Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.022
Filtrar
1.
J Ethnopharmacol ; 336: 118743, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209000

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE: To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS: The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS: In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS: We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.


Asunto(s)
Modelos Animales de Enfermedad , PPAR alfa , Transducción de Señal , Pez Cebra , Animales , Transducción de Señal/efectos de los fármacos , PPAR alfa/metabolismo , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cricetinae , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Mesocricetus , Células Hep G2 , Benzofuranos/farmacología , Hígado Graso/tratamiento farmacológico
2.
PLoS One ; 19(9): e0292500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240896

RESUMEN

Queen honey bees (Apis mellifera) release Queen Mandibular Pheromone (QMP) to regulate traits in the caste of female helpers called workers. QMP signals the queen's presence and suppresses worker reproduction. In the absence of reproduction, young workers take care of the queen and her larvae (nurse tasks), while older workers forage. In nurses, QMP increases lipid stores in abdominal fat tissue (fat body) and protein content in hypopharyngeal glands (HPG). HPG are worker-specific head glands that can synthesize proteinaceous jelly used in colony nourishment. Larger HPG signifies ability to secrete proteinaceous jelly, while shrunken glands characterize foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the mechanism is unclear: Does QMP make workers consume more pollen which provides lipids, or does QMP increase lipogenic capacity? Here, we measure abdominal lipogenic capacity as fatty acid synthase (FAS) activity while monitoring abdominal protein content and HPG size in caged workers. Cages allow us to rigorously control worker age, pheromone exposure, and diet. In our 2-factorial design, 3- vs. 8-day-old workers (age factor) were exposed to synthetic QMP or not (pheromone factor) while consuming a lipid deficient diet. We found that QMP did not influence abdominal FAS activity or protein content, but QMP still increased HPG size in the absence of dietary lipids. Our data revealed a positive correlation between abdominal protein content and HPG size. Our findings show that QMP is not a strong modulator of lipogenic capacity in caged worker bees. However, our data may reflect that QMP mobilizes abdominal protein for production of jelly, in line with previous findings on effects of honey bee Brood Pheromone. Overall, our study expands the understanding of how QMP can affect honey bee workers. Such insights are important beyond regulatory biology, as QMP is used in various aspects of beekeeping.


Asunto(s)
Metabolismo de los Lípidos , Feromonas , Animales , Abejas/metabolismo , Abejas/fisiología , Feromonas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Femenino , Hipofaringe/metabolismo , Proteínas de Insectos/metabolismo , Ácido Graso Sintasas/metabolismo
3.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39233472

RESUMEN

AIMS: As the interactions of alcohol and HIV/SIV infection and their impact on liver metabolic homeostasis remain to be fully elucidated, this study aimed to determine alcohol-mediated hepatic adaptations of metabolic pathways in SIV/ART-treated female rhesus macaques fed a nutritionally balanced diet. METHODS: Macaques were administered chronic binge alcohol (CBA; 13-14 g ethanol/kg/week for 14.5 months; n = 7) or vehicle (VEH; n = 8) for 14.5 months. Livers were excised following an overnight fast. Gene and protein expression, enzymatic activity, and lipid content were determined using frozen tissue and histological staining was performed using paraffin-embedded tissue. RESULTS: CBA/SIV macaques showed increased hepatic protein expression of electron transport Complex III and increased gene expression of glycolytic (phosphofructokinase and aldolase) and gluconeogenic (pyruvate carboxylase) enzymes and of genes involved in lipid turnover homeostasis (perilipin 1, peroxisome proliferator-activated receptor gamma, carbohydrate responsive binding protein, and acetyl-CoA carboxylase B) as compared to that of livers from the VEH/SIV group. Plasma triglyceride concentration had a significant positive association with liver triglyceride content in the CBA/SIV group. CONCLUSIONS: These results reflect CBA-associated alterations in expression of proteins and genes involved in glucose and lipid metabolism homeostasis without significant evidence of steatosis or dysglycemia. Whether these changes predispose to greater liver pathology upon consumption of a high fat/high sugar diet that is more aligned with dietary intake of PWH and/or exposure to additional environmental factors warrants further investigation.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Hígado , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Femenino , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Etanol/farmacología , Metabolismo de los Lípidos/efectos de los fármacos
4.
PLoS One ; 19(9): e0309976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39236049

RESUMEN

Sarmentosin (SA) and Quercetin (QC) are two active components of Sedum Sarmentosum Bunge, which is a traditional Chinese herbal medicine. This study aimed to investigate the role and regulatory mechanism of SA and QC in fatty liver of Genetic Improvement of Farmed Tilapia (GIFT) tilapia. GIFT tilapia were randomly divided into two groups with three replicates per treatment (30 fish in each replicate): normal diet group (average weight 3.51±0.31 g) and high-fat diet group (average weight 3.44±0.09 g). After 8 weeks feeding trial, growth index, lipid deposition, and biochemical indexes were measured. Lipid deposition, and lipid and inflammation-related gene expression were detected in a primary hepatocyte model of fatty liver of GIFT tilapia treated with SA or QC. Our results showed that high-fat diet caused lipid deposition and peroxidative damage in the liver of GIFT tilapia. The cell counting kit-8 assay results indicated that 10 µM SA and 10 µM of QC both had the least effect on hepatocyte proliferation. Moreover, both 10 µM of SA and 10 µM of QC showed lipolytic effects and inhibited the expression of lipid-related genes (FAS, Leptin, SREBP-1c, and SREBP2) in fatty liver cells. Interestingly, QC induced autophagosome-like subcellular structure and increased the expression of IL-8 in fatty liver cells. In conclusion, this study confirmed that SA and QC improved fatty liver caused by high-fat diet, providing a novel therapeutic approach for fatty liver of GIFT tilapia.


Asunto(s)
Hígado Graso , Hepatocitos , Metabolismo de los Lípidos , Quercetina , Animales , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Quercetina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/patología , Cíclidos/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Tilapia/metabolismo , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos
5.
Food Funct ; 15(18): 9116-9135, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39219450

RESUMEN

Konjac glucomannan (KGM) is a dietary fiber supplement that exhibits multiple biological activities, including weight control as well as regulation of glucose and lipid metabolism. Currently, KGM intake patterns in practical applications include KGM sol, thermal irreversible gel, and frozen thermal irreversible gel. In this study, four intake patterns of KGM, namely KGM sol (KS), deacetylated KGM (DK), KGM gel (KG), and frozen KGM gel (FKG), were used as materials to explore the effects of different KGM intake patterns on glucose and lipid metabolism and intestinal flora in obese mice induced by a high fat diet under the same dose. The results showed that any type of KGM intake could reduce body weight, fat mass, lipid levels, and insulin resistance in obese mice, and alleviate liver damage and inflammation caused by obesity. However, KS has the most significant effect on controlling blood glucose and blood lipid in obese mice. Additionally, it was found that KS, DK, KG and FKG can increase the α-diversity of intestinal microflora in high-fat mice and improve the microflora disorder in high-fat mice. Finally, KS may increase the levels of fasting appetite hormones GLP-1 and PYY in mice, up-regulate the expression of LDLR, GCK and G-6-pase mRNA, and increase the production of short-chain fatty acids (SCFAs) in the intestinal flora of mice, thus regulating glucose and lipid metabolism. This study systematically investigated the effects of different intake forms of KGM on metabolism and intestinal flora in obese mice, which is of great significance for further understanding the role of KGM in the prevention and treatment of obesity-related metabolic diseases and for developing targeted dietary interventions.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Mananos , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Animales , Mananos/farmacología , Mananos/administración & dosificación , Ratones , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Resistencia a la Insulina , Glucemia/metabolismo , Glucosa/metabolismo , Fibras de la Dieta/farmacología , Péptido YY/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos
6.
Chem Res Toxicol ; 37(9): 1574-1587, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39235066

RESUMEN

ZLY06 is a dual agonist of peroxisome proliferator-activated receptor (PPAR) δ/γ, showing potential therapeutic effects on metabolic syndrome. However, our research has revealed that ZLY06 exhibits hepatotoxicity in normal C57BL/6J mice, though the precise mechanism remains unclear. This study aims to investigate the manifestations and mechanisms of ZLY06-induced hepatotoxicity. We administered ZLY06 via oral gavage to C57BL/6J mice (once daily for six weeks) and monitored various indicators to preliminarily explore its hepatotoxicity. Additionally, we further investigate the specific mechanisms of ZLY06-induced hepatotoxicity using PPAR inhibitors (GW9662 and GSK0660) and the Protein kinase B (AKT) activator (SC79). Results showed that ZLY06 led to increased serum ALP, ALT and AST, as well as elevated liver index and hepatic lipid levels. There was upregulation in the gene and protein expression of lipid metabolism-related molecules Acc, Scd1, Cd36, Fabp1 and Fabp2 in hepatocytes, with Cd36 showing the most significant change. Furthermore, cotreatment with SC79 significantly reduced ZLY06-induced hepatotoxicity in AML12 cells, evidenced by decreased intracellular TG levels and downregulation of CD36 expression. Specific knockdown of CD36 also mitigated ZLY06-induced hepatotoxicity. The study found that ZLY06 may bind to AKT1, inhibiting its phosphorylation activation, with the downregulation of p-AKT1 preceding the upregulation of CD36. In summary, ZLY06 mediates the upregulation of CD36 by potentially binding to and inhibiting the phosphorylation of AKT1, leading to hepatic lipid metabolism disorder and inducing liver toxicity.


Asunto(s)
Antígenos CD36 , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , PPAR gamma , Proteínas Proto-Oncogénicas c-akt , Regulación hacia Arriba , Animales , Antígenos CD36/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación/efectos de los fármacos , Ratones , Regulación hacia Arriba/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , PPAR gamma/agonistas , PPAR gamma/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , PPAR delta/metabolismo , PPAR delta/agonistas , PPAR delta/antagonistas & inhibidores
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1450-1458, 2024 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-39276040

RESUMEN

OBJECTIVE: To investigate the effects of Huangqin Qingrechubi Capsule (HQC) on inflammation and uric acid and lipid metabolism in rats with gouty arthritis (GA) and its mechanism. METHODS: SD rat models of GA established by injecting monosodium urate into the right ankle joint were treated with saline, colchicine and HQC at low, medium and high doses (n=10) by gavage for 7 days. Toe swelling of the rats was detected at 4, 8, 24, 48 and 72 h after modeling, and synovial histological changes were observed with HE staining. Serum levels of interleukin-10 (IL-10), IL-18, tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), adiponectin, leptin, resistin and visfatin were measured by ELISA, and the levels of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), total cholesterol (TC), and uric acid (BUA) were detected. RTqPCR and Western blotting were used to detect the mRNA expressions of phosphatase and tensin homolog (PTEN), phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT) and the protein expressions of PTEN, PI3K, p-PI3K, AKT and p-AKT. RESULTS: The rat models of GA showed obvious toe swelling, which reached the peak level at 48 h. HE staining revealed massive inflammatory cell infiltration and synovial tissue hyperplasia. The rat models showed significantly increased expressions of TNF-α, TGF-ß1, IL-18, TC, TG, leptin, resistin and visfatin, BUA, p-PI3K, and p-AKT and lowered levels of IL-10, APN, HDL-C, and PTEN. Treatment with HQC and colchicine obviously improved these changes and alleviated synovial pathologies and toe swelling in the rat models. CONCLUSION: HQC can improve inflammation and correct the imbalance of uric acid and lipid metabolism in GA rats possibly by inhibiting the PTEN/PI3K/AKT signaling pathway.


Asunto(s)
Artritis Gotosa , Medicamentos Herbarios Chinos , Inflamación , Metabolismo de los Lípidos , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Ácido Úrico , Animales , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ratas , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Úrico/sangre , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Inflamación/metabolismo , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-18/metabolismo
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1518-1528, 2024 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-39276047

RESUMEN

OBJECTIVE: To elucidate the therapeutic mechanism of Qingxin Jieyu Granule (QXJYG) against atherosclerosis (AS) based on network pharmacology. METHODS: The major targets and pathways of QXJYG against AS were analyzed using network pharmacology. Rat models of AS established by high-fat feeding combined with intraperitoneal vitamin D3 injection were treated daily with normal saline, atorvastatin (13.15 mg/kg), or QXJYG at 0.99, 1.98, and 3.96 g/kg for 8 weeks (n=6). Ultrasound and HE staining were used to assess the function and pathologies of the abdominal aorta. Blood lipids and serum levels of Ang Ⅱ, ET-1, TXA2, PGI2, and ox-LDL of the rats were detected using an automatic biochemical analyzer or ELISA. The expressions of LOX-1, PPARγ, RXRα, p-P65, VCAM-1 and ICAM-1 in the abdominal aorta were detected with immunohistochemistry. RESULTS: The rat models of AS showed obvious abdominal aorta wall thickening, increased pulse wave velocity and pulse index, decreased inner diameter of the abdominal aorta, elevated levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and lowered levels of HDL-C and PGI2. QXJYG and atorvastatin treatment of the rat models significantly alleviated histopathological changes of the abdominal aorta, decreased serum levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and increased the levels of HDL-C and PGI2. Network pharmacology study suggested the therapeutic effect of QXJYG against AS was mediated by regulating lipid metabolism, PPAR and NF-κB pathways. Consistently, treatments with QXJYG were found to significantly decrease ox-LDL level and LOX-1, P-P65, VCAM-1 and ICAM-1 protein expressions while increasing PPARγ and RXRα expressions in the aorta of AS rats. CONCLUSION: QXJYG alleviates lipid metabolism disorder and improves histopathological changes of the abdominal aorta of AS rats possibly by lowering ox-LDL level, reducing LOX-1 expression, activating PPARγ and RXRα, and inhibiting P65 phosphorylation to reduce VCAM-1 and ICAM-1 expression in the aorta.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Metabolismo de los Lípidos , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Ratas , Metabolismo de los Lípidos/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/efectos de los fármacos , Farmacología en Red , Lipoproteínas LDL/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , PPAR gamma/metabolismo , Masculino , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Lípidos/sangre , Tromboxano A2/metabolismo , Epoprostenol/análogos & derivados , Receptores Depuradores de Clase E
9.
Cells ; 13(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39272991

RESUMEN

This study explores the impact of royal jelly (RJ) on small intestinal epigenomic changes. RJ, produced by honeybees, is known for its effects on metabolic diseases. The hypothesis is that RJ induces epigenomic modifications in small intestinal epithelial cells, affecting gene expression and contributing to metabolic health. Male db/m and db/db mice were used to examine RJ's effects through mRNA sequencing and CUT&Tag methods. This study focused on histone modifications and gene expression changes, with statistical significance set at p < 0.05. RJ administration improved insulin sensitivity and lipid metabolism without affecting body weight. GO and KEGG pathway analyses showed significant enrichment in metabolic processes, cellular components, and molecular functions. RJ altered histone modifications, increasing H3K27me3 and decreasing H3K23Ac in genes associated with the G2M checkpoint. These genes, including Smc2, Mcm3, Ccnd1, Rasal2, Mcm6, and Mad2l1, are linked to cancer progression and metabolic regulation. RJ induces beneficial epigenomic changes in small intestinal epithelial cells, improving metabolic health and reducing cancer-associated gene expression. These findings highlight RJ's potential as a therapeutic agent for metabolic disorders. Further research is needed to fully understand the mechanisms behind these effects and their implications for human health.


Asunto(s)
Epigenómica , Ácidos Grasos , Intestino Delgado , Animales , Ácidos Grasos/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones , Masculino , Epigenómica/métodos , Histonas/metabolismo , Epigénesis Genética/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Regulación de la Expresión Génica/efectos de los fármacos
10.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273252

RESUMEN

The deregulation of monounsaturated, polyunsaturated, and saturated fatty acids (MUFAs, PUFAs, SFAs) from de novo synthesis and hypoxia are central metabolic features of breast tumour. Early response markers for neoadjuvant chemotherapy (NACT) are critical for stratified treatment for patients with breast cancer, and restoration of lipid metabolism and normoxia might precede observable structural change. In this study, we hypothesised that peri-tumoural lipid composition and hypoxia might be predictive and early response markers in patients with breast cancer undergoing NACT. Female patients with breast cancer were scanned on a 3T clinical MRI scanner at baseline and Cycle1, with acquisition of lipid composition maps of MUFAs, PUFAs, and SFAs, and hypoxia maps of effective transverse relaxation rate R2*. The percentage change in lipid composition and hypoxia at Cycle1 was calculated with reference to baseline. Tumour-associated macrophages were analysed based on immunostaining of CD163 from biopsy and resection, with the percentage change in the resected tumour calculated across the entire NACT. We found no significant difference in lipid composition and R2* between good and poor responders at baseline and Cycle1; however, the correlation between the percentage change in MUFAs and PUFAs against CD163 suggested the modulation in lipids with altered immune response might support the development of targeted therapies.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Adulto , Metabolismo de los Lípidos/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Anciano , Ácidos Grasos/metabolismo , Lípidos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Hipoxia/metabolismo
11.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273384

RESUMEN

The fatty acid receptor CD36 is expressed on various malignant cells and is suggested to contribute to tumor progression. CD36 is also expressed by several immune cells and involved in immune responses and may be a potential target in cancer immunotherapy. In this study, we investigated whether the selective inhibition of CD36 can inhibit tumor progression and facilitate an antitumor immune response in oral squamous carcinoma cells (OSCCs). We assessed the effects of sulfosuccinimidyl oleate sodium (SSO), a CD36 inhibitor, on the proliferation apoptosis and alteration in tumor cell surface expression levels of immune accessory molecules in vitro. We also assessed whether SSO-treated OSCCs could promote a T cell response via a Mixed Lymphocyte Reaction (MLR) assay. We also investigated the direct antitumor effects and immunomodulatory effects of SSO using a mouse oral cancer OSCC model. SSO treatment significantly inhibited OSCC proliferation, increased apoptotic cell death, and upregulated the cell surface expression of several immune accessory molecules, including CD83, MHC-Class II, and PD-L1. SSO-treated OSCCs augmented T cell proliferation following MLR. In vivo SSO administration significantly attenuated mouse tumor growth with an increased proportion of immune cells, including CD4+ T, CD8+ T, and dendritic cells; it also decreased the proportion of immune suppressive cells, such as myeloid-derived suppressor and regulatory T cells. These results suggest that the selective inhibition of CD36 can induce direct and indirect antitumor effects by facilitating host antitumor immune responses in OSCCs.


Asunto(s)
Antígenos CD36 , Metabolismo de los Lípidos , Neoplasias de la Boca , Animales , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Ratones , Antígenos CD36/metabolismo , Humanos , Línea Celular Tumoral , Metabolismo de los Lípidos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ácidos Oléicos/farmacología , Succinimidas/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273539

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a rising global burden, affecting one in four adults. Despite the increasing prevalence of NAFLD, the exact cellular and molecular mechanisms remain unclear, and effective therapeutic strategies are still limited. In vitro models of NAFLD are critical to understanding the pathogenesis and searching for effective therapies; thus, we evaluated the effects of free fatty acids (FFAs) on NAFLD hallmarks and their association with the modulation of Annexin A2 (ANXA2) and Keratin 17 (KRT17) in HepG2 cells. Our results show that oleic and palmitic acids can differentially induce intracellular lipid accumulation, cell death, and promote oxidative stress by increasing lipid peroxidation, protein carbonylation, and antioxidant defense depletion. Moreover, a markedly increased expression of inflammatory cytokines demonstrated the activation of inflammation pathways associated with lipotoxicity and oxidative stress. ANXA2 overexpression and KRT17 nuclear translocation were also observed, supporting the role of both molecules in the progression of liver disease. Taken together, these data provide insights into the interplay between ANXA2 and KRT17 in NAFLD, paving the way for understanding molecular mechanisms involved with the disease and developing new therapeutic strategies.


Asunto(s)
Anexina A2 , Ácidos Grasos no Esterificados , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Células Hep G2 , Ácidos Grasos no Esterificados/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
13.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273552

RESUMEN

Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.


Asunto(s)
Productos Biológicos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Metabolismo Energético/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Terapia Molecular Dirigida
14.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273603

RESUMEN

Clerodendranthus spicatus (Thunb.) (Kidney tea) is a very distinctive ethnic herbal medicine in China. Its leaves are widely used as a healthy tea. Many previous studies have demonstrated its various longevity-promoting effects; however, the safety and specific health-promoting effects of Clerodendranthus spicatus (C. spicatus) as a dietary supplement remain unclear. In order to understand the effect of C. spicatus on the longevity of Caenorhabditis elegans (C. elegans), we evaluated its role in C. elegans; C. spicatus water extracts (CSw) were analyzed for the major components and the effects on C. elegans were investigated from physiological and biochemical to molecular levels; CSw contain significant phenolic components (primarily rosmarinic acid and eugenolinic acid) and flavonoids (primarily quercetin and isorhamnetin) and can increase the lifespan of C. elegans. Further investigations showed that CSw modulate stress resistance and lipid metabolism through influencing DAF-16/FoxO (DAF-16), Heat shock factor 1 (HSF-1), and Nuclear Hormone Receptor-49 (NHR-49) signalling pathways; CSw can improve the antioxidant and hypolipidemic activity of C. elegans and prolong the lifespan of C. elegans (with the best effect at low concentrations). Therefore, the recommended daily use of C. spicatus should be considered when consuming it as a healthy tea on a daily basis.


Asunto(s)
Caenorhabditis elegans , Metabolismo de los Lípidos , Estrés Oxidativo , Extractos Vegetales , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Longevidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Agua
15.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273677

RESUMEN

8-Prenylgenistein (8PG), a genistein derivative, is present in fermented soybeans (Glycine max), including cheonggukjang (CGJ), and exhibits osteoprotective, osteogenic, and antiadipogenic properties. However, the hepatoprotective effects of 8PG and its underlying molecular mechanisms remain largely unexplored. Here, we identified the high binding affinity of 8PG with AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), which acts as a potent AMPK activator that counteracts hepatic steatosis. Notably, 8PG exhibited better pharmacokinetics with greater absorption and higher plasma binding than the positive controls for the target proteins. Moreover, 8PG exerted non-carcinogenic activity in rats and significantly increased AMPK phosphorylation. Compound C, an AMPK inhibitor, did not antagonize 8PG-activated AMPK in HepG2 cells. 8PG significantly attenuated palmitate-induced lipid accumulation and enhanced phosphorylated AMPK and its downstream target, acetyl-CoA carboxylase. Further, 8PG activated nuclear SIRT1 at the protein level, which promoted fatty acid oxidation in palmitate-treated HepG2 cells. Overall, 8PG acts as a potent AMPK activator, further attenuating hepatic steatosis via the SIRT1-mediated pathway and providing new avenues for dietary interventions to treat metabolic dysfunction-associated steatotic liver disease (MASLD).


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isoflavonas , Sirtuina 1 , Sirtuina 1/metabolismo , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Células Hep G2 , Ratas , Masculino , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Transducción de Señal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Glycine max/química , Genisteína/farmacología
16.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274927

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases encountered in clinical practice, which is characterized by the excessive accumulation of triglycerides (steatosis), and a variety of metabolic abnormalities including lipid metabolism and bile acid metabolism are closely related to NAFLD. In China, Gynostemma pentaphyllum is used as functional food and Chinese medicine to treat various diseases, especially NAFLD, for a long time. However, the active components that exert the main therapeutic effects and their mechanisms remain unclear. In this study, Gypensapogenin A was isolated from the total saponins of G. pentaphyllum and prepared as a liposomal delivery system. Gypensapogenin A liposomes could activate FXR, inhibit the expression of CYP7A1 and CYP8B1, increase the expression of CYP27A1, modulate the ratio of CA and CDCA, decrease the content of CA, and increase the content of CDCA, thus forming a virtuous cycle of activating FXR to play a role in lowering blood lipid levels.


Asunto(s)
Gynostemma , Metabolismo de los Lípidos , Liposomas , Receptores Citoplasmáticos y Nucleares , Receptores Citoplasmáticos y Nucleares/metabolismo , Liposomas/química , Metabolismo de los Lípidos/efectos de los fármacos , Humanos , Animales , Gynostemma/química , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Saponinas/farmacología , Saponinas/química , Células Hep G2 , Ratones , Ácidos y Sales Biliares/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos
17.
Part Fibre Toxicol ; 21(1): 35, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252011

RESUMEN

BACKGROUND: Atmospheric particulate matter (PM) exposure-induced neuroinflammation is critical in mediating nervous system impairment. However, effective intervention is yet to be developed. RESULTS: In this study, we examine the effect of ß-nicotinamide mononucleotide (NMN) supplementation on nervous system damage upon PM exposure and the mechanism of spatial regulation of lipid metabolism. 120 C57BL/6 male mice were exposed to real ambient PM for 11 days (subacute) or 16 weeks (sub-chronic). NMN supplementation boosted the level of nicotinamide adenine dinucleotide (NAD+) in the mouse brain by 2.04 times. This augmentation effectively reduced neuroinflammation, as evidenced by a marked decrease in activated microglia levels across various brain regions, ranging from 29.29 to 85.96%. Whole brain lipidomics analysis revealed that NMN intervention resulted in an less increased levels of ceramide (Cer) and lysophospholipid in the brain following subacute PM exposure, and reversed triglyceride (TG) and glycerophospholipids (GP) following sub-chronic PM exposure, which conferred mice with anti-neuroinflammation response, improved immune function, and enhanced membrane stability. In addition, we demonstrated that the hippocampus and hypothalamus might be the most sensitive brain regions in response to PM exposure and NMN supplementation. Particularly, the alteration of TG (60:10, 56:2, 60:7), diacylglycerol (DG, 42:6), and lysophosphatidylcholine (LPC, 18:3) are the most profound, which correlated with the changes in functional annotation and perturbation of pathways including oxidative stress, inflammation, and membrane instability unveiled by spatial transcriptomic analysis. CONCLUSIONS: This study demonstrates that NMN intervention effectively reduces neuroinflammation in the hippocampus and hypothalamus after PM exposure by modulating spatial lipid metabolism. Strategies targeting the improvement of lipid homeostasis may provide significant protection against brain injury associated with air pollutant exposure.


Asunto(s)
Encéfalo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Material Particulado , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Material Particulado/toxicidad , Ratones , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Suplementos Dietéticos , Contaminantes Atmosféricos/toxicidad , Lipidómica
18.
Nutrients ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275181

RESUMEN

Pinus koraiensis (PK) leaf extract, derived from Korean pine byproducts, holds promise for alleviating postprandial hyperlipidemia. In this study, we investigated the potential of PK leaf extract for modulating postprandial hyperlipidemia in adults with normal or borderline fasting triglyceride levels. In a randomized, double-blind, parallel design, 70 subjects were randomly assigned to either the placebo or PK group for 4 weeks. After 4 weeks of consuming PK leaf extract, the results indicated a trend toward decreased serum apolipoprotein B-100 (ApoB100) levels 2 h after a high-fat challenge. Furthermore, significant improvements were observed in the incremental area under the curve (iAUC) at 0-4 h and 2-4 h compared to baseline, particularly among individuals with a higher body weight (>61.35 kg) and daily caloric intake (>1276.5 kcal). Based on these findings, PK leaf extract may have beneficial effects on postprandial lipoprotein metabolism, especially among individuals with a relatively high body weight and caloric intake.


Asunto(s)
Apolipoproteína B-100 , Metabolismo de los Lípidos , Pinus , Extractos Vegetales , Hojas de la Planta , Periodo Posprandial , Humanos , Método Doble Ciego , Pinus/química , Masculino , Extractos Vegetales/farmacología , Hojas de la Planta/química , Femenino , Adulto , Apolipoproteína B-100/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Persona de Mediana Edad , Dieta Alta en Grasa , Triglicéridos/sangre , Adulto Joven , Voluntarios Sanos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/sangre
19.
Nutrition ; 126: 112517, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146583

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a seriously increasing liver disorder affecting nearly 32% of adults globally. Hepatic triglycerides (TG) accumulation is the hallmark of MASLD, which results from dysregulated lipid and fatty acid uptake, increased de novo lipogenesis (DNL), and decreased lipid removal. More recently, selective autophagy of lipid droplets (LDs), termed lipophagy, has emerged to be closely associated with disrupted hepatic lipid homeostasis. Recent studies have indicated that a series of natural products have shown promise as an alternative approach in attenuating MASLD via regulating lipophagy in vivo and in vitro. Therefore, lipophagy could be a new approach for natural products to be used to improve MASLD. This article aims to provide a comprehensive overview on the interrelationship between dysregulated lipid metabolism, lipophagy, and MASLD pathogenesis. In addition, the role of some natural products as lipophagy modulators and their impact on MASLD will be discussed.


Asunto(s)
Autofagia , Productos Biológicos , Metabolismo de los Lípidos , Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Autofagia/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales , Lipogénesis/efectos de los fármacos , Triglicéridos/metabolismo , Gotas Lipídicas/metabolismo
20.
Ecotoxicol Environ Saf ; 283: 116951, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213752

RESUMEN

Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging environmental pollutant that can accumulate in air and surface water. Currently, it has been widely used in fluoropolymer industry, which could cause serious environmental pollution. Due to the high bioaccumulation, the accumulation of pollutants may have an adverse effect on the normal physiological function of the kidneys. However, the toxic effects of HFPO-TA on the kidney are unknown. In this study, we investigated the toxic effects of HFPO-TA exposure on the rat kidney and its mechanism of action. Male SD rats were divided into 4 groups: control group (Ctrl group), L group (0.125 mg/kg/d), M group (0.5 mg/kg/d) and H group (2 mg/kg/d). After 14 consecutive days of gavage, periodic acid­silver methenamine (PASM) and hematoxylin-eosin (HE) staining were used to examine the structure of the kidneys. We also used transcriptome sequencing (RNA-seq) to identify differentially expressed genes (DEGs) in the testes of rats in both the control and high dose groups. Besides, expression of key proteins was analyzed by immunohistochemistry. The results indicated that HFPO-TA can lead to injured renal capsule, change glomerular shape and have a significant impact on the protein expression levels of AQP2, p-AQP2 and PPARα. Additionally, the level of total cholesterol (TC) was obviously decreased after HFPO-TA exposure. RNA-seq analysis showed that HFPO-TA primarily affected peroxisome proliferator-activated receptor (PPAR) signaling pathway that is associated with lipid metabolism and cyclic adenosine monophosphate (cAMP) signaling pathway. In summary, exposure to HFPO-TA can lead to kidney damage and lipid metabolism disorders.


Asunto(s)
Riñón , Metabolismo de los Lípidos , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Riñón/efectos de los fármacos , Riñón/patología , Metabolismo de los Lípidos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA