RESUMEN
Auricularia cornea has become one of the most important cultivated mushrooms worldwide. Although not remarkably flavorful, Auricularia species are very versatile and rehydrate easily after drying, adding a unique and pleasing texture to the dishes. In this study, we collected, identified, and domesticated a wild strain of A. cornea from the Brazilian Atlantic Rainforest. The wild strain was evaluated for mycelial growth at different temperatures and substrates, biological efficiency, and nutritional composition. The temperature that best favored the A. cornea mycelium growth was 30 °C, and the substrate was sterile Eucalyptus sawdust. The highest biological efficiency value obtained was 106.90 ± 13.28%. Nutritional analysis showed that the produced wood ears contained 71.02% carbohydrates, 19.63% crude fiber, 11.59% crude protein, 10.19% crude fat, and 4.24% ash on dry matter basis. For the mineral content profile, the elements K and P were the most abundant. This is the first report on cultivation of a wild strain of A. cornea from Brazil.
Asunto(s)
Madera , Brasil , Madera/microbiología , Basidiomycota/crecimiento & desarrollo , Basidiomycota/clasificación , Micelio/crecimiento & desarrollo , Temperatura , Eucalyptus/microbiología , Eucalyptus/crecimiento & desarrollo , Bosque LluviosoRESUMEN
Ganoderma lingzhi is widely reported for its medicinal properties, presenting several bioactive substances with potential pharmaceutical and industrial application. This study aimed to evaluate the production of mycelial biomass, extracellular enzymes and antioxidant compounds by G. lingzhi under submerged fermentation. G. lingzhi was cultured in Polysaccharide (POL) and Melin-Norkrans (MNM) media for 7 days. The cellulases, xylanases, pectinases, laccases, and proteases activities were quantified in the culture broth, while the antioxidant potential was evaluated for the mycelial biomass. G. lingzhi showed higher biomass production in MNM. However, it exhibited similar microstructural characteristics in both culture media. In the POL there was greater activity of CMCase (0.229 U/mL), xylanase (0.780 U/mL), pectinase (0.447 U/mL) and proteases (16.13 U/mL). FPase did not differ (0.01 U/mL), and laccase was detected only in MNM (0.122 U/mL). The biomass water extract from MNM showed high levels of phenolic compounds (951.97 mg AGE/100 g). DPPH⢠inhibition (90.55%) and reducing power (0.456) were higher in MNM medium, while ABTSâ¢+ inhibition (99.95%) and chelating ability (54.86%) were higher in POL. Thus, the MNM medium was more favorable to the production of mycelial biomass and phenolic compounds, while the POL medium favored the synthesis and excretion of hydrolytic enzymes.
Asunto(s)
Antioxidantes , Biomasa , Medios de Cultivo , Fermentación , Ganoderma , Antioxidantes/metabolismo , Antioxidantes/análisis , Ganoderma/enzimología , Ganoderma/metabolismo , Micelio/crecimiento & desarrolloRESUMEN
Arbuscular mycorrhizal (AM) fungi can sequester different potentially toxic elements, such as trace elements (TEs), within their structures to alleviate the toxicity for its host plant and themselves. To elucidate the role of AM fungi in TEs immobilization in the rhizosphere of host plants, it is important to know the TEs distribution in AM fungal structures. In the present study, we investigated the distribution and concentration of TEs within extraradical spores and mycelium of the AM fungus Rhizophagus intraradices, collected from the rhizosphere of Senecio bonariensis plants grown in a soil polluted with multiple TEs, by using Particle-Induced X-ray Emission with a micro-focused beam (micro PIXE). This technique enabled the simultaneous micrometric mapping of elements in a sample. The calculated values were compared with those in the polluted substrate, measured by the Wavelength Dispersive X-ray Fluorescence technique. The highest concentrations of Fe, P, Ti, Mn, Cr, Cu and Zn were found in AM fungal spores, where they were accumulated, while extraradical mycelium was enriched in Cu. Finally, we demonstrated that AM fungi can simultaneously accumulate high amounts of different TEs in their structures, thus reducing the toxicity of these elements to its host plant.
Asunto(s)
Glomeromycota , Micorrizas , Espectrometría por Rayos X , Oligoelementos , Oligoelementos/análisis , Oligoelementos/metabolismo , Micorrizas/química , Micorrizas/metabolismo , Glomeromycota/química , Rizosfera , Esporas Fúngicas/química , Esporas Fúngicas/crecimiento & desarrollo , Micelio/química , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Microbiología del Suelo , Raíces de Plantas/microbiologíaRESUMEN
The search for less harmful, ecologically efficient, more specific, and natural alternatives for the control of pathogens is essential. Bauhinia variegata lectin (BvL) is a protein that has numerous biological activities, including antifungal. The present study examines the potential in vitro of B. variegata lectin against the fungus Bipolaris oryzae, responsible for agricultural losses in southern Brazil, due to damage to rice fields during seed germination. Bioassays to assess the inhibition potential of BvL were performed, including fungal growth, spore formation, and germination, in concentrations of 0, 25, 50, and 100 µg mL-1. Only the concentration of 100 µg mL-1 successfully inhibited mycelial growth and spore germination, while in spore formation, all treatments inhibited sporulation. In addition, fluorescence microscopy analysis demonstrated the ability of lectin to bind to the fungus and the lack of detection in the presence of lactose, suggesting its interaction with the fungal cell wall structures. This study highlights the potential of B. variegata seed lectin to control mycelial growth, sporulation, and germination of the phytopathogenic fungus B. oryzae, posing as a new biotechnological possibility for biological control.
Asunto(s)
Antifúngicos , Bauhinia , Lectinas de Plantas , Esporas Fúngicas , Bauhinia/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Antifúngicos/farmacología , Antifúngicos/química , Lectinas de Plantas/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Lectinas/farmacología , Oryza/microbiología , Oryza/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Brasil , Semillas/efectos de los fármacosRESUMEN
Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.
Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Colorantes , Oryza , Oryza/microbiología , Colorantes/metabolismo , Colorantes/química , Reactores Biológicos/microbiología , Lacasa/metabolismo , Biomasa , Violeta de Genciana/metabolismo , Violeta de Genciana/química , Trametes/metabolismo , Trametes/enzimología , Micelio/metabolismo , Polyporaceae/metabolismoRESUMEN
Sustainable agriculture involves adopting best practices in food production to promote environmental and economic sustainability. Its implementation primarily aims to utilise organic residues to increase yield, diversify production, and reduce costs. In this context, the objective of this study was to investigate different substrates for Hypsizygus ulmarius production and, from its residual substrate, to develop formulations for lettuce seedling growth and subsequent greenhouse cultivation. For mushroom production, substrates were prepared from sawdust with the addition of wheat bran, rice bran, soybean meal, and calcite, resulting in four distinct substrate formulations. The spent mushroom substrate (SMS), obtained at the end of cultivation, was used for lettuce seedling production along with the commercial substrate Carolina Soil® and the soil conditioner BacSol®. The top five formulations were selected for transplanting in the greenhouse. Regarding mushroom production, substrates with higher carbon/nitrogen ratios, around 66: 1, resulted in higher yields. For seedling production, SMS showed lower efficiency compared to the commercial substrate Carolina Soil®, which also benefited from the addition of the soil conditioner BacSol®. However, after transplanting lettuce seedlings, the formulation containing SMS showed superior results in almost all evaluated parameters. Therefore, we concluded that despite the inefficiency of using H.ulmarius SMS for lettuce seedling production, it favours the establishment of seedlings in greenhouse cultivation environments.
Asunto(s)
Agaricales , Agricultura , Lactuca , Lactuca/crecimiento & desarrollo , Agricultura/métodos , Micelio/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Desarrollo Sostenible , Suelo/químicaRESUMEN
The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.
Asunto(s)
Alternaria , Antibiosis , Filogenia , Enfermedades de las Plantas , Serratia , Esporas Fúngicas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Alternaria/crecimiento & desarrollo , Alternaria/genética , Serratia/genética , Serratia/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Antifúngicos/farmacología , Solanum lycopersicum/microbiología , Hifa/crecimiento & desarrollo , Medios de Cultivo/química , Hojas de la Planta/microbiología , Vitis/microbiologíaRESUMEN
Abstract The in vitro sporulation of Didymella bryoniae is of great importance for studies that require pure inoculum and in large quantities. Thus, the objectives of this study were to identify the best condition for D. bryoniae sporulation combining different light spectra (UV-A or UV-B light, white light, and continuous dark), with distinct culture media (PDA, V8, ML, and PDAB) and, to evaluate fungus' survivability stored at -20°C over time. The fungus samples were only able to sporulate when subjected to the UV-B light treatment, regardless of the culture medium. The highest appearance of spores conidium type was observed in the PDAB medium, and the lowest production occurred in the ML medium. Reproductive structures, such as perithecia and pycnidia, were observed in all culture media. However, there was considerable variation in the amount of each structure between the different culture media. The ML and V8 media showed a greater number of perithecia and the PDA and PDAB media presented a greater proportion of pycnidia compared to perithecia. The storage duration at -20°C did not affect mycelial growth or mycelial growth rate. In conclusion, the UV-B light is essential for D. bryoniae in vitro sporulation. Moreover, the culture medium composition influences the type of fungal structure produced, as well as spores' size and quantity. Freezing at -20°C is an efficient technique that can be used to store D. bryoniae for at least five months without loss of viability.
Resumo A esporulação de Didymella bryoniae in vitro é de grande importância para estudos que requerem inóculo puro e em grandes quantidades. Assim, os objetivos deste estudo foram identificar a melhor condição para esporulação de D. bryoniae combinando diferentes espectros de luz (luz UV-A ou UV-B, luz branca e escuro contínuo) com distintos meios de cultura (PDA, V8, ML e PDAB) e, avaliar a sobrevivência do fungo armazenado a -20°C ao longo do tempo. As amostras de fungo só esporularam quando submetidas ao tratamento com luz UV-B, independentemente do meio de cultura. Maior aparecimento de esporos do tipo conídio foi observado no meio PDAB, e a menor produção ocorreu no meio ML. Estruturas reprodutivas, como peritécios e picnídeos, foram observadas em todos os meios de cultura. No entanto, houve uma variação considerável na quantidade de cada estrutura entre os diferentes meios de cultura. Os meios ML e V8 apresentaram maior número de peritécios e os meios PDA e PDAB apresentaram maior proporção de picnídeos em relação aos peritécios. A duração do armazenamento a -20°C não afetou o crescimento micelial ou a taxa de crescimento micelial. Em conclusão, a luz UV-B é essencial para a esporulação de D. bryoniae in vitro. Além disso, a composição do meio de cultura influencia o tipo de estrutura fúngica produzida, bem como o tamanho e a quantidade dos esporos. O congelamento a -20°C é uma técnica eficiente que pode ser usada para armazenar D. bryoniae por pelo menos cinco meses sem perda de viabilidade
Asunto(s)
Ascomicetos , Esporas Fúngicas , Temperatura , MicelioRESUMEN
IMPORTANCE: In addition to being considered a biocontrol agent, the fungus Trichoderma atroviride is a relevant model for studying mechanisms of response to injury conserved in plants and animals that opens a new landscape in relation to regeneration and cell differentiation mechanisms. Here, we reveal the co-functionality of a lipoxygenase and a patatin-like phospholipase co-expressed in response to wounding in fungi. This pair of enzymes produces oxidized lipids that can function as signaling molecules or oxidative stress signals that, in ascomycetes, induce asexual development. Furthermore, we determined that both genes participate in the regulation of the synthesis of 13-HODE and the establishment of the physiological responses necessary for the formation of reproductive aerial mycelium ultimately leading to asexual development. Our results suggest an injury-induced pathway to produce oxylipins and uncovered physiological mechanisms regulated by LOX1 and PLP1 to induce conidiation, opening new hypotheses for the novo regeneration mechanisms of filamentous fungi.
Asunto(s)
Trichoderma , Animales , Trichoderma/genética , Transducción de Señal , Micelio , Reproducción , Estrés Oxidativo , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/metabolismoRESUMEN
Scedosporium apiospermum is a widespread, emerging, and multidrug-resistant filamentous fungus that can cause localized and disseminated infections. The initial step in the infection process involves the adhesion of the fungus to host cells and/or extracellular matrix components. However, the mechanisms of adhesion involving surface molecules in S. apiospermum are not well understood. Previous studies have suggested that the binding of fungal receptors to fibronectin enhances its ability to attach to and infect host cells. The present study investigated the effects of fibronectin on adhesion events of S. apiospermum. The results revealed that conidial cells were able to bind to both immobilized and soluble human fibronectin in a typically dose-dependent manner. Moreover, fibronectin binding was virtually abolished in trypsin-treated conidia, suggesting the proteinaceous nature of the binding site. Western blotting assay, using fibronectin and anti-fibronectin antibody, evidenced 7 polypeptides with molecular masses ranging from 55 to 17 kDa in both conidial and mycelial extracts. Fibronectin-binding molecules were localized by immunofluorescence and immunocytochemistry microscopies at the cell wall and in intracellular compartments of S. apiospermum cells. Furthermore, a possible function for the fibronectin-like molecules of S. apiospermum in the interaction with host lung cells was assessed. Conidia pre-treated with soluble fibronectin showed a significant reduction in adhesion to either epithelial or fibroblast lung cells in a classically dose-dependent manner. Similarly, the pre-treatment of the lung cells with anti-fibronectin antibodies considerably diminished the adhesion. Collectively, the results demonstrated the presence of fibronectin-binding molecules in S. apiospermum cells and their role in adhesive events.
Asunto(s)
Scedosporium , Humanos , Fibronectinas/metabolismo , Micelio/metabolismo , PulmónRESUMEN
Filamentous fungi develop intricate hyphal networks that support mycelial foraging and transport of resources. These networks have been analyzed recently using graph theory, enabling the development of models that seek to predict functional traits. However, attention has focused mainly on mature colonies. Here, we report the extraction and analysis of the graph corresponding to Trichoderma atroviride mycelia only a few hours after conidia germination. To extract the graph for a given mycelium, a mosaic conformed of multiple bright-field, optical microscopy images is digitally processed using freely available software. The resulting graphs are characterized in terms of number of nodes and edges, average edge length, total mycelium length, hyphal growth unit, maximum edge length and mycelium diameter, for colonies between 8 h and 14 h after conidium germination. Our results show that the emerging hyphal network grows first by hyphal elongation and branching, and then it transitions to a stage where hyphal-hyphal interactions become significant. As a tangled hyphal network develops with decreasing hyphal mean length, the mycelium maintains long (â¼2 mm) hyphae-a behavior that suggests a combination of aggregated and dispersed architectures to support foraging. Lastly, analysis of early network development in Podospora anserina reveals striking similarity with T. atroviride, suggesting common mechanisms during initial colony formation in filamentous fungi.
Asunto(s)
Hifa , Micelio , Hongos , MicroscopíaRESUMEN
At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.
Asunto(s)
ADN de Hongos , Hongos , Sedimentos Geológicos , Micobioma , Esporas Fúngicas , Ascomicetos/genética , Ascomicetos/fisiología , Basidiomycota/genética , Basidiomycota/fisiología , Chile , Hongos/genética , Hongos/fisiología , Sedimentos Geológicos/microbiología , Lagos/microbiología , Microbiota/fisiología , Micelio/genética , Micelio/aislamiento & purificación , Micelio/fisiología , Micobioma/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/fisiología , Humedales , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN de Hongos/fisiologíaRESUMEN
In Northwestern Patagonia (Chile), three species of Morchella from undisturbed environments have been identified to date: Morchella tridentina, Morchella andinensis and Morchella aysenina, all belonging to the Elata clade and associated mainly with Nothofagus forests. In this study, the search for Morchella specimens was extended to disturbed environments in Central-Southern Chile, to further explore Morchella species diversity in the country, which is still very limited. The Morchella specimens were identified through multilocus sequences analysis, and the mycelial cultures were characterized, establishing comparisons with specimens from undisturbed environments. To the best of our knowledge, these results reveal for the first time in Chile the presence of the species Morchella eximia and Morchella importuna, and in the case of the last one also the first record in South America. These species were found associated almost exclusively with harvested or burned coniferous plantations. The in vitro mycelial characterization revealed certain inter- and intra-specific patterns of the morphology, such as pigmentation, mycelium type, and development and formation of sclerotia, which varied according to growth media and incubation temperature. The growth rates (mm/day) and mycelial biomass (mg) were significantly influenced by the temperature (p < 0.05), with maximum rates (>10 mm/day) and biomass (approx. 20 mg) between 20 and 24 °C, while a significant growth reduction (70-90%) was observed at 28 °C, mainly in the species from undisturbed environments. Potato-dextrose (PDA) medium stimulated the greatest mycelial density and sclerotia formation in most of the isolates, mainly in M. eximia (UDEC-LAF 236 isolate) which recorded the best mycelial growth performance. Among isolates, UDEC-LAF 236 also showed the best performance in sclerotia production (>350 sclerotia/dish) in 10 days of growth. This study contributes to the knowledge of the diversity of Morchella species in Chile by broadening the species range to those from disturbed environments. It also provides molecular and morphological characterization of the in vitro cultures of different Morchella species. The report on M. eximia and M. importuna, species known as cultivable, adapted to local climatic and edaphic conditions could represent the first step to developing artificial Morchella cultivation methods in Chile.
Asunto(s)
Micelio , ChileRESUMEN
Despite knowledge on the therapeutic properties of fungal bio-compounds, few studies have been reported on their anti-parasitic activities. The anti-parasitic activity (APA) of mycelial extracts from seven medicinal agaricomycetous mushrooms (Polyporus lipsiensis, Ganoderma applanatum, Pleurotus ostreatus, P. flabellatus, Oudemansiella canarii, Lentinula edodes, and Pycnoporus sanguineus) against Giardia duodenalis, and identification of chemical compounds produced by mycelium P. lipsiensis mycelium, have been reported. The extracts of mycelia and fermented culture broths of tested mushroom species were evaluated against G. duodenalis by biological assays. P. lipsiensis showed the highest APA. The chemical analysis of mycelial extract of P. lipsiensis by gas chromatography-mass spectrometry (GC-MS) identified 73 molecules, including steroids, terpenes, and lipids. According to literature data, among these molecules, 11 possess APA. The present study revealed the diversity of compounds with anti-protozoal potential produced by mycelia of Agaricomycetes mushrooms, particularly P. lipsiensis against G. duodenalis.
Asunto(s)
Agaricales , Giardia lamblia , Pleurotus , Hongos Shiitake , Cromatografía de Gases y Espectrometría de Masas , Micelio/química , Pleurotus/química , Hongos Shiitake/químicaRESUMEN
Lentinus crinitus bioaccumulates lithium in mycelia, but bioaccumulation may be affected by pH of the culture medium. Lithium is used in clinical practice as a mood stabilizer and antidepressant. This study aimed to assess the effect of culture medium pH and lithium source (LiCl or Li2CO3) on lithium bioaccumulation in vegetative mycelia of L. crinitus grown in malt extract broth. Lentinus crinitus U9-1 was cultured in malt extract broth supplemented with Li2CO3 or LiCl (50 mg L-1 lithium) in the pH range of 3.0 to 6.0. The pH was adjusted using HCl solution. The results showed that medium pH affected mycelial biomass production, lithium bioaccumulation in mycelial biomass, and lithium transfer from the culture medium to mycelial biomass. The effect of lithium source on the bioaccumulation capacity of mycelial biomass varied according to pH. At pH 4.0, both lithium sources stimulated mycelial biomass production compared to the control without the addition of lithium. At pH 5.5, Li2CO3 provided the highest lithium bioaccumulation in mycelial biomass. Lithium transfer from the culture medium to mycelia was highest in Li2CO3-supplemented cultures at pH 4.5. LiCl reduced hyphal width compared with Li2CO3 and the control. However, pH and lithium sources did not affect the formation of clamp connections in hyphae. For the first time, the influence of the pH of the culture medium on lithium bioaccumulation by Lentinus crinitus is reported. Finally, we conclude that the culture medium pH affected lithium transfer and bioaccumulation in mycelial biomass differently depending on the lithium source. Additionally, we report the presence of clamp connections in the hyphae of L. crinitus as an indicator of even growth.
Asunto(s)
Litio , Micelio , Bioacumulación , Biomasa , Concentración de Iones de Hidrógeno , Extractos Vegetales , Medios de CultivoRESUMEN
Bioactivity is defined as the intrinsic property of compounds that enables their participation in specific biological reactions. This study aimed to evaluate the antimicrobial capacity and to separate and characterize bioactives from aqueous and hydroalcoholic extracts obtained from the mycelium of medicinal mushrooms Pleurotus albidus and Phellinus linteus. Antimicrobial activity, through the disc diffusion method, was found against strains of Bacillus cereus, B. subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. P. albidus extracts showed better activity against Bacillus strains, whereas Ph. linteus extracts had greater effectiveness against S. aureus and P. aeruginosa. Aqueous extraction was best for obtaining bioactive compounds of P. albidus, whereas 30% hydralcoholic extraction performed best for obtaining Ph. linteus. Mass spectrometry analyses allowed the identification of the main chemical compounds extracted from the fungal biomasses, including glutathione oxidase, leucovorin, and riboflavin. Taking these findings into consideration, P. albidus and Ph. linteus might be used as sources of bioactive molecules for the development of novel drugs or nutraceuticals, contributing to the improvement of public health.
Asunto(s)
Agaricales , Antiinfecciosos , Pleurotus , Agaricales/química , Antibacterianos , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Basidiomycota , Micelio/química , Pseudomonas aeruginosa , Staphylococcus aureusRESUMEN
Mushrooms have health benefits, including anti-tumoral properties. We evaluated the cytotoxic and cell death induction effects of water-soluble extracts of Pleurotus ostreatus and Pleurotus eryngii mycelium in the cervical cancer cell lines HeLa (HVP18+) and SiHa (HVP16+) as well as the non-tumoral cell line HaCaT. Both Pleurotus extracts presented similar protein patterns from 190 to 10 kDa and displayed protease activity on a gelatine substrate. The mycelium extracts of both Pleurotus strains induced a dose-dependent cytotoxic effect on HPV+ cells IC50 65 µg), whereas HaCaT cells were less susceptible (IC50 90 µg). The cytotoxic effect at the IC50 concentration was not associated with apoptosis, the activation of Caspases-3/7 was not significantive; only P. eryngii induced a moderate (1.2-fold) increase in SiHa cells. Pleurotus extracts induced autophagy, mainly in SiHa cells (4.3-fold). Neither extracts induced changes in p53 protein expression, suggesting that the cytotoxic effect could be due to p53-independent pathways.
Asunto(s)
Antineoplásicos , Pleurotus , Neoplasias del Cuello Uterino , Femenino , Humanos , Pleurotus/química , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Micelio/química , Células HeLa , Antineoplásicos/farmacología , Antineoplásicos/análisis , ApoptosisRESUMEN
Fungal phytopathogens require different skills to infect plants and complete their lifecycle. Some proteins in fungi are essential for pathogenesis and their expression is regulated by epigenetic mechanisms via chromatin-remodeling. Macrophomina phaseolina is an important phytopathogenic fungus that leads to considerable losses of different crops, especially during drought conditions. Some biological features of the fungus have been described. However, the epigenetics mechanisms involved in the development and virulence of M. phaseolina have not been fully studied. In this work, chemical inhibition was used to evaluate the role of histone deacetylases (HDACs) in the biology of M. phaseolina. The effect of two histone deacetylase inhibitors (iHDAC), valproic acid (VPA) and sodium butyrate (SBT), was analyzed. The results showed that the treated fungus presented a decrease in microsclerotia diameter, aerial mycelia production, vegetative growth, and cell pigmentation. In addition, VPA and SBT also affected the ability of the fungus to grow on complex carbon sources and virulence in the bean variety, BAT 477. Thus, it can be concluded that the alteration of histone deacetylation by VPA and SBT affects M. phaseolina growth, morphology, and virulence.
Asunto(s)
Ascomicetos , Inhibidores de Histona Desacetilasas , Ascomicetos/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Micelio , VirulenciaRESUMEN
The objective of this study was to evaluate the antioxidant activity, determine and quantify the phenolic compounds and other compounds, and evaluate the cellular cytotoxicity of mycelium extracts of two new Basidiomycete mushrooms strains isolated in Brazil and identified as Lepista sordida GMA-05 and Trametes hirsuta GMA-01. Higher amounts of proteins, free amino acids, total and reducing carbohydrates, and phenolic compounds as chlorogenic, ferulic, caffeic, and gallic acids were found in extracts of T. hirsuta and L. sordida. Protocatechuic acid was found only in aqueous extracts of L. sordida. The TLC of the extracts showed the predominance of glucose and smaller amounts of xylose. It was observed through UPLC-MS higher amounts of phenolic compounds. The aqueous extract from T. hirsuta had the most noteworthy results in the antioxidant assays, especially the ABTS test. The cytotoxic activity was evaluated using two different cell lineages and showed higher toxicity for L. sordida in macrophages J774-A1. However, in Vero cells, it was 12.6-fold less toxic when compared to T. hirsuta. Thus, both mushrooms show potential as functional foods or additives, presenting phenolic content, antioxidant activity, and low cytotoxic activity in the tested cells.
Asunto(s)
Agaricales , Trametes , Animales , Antioxidantes/análisis , Antioxidantes/farmacología , Brasil , Chlorocebus aethiops , Cromatografía Liquida , Micelio/química , Extractos Vegetales/química , Polyporaceae , Espectrometría de Masas en Tándem , Trametes/química , Células VeroRESUMEN
Several studies have reported that bacteria produce anti-fungal volatiles. We identified the organic volatile compounds produced by six cacao endophytic bacteria (CEB) strains (Bacillus amyloliquefaciens CFFSUR-B35, Bacillus megaterium CFFSUR-B32, Bacillus muralis CFFSUR-B39, Bacillus pumilus CFFSUR-B34, Bacillus subtilis CFFSUR-B31, and Novosphingobium lindaniclasticum CFFSUR-B36). We evaluated their inhibitory effect on mycelium growth and spore germination of the phytopathogenic fungus Moniliophtora roreri. The volatiles produced by these six CEB, were collected and identified by SPME and GC-MS. Moreover, the inhibitory effect of five synthetic volatile organic compounds, individually and in mixtures (dimethyl disulfide, 2-5 dimethyl pyrazine, α-pinene, 2-heptanone and 2-ethyl hexanol) on M. roreri mycelium growth and spore germination was evaluated. All strains examined produced volatiles in different amounts; 13 to 10 compounds were identified, including sulfide, alcohol benzene derivate, pyrazine, ketone, nitrogen and terpene compounds. The B. subtilis CFFSUR-B31 strain produced the largest number of volatiles, while B. pumilus CFFSUR-B34 produced the fewest and the lowest amounts. The volatile organic compounds produced by B. pumilus CFFSUR-B34, B. muralis CFFSUR-B39 and N. lindaniclasticum CFFSUR-B36 inhibited M. roreri mycelium growth by more than 35%, sporulation by more than 81% and spore germination by more than 74%. However, when synthetic compounds were evaluated individually and in mixtures, 2-ethyl hexanol at 100,000 ppm (20 mg/filter paper disc) inhibited M. roreri mycelium growth by 100%, followed by organic volatile compound mixtures C (dimethyl disulfide, 2,5-dimethyl pyrazine, α-pinene, 2-ethyl-hexanol, 2-Heptanone) and D (only the top four) at 100,000 ppm (4 and 5 mg/filter paper disc) which inhibited spore germination by 97 and 89%, respectively.