Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Morphologie ; 108(362): 100780, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38608627

RESUMEN

OBJECTIVE: To elucidate the branchial origin of the articular and the square (homology of the malleus and the incus of mammals), we used immunohistochemistry to analyse the expression of the Hox-A2 protein during cephalogenesis in chickens. MATERIALS AND METHODS: Immunohistochemistry on paraffin sections of embryos from stage HH16 to HH40. RESULTS: In addition to the columella (equivalent to the mammalian stapes), the joint between the articular and the quadrate bones, and the retro-articular process of the articular (homologous to the short process of the malleus) express Hox-A2, suggesting an intervention of the 2nd arch in their formation. However, we fortuitously observed very intense expression within the early muscle plate of the second arch, which then generalized to all cephalic muscles, and extended to the trunk's myotomes. In the cartilage, the presence of the protein disappeared at stage 35. DISCUSSION AND CONCLUSION: The present results, while confirming the contribution of the second arch to the development of avian equivalents of the mammalian ear ossicles, strongly suggest that the Hox-A2 gene plays a role in muscle development, which remains to be elucidated by more sophisticated techniques.


Asunto(s)
Cartílago , Proteínas de Homeodominio , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Embrión de Pollo , Cartílago/metabolismo , Cartílago/embriología , Pollos/metabolismo , Pollos/genética , Maxilares/embriología , Maxilares/metabolismo , Región Branquial/metabolismo , Región Branquial/embriología , Desarrollo de Músculos , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Músculo Esquelético/metabolismo , Músculo Esquelético/embriología
2.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619396

RESUMEN

Piezo1 and Piezo2 are recently reported mechanosensory ion channels that transduce mechanical stimuli from the environment into intracellular biochemical signals in various tissues and organ systems. Here, we show that Piezo1 and Piezo2 display a robust expression during jawbone development. Deletion of Piezo1 in neural crest cells causes jawbone malformations in a small but significant number of mice. We further demonstrate that disruption of Piezo1 and Piezo2 in neural crest cells causes more striking defects in jawbone development than any single knockout, suggesting essential but partially redundant roles of Piezo1 and Piezo2. In addition, we observe defects in other neural crest derivatives such as malformation of the vascular smooth muscle in double knockout mice. Moreover, TUNEL examinations reveal excessive cell death in osteogenic cells of the maxillary and mandibular arches of the double knockout mice, suggesting that Piezo1 and Piezo2 together regulate cell survival during jawbone development. We further demonstrate that Yoda1, a Piezo1 agonist, promotes mineralization in the mandibular arches. Altogether, these data firmly establish that Piezo channels play important roles in regulating jawbone formation and maintenance.


Asunto(s)
Canales Iónicos , Maxilares , Cresta Neural , Animales , Ratones , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/metabolismo , Canales Iónicos/genética , Maxilares/embriología , Maxilares/metabolismo , Mandíbula/embriología , Mandíbula/metabolismo , Ratones Noqueados , Cresta Neural/metabolismo , Osteogénesis/genética , Pirazinas , Tiadiazoles
3.
Development ; 148(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33462117

RESUMEN

The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.


Asunto(s)
Huesos/embriología , Huesos/metabolismo , Proteínas de Homeodominio/metabolismo , Osteocondrodisplasias/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cartílago/embriología , Cartílago/patología , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero/anomalías , Embrión no Mamífero/patología , Regulación del Desarrollo de la Expresión Génica , Maxilares/embriología , Maxilares/patología , Articulaciones/anomalías , Articulaciones/embriología , Articulaciones/patología , Mitosis/genética , Morfolinos/farmacología , Mutación/genética , RNA-Seq , Análisis de la Célula Individual , Cráneo/anomalías , Cráneo/embriología , Cráneo/patología , Columna Vertebral/anomalías , Columna Vertebral/embriología , Columna Vertebral/patología , Estrés Fisiológico/genética , Regulación hacia Arriba/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Dev Dyn ; 250(1): 88-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32865292

RESUMEN

BACKGROUND: The vertebrate jaw is thought to have evolved through developmental modification of the mandibular arch. An extant jawless vertebrate, the lamprey, possesses a structure called "velum"-a mandibular arch derivative-in addition to the oral apparatus. This leads us to assess the velum's possible contribution to the evolution of jaws. RESULTS: The velar muscles develop from progenitor cells distinct from those from which the oral muscles develop. In addition, the oral and velar regions originate from the different sub-population of the trigeminal neural crest cells (NCCs): the former region receives NCCs from the midbrain, whereas the latter region receives NCCs from the anterior hindbrain. The expression of patterning genes (eg, DlxA and MsxA) is activated at a later developmental stage in the velum compared to the oral region, and more importantly, in different cells from those in the oral region. CONCLUSION: The lamprey mandibular arch consists of two developmental units: the anterior oral unit and the posterior velar unit. Because structural elements of the lamprey velum may be homologous to the jaw, the evolution of vertebrate jaws may have occurred by the velum being released from its functional roles in feeding or respiration in jawless vertebrates.


Asunto(s)
Evolución Biológica , Maxilares/embriología , Lampreas/embriología , Animales , Movimiento Celular , Femenino , Expresión Génica , Lampreas/metabolismo , Desarrollo Musculoesquelético , Cresta Neural/fisiología
5.
Genesis ; 59(1-2): e23394, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32918369

RESUMEN

The chromodomain family member chromodomain 1 (CHD1) has been shown to have numerous critical molecular functions including transcriptional regulation, splicing, and DNA repair. Complete loss of function of this gene is not compatible with life. On the other hand, missense and copy number variants of CHD1 can result in intellectual disabilities and craniofacial malformations in human patients including cleft palate and Pilarowski-Bjornsson Syndrome. We have used the aquatic developmental model organism Xenopus laevis, to determine a specific role for Chd1 in such cranioafcial disorders. Protein and gene knockdown techniques in Xenopus, including antisense oligos and mosaic Crispr/Cas9-mediated mutagenesis, recapitulated the craniofacial defects observed in humans. Further analysis indicated that embryos deficient in Chd1 had defects in cranial neural crest development and jaw cartilage morphology. Additionally, flow cytometry and immunohistochemistry revealed that decreased Chd1 resulted in increased in apoptosis in the developing head. Together, these experiments demonstrate that Chd1 is critical for fundamental processes and cell survival in craniofacial development. We also presented evidence that Chd1 is regulated by retinoic acid signaling during craniofacial development. Expression levels of chd1 mRNA, specifically in the head, were increased by RAR agonist exposure and decreased upon antagonist treatment. Subphenotypic levels of an RAR antagonist and Chd1 morpholinos synergized to result in orofacial defects. Further, RAR DNA binding sequences (RAREs) were detected in chd1 regulatory regions by bioinformatic analysis. In summary, by combining human genetics and experiments in an aquatic model we now have a better understanding of the role of CHD1 in craniofacial disorders.


Asunto(s)
Anomalías Craneofaciales/genética , ADN Helicasas/genética , Proteínas de Xenopus/genética , Animales , Apoptosis , Cartílago/embriología , Cartílago/metabolismo , ADN Helicasas/metabolismo , Maxilares/embriología , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
6.
Dev Biol ; 461(2): 132-144, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32044379

RESUMEN

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Asunto(s)
Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/fisiología , Histona Metiltransferasas/fisiología , Proteína del Locus del Complejo MDS1 y EV11/fisiología , Cráneo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Cromatina/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Oído Medio/anomalías , Oído Medio/embriología , Huesos Faciales/embriología , Femenino , Genes Letales , Código de Histonas/genética , Histona Metiltransferasas/deficiencia , Histona Metiltransferasas/genética , Histonas/metabolismo , Maxilares/embriología , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Metilación , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional/genética , Especificidad de la Especie , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
7.
Curr Top Dev Biol ; 133: 91-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30902260

RESUMEN

Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.


Asunto(s)
Maxilares/embriología , Odontogénesis , Animales , Tipificación del Cuerpo , Región Branquial/embriología , Humanos , Osteogénesis , Medicina Regenerativa
8.
Wiley Interdiscip Rev Dev Biol ; 8(2): e337, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30378758

RESUMEN

The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.


Asunto(s)
Evolución Biológica , Condrogénesis , Peces/anatomía & histología , Peces/embriología , Maxilares/anatomía & histología , Maxilares/embriología , Animales
9.
Rev. Fac. Odontol. (B.Aires) ; 34(77): 35-42, 2019. ilus
Artículo en Español | LILACS | ID: biblio-1104093

RESUMEN

En la odontología es frecuente que se describa la peculiaridad de los huesos maxilares en cuanto a la resistencia a las infecciones en comparación con otros huesos de la economía. O que se plantée un desafío cuando es necesario tomar una decisión acerca de aplicar diferentes conductas terapéuticas en pacientes con patologías óseas sistémicas. Por ello, esta actualización tuvo como objetivo realizar una revisión de la bibliografía para integrar y evidenciar las diferencias y similitudes entre los diferentes huesos de la economía haciendo hincapié en los huesos maxilares. Si bien éstos poseen una gran cantidad de similitudes con el resto de los huesos, también presentan diferencias que los hacen entidades únicas dentro del sistema esquelético como el origen embriológico en las células de las crestas neurales, su alta tasa de remodelación, sin olvidar que estos huesos alojan a órganos que poseen una parte de su estructura en el medio interno y otra porción en medio externo de la cavidad bucal: las piezas dentarias (AU)


Asunto(s)
Humanos , Desarrollo Óseo/fisiología , Remodelación Ósea/fisiología , Maxilares/embriología , Maxilares/fisiología , Osteogénesis , Fenotipo , Esqueleto , Matriz Extracelular/fisiología , Cresta Neural/anatomía & histología , Cresta Neural/crecimiento & desarrollo
10.
Evol Dev ; 20(6): 192-206, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30168254

RESUMEN

The acquisition of a movable jaw and a jaw joint are key events in gnathostome evolution. Jaws are derived from the neural crest derived pharyngeal skeleton and the transition from jawless to jawed vertebrates consists of major morphological changes, which must have a genetic foundation. Recent studies on the effects of bapx1 knockdown in fish and chicken indicate that bapx1 has acquired such a role in primary jaw joint development during vertebrate evolution, but evidence from amphibians is missing so far. In the present study, we use Ambystoma mexicanum, Bombina orientalis, and Xenopus laevis to investigate the effects of bapx1 knockdown on the development of these three different amphibians. Using morpholinos we downregulated the expression of bapx1 and obtain morphants with altered mandibular arch morphology. In the absence of bapx1 Meckels cartilage and the palatoquadrate jaw joint initially develop separately but during further development the joint cavity between both fills with chondrocytes. This results in the fusion of both cartilages and the loss of the jaw joint. Despite this the jaw itself remains usable for feeding and breathing. We show that bapx1 plays a role in jaw joint maintenance during development and that the morphants morphology possibly mirrors the morphology of the jawless ancestors of the gnathostomes.


Asunto(s)
Anuros/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Maxilares/embriología , Articulaciones/embriología , Ambystoma mexicanum/genética , Ambystoma mexicanum/crecimiento & desarrollo , Animales , Anuros/clasificación , Anuros/genética , Región Branquial/citología , Región Branquial/metabolismo , Condrocitos/metabolismo , Técnicas de Silenciamiento del Gen , Cabeza/embriología , Proteínas de Homeodominio/genética , Maxilares/metabolismo , Articulaciones/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
11.
Genesis ; 56(6-7): e23213, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30134067

RESUMEN

Cranium of jawed vertebrates is composed of dorsal moiety that encapsulates the brain, or the neurocranium, and the is called the neurocranium, and the ventral moiety, the viscerocranium, that supports the pharynx. In modern jawed vertebrates (crown gnathostomes), the viscerocranium is predominantly of neural crest origin, and for the neurocranium, the rostral part is derived from neural crest cells, whereas the posterior part from the mesoderm. In the cyclostome cranium, the mesoderm/neural crest boundary of the neurocranium used to be enigmatic, let alone the morphological comparison of neurocranial between two cyclostome groups, lampreys and hagfishes. By examining the hagfish development it has become clear that cyclostomes share a common craniofacial embryonic pattern that is not shared by modern gnathostomes, and cyclostome cranium can be compared among the group as developmental modular units with comparable mesoderm/neural crest boundary within the neuroranium. Also, the dual origin of the jawed vertebrate neurocranium has now turned out to represent a derived condition, and ancestrally, the neurocranium would likely have been predominantly of mesodermal origin. Enlargement of the forebrain and reorganization of the oral apparatus seem to have led to the involvement of the neural crest in the rostral neurocranium.


Asunto(s)
Cresta Neural/embriología , Cráneo/embriología , Animales , Evolución Biológica , Endodermo , Anguila Babosa/embriología , Humanos , Maxilares/embriología , Lampreas/embriología , Mesodermo , Cresta Neural/fisiología , Cráneo/fisiología , Vertebrados/embriología
12.
J Anat ; 233(2): 135-145, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29745448

RESUMEN

In this review, classical data on the early steps in human odontogenesis are summarized and updated with specific insights into the development of the upper and lower embryonic jaws to help in understanding some oral pathologies. The initial step of human odontogenesis is classically characterized by two parallel horseshoe-shaped epithelial laminae. These originate from the oral epithelium and an ingrowth into the jaw mesenchyme: the internal dental lamina gives rise to deciduous tooth primordia, while the external vestibular lamina represents the developmental base of the oral vestibule. However, a more complex situation was revealed by recent studies combining analyses of the dental and adjacent oral epithelia on histological sections and computer-aided three-dimensional (3D) reconstructions during the 2nd month of human embryonic development. The dental epithelium forms a mound, where swellings appear later, corresponding to the individual primordia of deciduous teeth. External to the developing deciduous dentition, the 3D reconstructions do not show any continuous vestibular lamina but instead a complex of discontinuous epithelial bulges and ridges. The patterns of these epithelial structures and their relationship to the dental epithelium differ not only between the upper and lower jaws but also between the lip and cheek segments in each jaw. Knowledge of early odontogenesis may help in understanding some oral pathologies. For example, the human lateral incisor has a dual origin: it arises in the area of fusion between the medial nasal and maxillary facial processes and involves material from these two regions. Such a dual origin at the site of fusion of facial processes represents a predisposition to developmental vulnerability for the upper lateral incisor, resulting in its frequent anomalies (absence, hypoplasia, duplication), especially in patients with a cleft lip and/or jaw. Other pathologies, such as a minute supernumerary tooth, desmoplastic ameloblastoma or extraosseous odontogenic cysts are located external to the upper or lower dentition, and might be derived from structures that transiently appear during early development of the oral vestibule in humans.


Asunto(s)
Maxilares/embriología , Diente/embriología , Dentición , Humanos
13.
Dev Biol ; 444 Suppl 1: S219-S236, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29753626

RESUMEN

How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFß signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFß signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFß signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Maxilares/embriología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Evolución Biológica , Cartílago/metabolismo , Movimiento Celular , Embrión de Pollo , Condrogénesis , Patos/embriología , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Maxilares/fisiología , Mandíbula/embriología , Mesodermo/embriología , Cresta Neural/embriología , Cresta Neural/fisiología , Codorniz/embriología , Transducción de Señal/fisiología , Especificidad de la Especie , Factor de Crecimiento Transformador beta/fisiología
14.
Dev Cell ; 44(3): 337-347.e5, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29358039

RESUMEN

The jaw is central to the extensive variety of feeding and predatory behaviors across vertebrates. The bones of the lower but not upper jaw form around an early-developing cartilage template. Whereas Endothelin1 patterns the lower jaw, the factors that specify upper-jaw morphology remain elusive. Here, we identify Nuclear Receptor 2f genes (Nr2fs) as enriched in and required for upper-jaw formation in zebrafish. Combinatorial loss of Nr2fs transforms maxillary components of the upper jaw into lower-jaw-like structures. Conversely, nr2f5 misexpression disrupts lower-jaw development. Genome-wide analyses reveal that Nr2fs repress mandibular gene expression and early chondrogenesis in maxillary precursors. Rescue of lower-jaw defects in endothelin1 mutants by reducing Nr2f dosage further demonstrates that Nr2f expression must be suppressed for normal lower-jaw development. We propose that Nr2fs shape the upper jaw by protecting maxillary progenitors from early chondrogenesis, thus preserving cells for later osteogenesis.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Unión al ADN/metabolismo , Endotelina-1/metabolismo , Maxilares/embriología , Maxilar/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Condrogénesis/fisiología , Proteínas de Unión al ADN/genética , Endotelina-1/genética , Regulación del Desarrollo de la Expresión Génica , Maxilares/fisiología , Maxilar/fisiología , Mutación , Odontogénesis/fisiología , Transducción de Señal , Factores de Transcripción/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
15.
PLoS Genet ; 13(12): e1007112, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29227993

RESUMEN

Integrated development of diverse tissues gives rise to a functional, mobile vertebrate musculoskeletal system. However, the genetics and cellular interactions that drive the integration of muscle, tendon, and skeleton are poorly understood. In the vertebrate head, neural crest cells, from which cranial tendons derive, pattern developing muscles just as tendons have been shown to in limb and trunk tissue, yet the mechanisms of this patterning are unknown. From a forward genetic screen, we determined that cyp26b1 is critical for musculoskeletal integration in the ventral pharyngeal arches, particularly in the mandibulohyoid junction where first and second arch muscles interconnect. Using time-lapse confocal analyses, we detail musculoskeletal integration in wild-type and cyp26b1 mutant zebrafish. In wild-type fish, tenoblasts are present in apposition to elongating muscles and condense in discrete muscle attachment sites. In the absence of cyp26b1, tenoblasts are generated in normal numbers but fail to condense into nascent tendons within the ventral arches and, subsequently, muscles project into ectopic locales. These ectopic muscle fibers eventually associate with ectopic tendon marker expression. Genetic mosaic analysis demonstrates that neural crest cells require Cyp26b1 function for proper musculoskeletal development. Using an inhibitor, we find that Cyp26 function is required in a short time window that overlaps the dynamic window of tenoblast condensation. However, cyp26b1 expression is largely restricted to regions between tenoblast condensations during this time. Our results suggest that degradation of RA by this previously undescribed population of neural crest cells is critical to promote condensation of adjacent scxa-expressing tenoblasts and that these condensations are subsequently required for proper musculoskeletal integration.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Maxilofacial/genética , Morfogénesis/genética , Ácido Retinoico 4-Hidroxilasa/genética , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Maxilares/embriología , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Tendones/embriología , Tendones/crecimiento & desarrollo , Pez Cebra/embriología , Pez Cebra/genética
16.
Development ; 144(15): 2798-2809, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684625

RESUMEN

Joint morphogenesis requires mechanical activity during development. Loss of mechanical strain causes abnormal joint development, which can impact long-term joint health. Although cell orientation and proliferation are known to shape the joint, dynamic imaging of developing joints in vivo has not been possible in other species. Using genetic labelling techniques in zebrafish we were able, for the first time, to dynamically track cell behaviours in intact moving joints. We identify that proliferation and migration, which contribute to joint morphogenesis, are mechanically controlled and are significantly reduced in immobilised larvae. By comparison with strain maps of the developing skeleton, we identify canonical Wnt signalling as a candidate for transducing mechanical forces into joint cell behaviours. We show that, in the jaw, Wnt signalling is reduced specifically in regions of high strain in response to loss of muscle activity. By pharmacological manipulation of canonical Wnt signalling, we demonstrate that Wnt acts downstream of mechanical activity and is required for joint patterning and chondrocyte maturation. Wnt16, which is also downstream of muscle activity, controls proliferation and migration, but plays no role in chondrocyte intercalation.


Asunto(s)
Articulaciones/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Condrogénesis/genética , Condrogénesis/fisiología , Análisis de Elementos Finitos , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Maxilares/embriología , Maxilares/metabolismo , Articulaciones/embriología , Morfogénesis/genética , Morfogénesis/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Dev Biol ; 426(1): 97-114, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363736

RESUMEN

The rapid increase in gene-centric biological knowledge coupled with analytic approaches for genomewide data integration provides an opportunity to develop systems-level understanding of facial development. Experimental analyses have demonstrated the importance of signaling between the surface ectoderm and the underlying mesenchyme are coordinating facial patterning. However, current transcriptome data from the developing vertebrate face is dominated by the mesenchymal component, and the contributions of the ectoderm are not easily identified. We have generated transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer. Notably, by separating the ectoderm and mesenchyme we considerably improved the sensitivity compared to data obtained from whole prominences, with more genes detected over a wider dynamic range. From these data we generated a detailed description of ectoderm-specific developmental programs, including pan-ectodermal programs, prominence- specific programs and their temporal dynamics. The genes and pathways represented in these programs provide mechanistic insights into several aspects of ectodermal development. We also used these data to identify co-expression modules specific to facial development. We then used 14 co-expression modules enriched for genes involved in orofacial clefts to make specific mechanistic predictions about genes involved in tongue specification, in nasal process patterning and in jaw development. Our multidimensional gene expression dataset is a unique resource for systems analysis of the developing face; our co-expression modules are a resource for predicting functions of poorly annotated genes, or for predicting roles for genes that have yet to be studied in the context of facial development; and our analytic approaches provide a paradigm for analysis of other complex developmental programs.


Asunto(s)
Ectodermo/embriología , Cara/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Desarrollo Maxilofacial/fisiología , Mesodermo/embriología , Biología de Sistemas , Animales , Maxilares/embriología , Ratones , Ratones Endogámicos C57BL , Nariz/embriología , Lengua/embriología
18.
J Anat ; 230(4): 549-566, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28070906

RESUMEN

In utero, baleen whales initiate the development of several dozens of teeth in upper and lower jaws. These tooth germs reach the bell stage and are sometimes mineralized, but toward the end of prenatal life they are resorbed and no trace remains after birth. Around the time that the germs disappear, the keratinous baleen plates start to form in the upper jaw, and these form the food-collecting mechanism. Baleen whale ancestors had two generations of teeth and never developed baleen, and the prenatal teeth of modern fetuses are usually interpreted as an evolutionary leftover. We investigated the development of teeth and baleen in bowhead whale fetuses using histological and immunohistochemical evidence. We found that upper and lower dentition initially follow similar developmental pathways. As development proceeds, upper and lower tooth germs diverge developmentally. Lower tooth germs differ along the length of the jaw, reminiscent of a heterodont dentition of cetacean ancestors, and lingual processes of the dental lamina represent initiation of tooth bud formation of replacement teeth. Upper tooth germs remain homodont and there is no evidence of a secondary dentition. After these germs disappear, the oral epithelium thickens to form the baleen plates, and the protein FGF-4 displays a signaling pattern reminiscent of baleen plates. In laboratory mammals, FGF-4 is not involved in the formation of hair or palatal rugae, but it is involved in tooth development. This leads us to propose that the signaling cascade that forms teeth in most mammals has been exapted to be involved in baleen plate ontogeny in mysticetes.


Asunto(s)
Evolución Biológica , Ballena de Groenlandia/embriología , Boca/embriología , Diente/embriología , Animales , Ballena de Groenlandia/anatomía & histología , Dentición Mixta , Femenino , Maxilares/anatomía & histología , Maxilares/embriología , Boca/anatomía & histología , Embarazo , Diente/anatomía & histología
19.
Evol Dev ; 18(5-6): 317-323, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27870215

RESUMEN

Vertebrate jaws and dentitions fit and function together, yet the genetic processes that coordinate cranial and dental morphogenesis and evolution remain poorly understood. Teeth but not jaws fail to form in the edentate p63-/- mouse mutant, which we used here to identify genes important to odontogenesis, but not jaw morphogenesis, and that may allow dentitions to change during development and evolution without necessarily affecting the jaw skeleton. With the working hypothesis that tooth and jaw development are autonomously controlled by discreet gene regulatory networks, using gene expression microarray assays validated by quantitative reverse-transcription PCR we contrasted expression in mandibular prominences at embryonic days (E) 10-13 of mice with normal lower jaw development but either normal (p63+/- , p63+/+ ) or arrested (p63-/- ) tooth development. The p63-/- mice showed significantly different expression (fold change ≥2, ≤-2; P ≤ 0.05) of several genes. Some of these are known to help regulate odontogenesis (e.g., p63, Osr2, Cldn3/4) and/or to be targets of p63 (e.g., Jag1/2, Fgfr2); other genes have no previously reported roles in odontogenesis or the p63 pathway (e.g., Fermt1, Cbln1, Pltp, Krt8). As expected, from E10 to E13, few genes known to regulate mandible morphogenesis differed in expression between mouse strains. This study newly links several genes to odontogenesis and/or to the p63 signaling network. We propose that these genes act in a novel odontogenic network that is exclusive of lower jaw morphogenesis, and posit that this network evolved in oral, not pharyngeal, teeth.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Maxilares/embriología , Odontogénesis , Animales , Ratones/embriología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
20.
Zoology (Jena) ; 119(6): 534-540, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27480781

RESUMEN

Psittaciformes have apomorphies in the muscles of the jaw that include both the adductors m. ethmomandibularis (EM) and m. pseudomasseter (PM), which are responsible for the generation of strong bite forces. While the EM is present in all Psittaciformes, the PM can be absent or present, and even underdeveloped or well-developed. The aim of this study is to identify developmental reprogramming processes by comparing the myogenesis of the jaw of the monk parakeet Myiopsitta monachus with the information available about other species of Psittaciformes. Seventeen specimens including embryos at different developmental stages, and nestlings of different ages were studied through the analysis of serial histological sections. At embryonic stage 24 (S24) the muscle precursor was observed in the first pharyngeal arch. At S27 the muscle precursor was found to be divided into lateral, intermediate and medial portions. At S31 the independent development of the EM as a rostro-dorsal projection of the mm. pterygoidei could be observed. At S36 the individualization of all muscles was complete. Finally, the PM was detected two days after hatching as an aponeurotic dorsal projection of the m. adductor mandibulae externus superficialis, located lateral to the arcus jugalis. Our results suggest that in M. monachus the muscles EM and PM emerge as a result of a process of heterotipy, and variations in the degree of development of the PM are associated to a heterochronic process of post-displacement, with M. monachus having an underdeveloped PM with respect to basal Psittaciformes.


Asunto(s)
Maxilares/embriología , Músculo Masetero/embriología , Periquitos/embriología , Animales , Evolución Biológica , Periquitos/fisiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA