular uptake and poor stability when used alone. To overcome these challenges, this study adopted a novel nucleic acid nanostructured material, tetrahedral framework nucleic acids (tFNAs). The use of tFNAs as carriers to assemble the T-miR-149 complex reduced the expression of Pi3k and Akt involved in tumorigenesis and alterations in proteins related to cell apoptosis. The results indicated that the bionic drug delivery system has an effective tumour suppressive effect on OSCC in mice, revealing its potential clinical value in the treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , MicroARNs/administración & dosificación , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Animales , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Ratones , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ácidos Nucleicos/uso terapéutico , Ácidos Nucleicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos
16.
J Control Release ; 369: 335-350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519036

RESUMEN

Vascular injury following spinal cord injury (SCI) can significantly exacerbate secondary SCI and result in neurological dysfunction. Strategies targeting angiogenesis have demonstrated potential in enhancing functional recovery post-SCI. In the context of angiogenesis, the CD146+ and CD271+ subpopulations of mesenchymal stem cells (MSCs) have been recognized for their angiogenic capabilities in tissue repair. Small extracellular vesicles (sEVs) derived from MSCs are nanoscale vesicles containing rich bioactive components that play a crucial role in tissue regeneration. However, the precise role of sEVs derived from CD146+CD271+ UCMSCs (CD146+CD271+ UCMSC-sEVs) in SCI remain unclear. In this study, CD146+CD271+ UCMSC-sEVs were non-invasively administered via intranasal delivery, demonstrating a significant capacity to stimulate angiogenesis and improve functional recovery in mice following SCI. Furthermore, in vitro assessments revealed the effective enhancement of migration and tube formation capabilities of the murine brain microvascular endothelial cell line (bEnd.3) by CD146+CD271+UCMSC-sEVs. MicroRNA array analysis confirmed significant enrichment of multiple microRNAs within CD146+CD271+ UCMSC-sEVs. Subsequent in vivo and in vitro experiments demonstrated that CD146+CD271+ UCMSC-sEVs promote enhanced angiogenesis and improved functional recovery mediated by miR-27a-3p. Further mechanistic studies revealed that miR-27a-3p sourced from CD146+CD271+ UCMSC-sEVs enhances migration and tube formation of bEnd.3 cells in vitro by suppressing the expression of Delta Like Canonical Notch Ligand 4 (DLL4), thereby promoting angiogenesis in vivo. Collectively, our results demonstrate that a crucial role of CD146+CD271+ UCMSC-sEVs in inhibiting DLL4 through the transfer of miR-27a-3p, which leads to the promotion of angiogenesis and improved functional recovery after SCI.


Asunto(s)
Administración Intranasal , Vesículas Extracelulares , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Ratones , Línea Celular , Antígeno CD146/metabolismo , MicroARNs/administración & dosificación , Recuperación de la Función , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Movimiento Celular , Células Endoteliales/metabolismo , Masculino
17.
Adv Sci (Weinh) ; 11(21): e2309305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509833

RESUMEN

Spinal cord injury (SCI) has no effective treatment modalities. It faces a significant global therapeutical challenge, given its features of poor axon regeneration, progressive local inflammation, and inefficient systemic drug delivery due to the blood-spinal cord barrier (BSCB). To address these challenges, a new nano complex that achieves targeted drug delivery to the damaged spinal cord is proposed, which contains a mesoporous silica nanoparticle core loaded with microRNA and a cloaking layer of human umbilical cord mesenchymal stem cell membrane modified with rabies virus glycoprotein (RVG). The nano complex more readily crosses the damaged BSCB with its exosome-resembling properties, including appropriate size and a low-immunogenic cell membrane disguise and accumulates in the injury center because of RVG, where it releases abundant microRNAs to elicit axon sprouting and rehabilitate the inflammatory microenvironment. Culturing with nano complexes promotes axonal growth in neurons and M2 polarization in microglia. Furthermore, it showed that SCI mice treated with this nano complex by tail vein injection display significant improvement in axon regrowth, microenvironment regulation, and functional restoration. The efficacy and biocompatibility of the targeted delivery of microRNA by nano complexes demonstrate their immense potential as a noninvasive treatment for SCI.


Asunto(s)
Modelos Animales de Enfermedad , MicroARNs , Virus de la Rabia , Dióxido de Silicio , Traumatismos de la Médula Espinal , Animales , MicroARNs/genética , MicroARNs/administración & dosificación , Traumatismos de la Médula Espinal/terapia , Ratones , Dióxido de Silicio/química , Virus de la Rabia/genética , Glicoproteínas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química
18.
Mol Ther ; 32(9): 2939-2949, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38414242

RESUMEN

Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , ARN , Humanos , Vesículas Extracelulares/metabolismo , Animales , Nanopartículas/química , ARN/genética , ARN/administración & dosificación , Exosomas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/metabolismo , Portadores de Fármacos/química , MicroARNs/genética , MicroARNs/administración & dosificación , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Técnicas de Transferencia de Gen
19.
Adv Wound Care (New Rochelle) ; 13(9): 435-445, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38183631

RESUMEN

Introduction: Diabetes mellitus (DM) affects over 422 million people globally. Patients with DM are subject to a myriad of complications, of which diabetic foot ulcers (DFUs) are the most common with ∼25% chance of developing these wounds throughout their lifetime. Innovation: Currently there are no therapeutic RNAs approved for use in DFUs. Use of dressings containing novel layer-by-layer (LbL)-formulated therapeutic RNAs that inhibit PHD2 and miR-210 can significantly improve diabetic wound healing. These dressings provide sustained release of therapeutic RNAs to the wounds locally without systemic side effects. Clinical Problem Addressed: Diabetic foot wounds are difficult to heal and often result in significant patient morbidity and mortality. Materials and Methods: We used the diabetic neuroischemic rabbit model of impaired wound healing. Diabetes was induced in the rabbits with alloxan, and neuroischemia was induced by ligating the central neurovascular bundle of each ear. Four 6-mm full-thickness wounds were created on each ear. A LbL technique was used to conformally coat the wound dressings with chemically modified RNAs, including an antisense oligonucleotide (antimiR) targeting microRNA-210 (miR-210), an short synthetic hairpin RNA (sshRNA) targeting PHD2, or both. Results: Wound healing was improved by the antimiR-210 but not the PHD2-sshRNA. Specific knockdown of miR-210 in tissue as measured by RT-qPCR was ∼8 Ct greater than nonspecific controls, and this apparent level of knockdown (>99%) suggests that delivery to the tissue is highly efficient at the administered dose. Discussion: Healing of ischemic/neuropathic wounds in diabetic rabbits was accelerated upon inhibition of miR-210 by LbL delivery to the wound bed. miR-210 inhibition was achieved using a chemically modified antisense RNA.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , MicroARNs , Cicatrización de Heridas , Animales , Conejos , Cicatrización de Heridas/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Pie Diabético/terapia , MicroARNs/metabolismo , MicroARNs/genética , MicroARNs/administración & dosificación , Vendajes , Modelos Animales de Enfermedad
20.
Cancer Med ; 13(1): e6936, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38197582

RESUMEN

BACKGROUND: Colorectal cancer (CRC), known as prevalent cancer, has risen to be the leading cause of cancer-related death. Engineered exosomes had attracted much attention since they acted as carriers to deliver small molecule drugs, therapeutic nucleic acids, and polypeptides to treat a series of cancers. METHODS AND RESULTS: Here, we found that the PKH-26 labeled exosomes, which were derived from the CRC cells, could be efficiently absorbed by SW1116 cells and had an abundant fluorescence distribution in tumors, compared with the exosomes derived from mesenchymal stem cells (MSC) and HepG2 cells. This Research demonstrated that engineered CRC-exosomes loaded with functional miR-1270 (Exo-miR-1270) enriched in miR-1270 strongly inhibited the proliferation by CCK-8 and EdU assays, migration by wound-healing and transwell assays, and promoted the apoptosis for CRC cells through flow cytometry. MiR-1270 overexpression delivered by CRC exosomes contributed to inhibiting the tumor growth potential of CRC in vivo and increasing the overall survival of the mice. Moreover, the safety evaluation results showed that CRC-exosomes loaded with functional miR-1270-mimics had no toxicity for other organs by histopathological analysis and no influence on the vital chemistry and hematology parameters for mice in vivo safety evaluation. CONCLUSION: These results indicate that Exo-miR-1270 can effectively treat CRC tumors by intravenous administration. Our work provided a foundation that the homologous tumor-derived exosomes mediated miRNA delivery for the treatment of CRC.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Exosomas , MicroARNs , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Ratones Desnudos , MicroARNs/genética , MicroARNs/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA