Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Crit Rev Food Sci Nutr ; 64(21): 7426-7450, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39093582

RESUMEN

The health benefits of nut consumption have been extensively demonstrated in observational studies and intervention trials. Besides the high nutritional value, countless evidences show that incorporating nuts into the diet may contribute to health promotion and prevention of certain diseases. Such benefits have been mostly and certainly attributed not only to their richness in healthy lipids (plentiful in unsaturated fatty acids), but also to the presence of a vast array of phytochemicals, such as polar lipids, squalene, phytosterols, tocochromanols, and polyphenolic compounds. Thus, many nut chemical compounds apply well to the designation "nutraceuticals," a broad umbrella term used to describe any food component that, in addition to the basic nutritional value, can contribute extra health benefits. This contribution analyses the general chemical profile of groundnut and common tree nuts (almond, walnut, cashew, hazelnut, pistachio, macadamia, pecan), focusing on lipid components and phytochemicals, with a view on their bioactive properties. Relevant scientific literature linking consumption of nuts, and/or some of their components, with ameliorative and/or preventive effects on selected diseases - such as cancer, cardiovascular, metabolic, and neurodegenerative pathologies - was also reviewed. In addition, the bioactive properties were analyzed in the light of known mechanistic frameworks.


Asunto(s)
Suplementos Dietéticos , Juglans , Nueces , Fitoquímicos , Pistacia , Nueces/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Humanos , Suplementos Dietéticos/análisis , Juglans/química , Pistacia/química , Lípidos/análisis , Valor Nutritivo , Anacardium/química , Macadamia/química , Corylus/química , Fitosteroles/análisis , Carya/química , Prunus dulcis/química , Enfermedades Cardiovasculares/prevención & control
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999950

RESUMEN

Macadamia nuts are one of the most important economic food items in the world. Pericarp thickness and flavonoid composition are the key quality traits of Macadamia nuts, but the underlying mechanism of pericarp formation is still unknown. In this study, three varieties with significantly different pericarp thicknesses, namely, A38, Guire No.1, and HAES 900, at the same stage of maturity, were used for transcriptome analysis, and the results showed that there were significant differences in their gene expression profile. A total of 3837 new genes were discovered, of which 1532 were functionally annotated. The GO, COG, and KEGG analysis showed that the main categories in which there were significant differences were flavonoid biosynthesis, phenylpropanoid biosynthesis, and the cutin, suberine, and wax biosynthesis pathways. Furthermore, 63 MiMYB transcription factors were identified, and 56 R2R3-MYB transcription factors were clustered into different subgroups compared with those in Arabidopsis R2R3-MYB. Among them, the S4, S6, and S7 subgroups were involved in flavonoid biosynthesis and pericarp formation. A total of 14 MiMYBs' gene expression were verified by RT-qPCR analysis. These results provide fundamental knowledge of the pericarp formation regulatory mechanism in macadamia nuts.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Macadamia , Nueces , Proteínas de Plantas , Factores de Transcripción , Transcriptoma , Macadamia/genética , Macadamia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Nueces/genética , Nueces/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Flavonoides/biosíntesis , Flavonoides/metabolismo , Familia de Multigenes , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia
3.
J Food Sci ; 89(8): 4671-4687, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030846

RESUMEN

This study aimed to enhance the solubility and digestibility of macadamia protein isolate (MPI) for potential utilization in the food industry. The impact of dry- and moist-heat treatments at various temperatures (80, 90, and 100°C) and durations (15 and 30 min) on macadamia protein's microstructure, solubility, molecular weight, secondary and tertiary structure, thermal stability, and digestibility were investigated and evaluated. The heating degree was found to cause roughening of the MPI surface. The solubility of MPI after dry-heat treatment for 15 min at 100°C reached 290.96 ± 2.80% relative to that of untreated protein. Following heat treatment, the bands of protein macromolecules disappeared, while MPI was stretched by vibrations of free and hydrogen-bonded hydroxyl groups. Additionally, an increase in thermal stability was observed. After heat treatment, hydrophobic groups inside the protein are exposed. Heat treatment significantly improved the in vitro digestibility of MPI, reaching twice that of untreated protein. The results also demonstrated that dry- and moist-heat treatments have distinct impacts on MPI, while heating temperature and duration affect the degree of modification. With a decreased ordered structure and increased random coil content, the dry-heat treatment significantly enhanced the in vitro digestibility of MPI. The digestibility of MPI after dry-heat treatment for 30 min at 90°C increased by 77.82 ± 2.80% compared to untreated protein. Consequently, compared to moist-heat treatment, dry-heat treatment was more effective in modifying macadamia protein. Dry-heat treatment of 30 min at 90°C was determined as the optimal condition. PRACTICAL APPLICATION: Heat treatment enhances MPI characteristics, potentially advancing macadamia-derived food production, including plant-based beverages and protein supplements.


Asunto(s)
Digestión , Calor , Macadamia , Proteínas de Plantas , Solubilidad , Proteínas de Plantas/química , Macadamia/química , Manipulación de Alimentos/métodos , Peso Molecular
4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928124

RESUMEN

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Asunto(s)
Frutas , Macadamia , Polimorfismo de Nucleótido Simple , Macadamia/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Autofecundación , Polen/genética , Polen/crecimiento & desarrollo , Polen/efectos de los fármacos , ADN de Plantas/genética , Nueces/genética , Nueces/crecimiento & desarrollo , Polinización
5.
Nutrients ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612981

RESUMEN

The consumption of macadamia nuts has increased due to their cardioprotective and antioxidant properties. However, this rise is consistent with an increase in the cases of macadamia nut allergy, leading to severe reactions. Although two Macadamia integrifolia allergens (Mac i 1 and Mac i 2) have been identified in Australian and Japanese patients, the allergenic sensitization patterns in Western European populations, particularly in Spain, remain unclear. For this purpose, seven patients with macadamia nut allergy were recruited in Spain. Macadamia nut protein extracts were prepared and, together with hazelnut and walnut extracts, were used in Western blot and inhibition assays. IgE-reactive proteins were identified using MALDI-TOF/TOF mass spectrometry (MS). Immunoblotting assays revealed various IgE-binding proteins in macadamia nut extracts. Mass spectrometry identified three new allergens: an oleosin, a pectin acetylesterase, and an aspartyl protease. Cross-reactivity studies showed that hazelnut extract but not walnut extract inhibited macadamia nut oleosin-specific IgE binding. This suggests that oleosin could be used as marker for macadamia-hazelnut cross-reactivity. The results show an allergenic profile in the Spanish cohort different from that previously detected in Australian and Japanese populations. The distinct sensitization profiles observed highlight the potential influence of dietary habits and environmental factors exposure on allergenicity.


Asunto(s)
Corylus , Juglans , Hipersensibilidad a la Nuez , Humanos , Alérgenos , Nueces , Macadamia , Australia , Inmunoglobulina E
6.
Water Environ Res ; 96(4): e11020, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38636954

RESUMEN

Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.


Asunto(s)
Alquinos , Benzoxazinas , Ciclopropanos , Didesoxiadenosina/análogos & derivados , Infecciones por VIH , Contaminantes Químicos del Agua , Aguas Residuales , Macadamia , Adsorción , Nevirapina , Calidad de Vida , Hidróxido de Sodio , Termodinámica , Cinética , Contaminantes Químicos del Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
7.
J Econ Entomol ; 117(2): 666-669, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437589

RESUMEN

The diel flight activity in Cathartus quadricollis (Guerin-Meneville) (Coleoptera: Silvanidae), a predator of two important pests in Hawaii, coffee berry borer, Hypothenemus hampei (Ferrari) and tropical nut borer, Hypothenemus obscurus (F.) (Coleoptera: Curculionidae: Scolytinae) was studied in a macadamia nut orchard using yellow sticky traps baited with pheromone and fungal volatile attractants. The study was conducted at different months throughout the year and at different times during the lunar cycle (new moon and full moon). Flight activity peaked in the late hours of the photophase into the early hours of the scotophase, between 1830 and 2000 h; flight activity also occurred but to a lesser extent in the early morning hours between 0700 and 1030 h. Numbers of captured C. quadricollis during periods of flight activity were negatively correlated with wind speed. The implications of these findings for the development of optimal pest management strategies including biological control are discussed.


Asunto(s)
Coffea , Escarabajos , Gorgojos , Animales , Escarabajos/fisiología , Macadamia , Hawaii , Gorgojos/fisiología
8.
Pest Manag Sci ; 80(7): 3088-3097, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38407557

RESUMEN

In Australia, macadamia orchards are attacked by four main insect pest groups. Management and control of three of these key pests currently relies on broad-spectrum insecticides whose long-term future is questionable. Of the 23 insecticides registered for use in macadamia in Australia, 19 face issues affecting their availability and 12 are presently not approved in the EU, the USA or Canada. These international markets may refuse produce that does not adhere to their own insecticide use standards, hence Australian produce may be excluded from market access. Many of the potential replacement integrated pest management methods of pest control are generally considered less effective by the industry and have not been adopted. There are 17 insect pest groups identified by the industry, any of which have potential to become major problems if broad-spectrum insecticide options become unavailable. Thirteen pest groups need urgent attention as they are at risk of losing current effective control methods, and no replacement solutions have yet been developed. The lag period for research and development to identify new chemical and biological control solutions means there is now an urgent need for the macadamia industry to craft a strategy for sustainable pest management for each pest. Critically, this industry strategy needs to address the vulnerabilities identified in this paper, identify potential solutions for any cases of market failure and consider funding mechanisms to address these gaps. On economic and sustainability grounds, potential biological control options should be explored, especially in cases where insecticide control options are vulnerable. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Control de Insectos , Insecticidas , Macadamia , Animales , Control de Insectos/métodos , Australia , Insectos/efectos de los fármacos
9.
PLoS One ; 19(2): e0293488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394096

RESUMEN

Macadamia nuts constitute a vital component of both nutrition and livelihoods for smallholder producers in Malawi. We conducted a comprehensive mixed-methods study, combining qualitative and quantitative analyses, to explore varietal preferences and production challenges among these farmers. Leveraging cross-sectional data from 144 members of the Highlands Macadamia Cooperative Union Limited, our study underscores several significant findings. Our findings reveal that the majority of smallholder macadamia farmers (62%) are aged over 50, with farming as their primary occupation. Varied preferences are driven by yield-related traits, including high yield potential (38%), nut quality (29%), and extended flowering patterns (15%). Among the macadamia varieties, the top five choices, grown by over half of the farmers, include HAES 660 (18%), 800 (10%), 791 (9%), 816 (8%), and 246 (7%). Additionally, our study identifies five primary constraints faced by smallholder macadamia farmers: insect pests (81%), diseases (34%), limited market access (33%), wind damage (25%), and inadequate agricultural advisory services (17%). Based on these findings, we propose two policy recommendations to enhance smallholder macadamia production and productivity in Malawi and other regions. Specifically, we advocate for informed breeding programs that align with farmer preferences to promote greater adoption of macadamia varieties. Additionally, we emphasize the crucial role of the Malawian government in the macadamia value chain, suggesting active participation in providing extension services and marketing support, akin to its support for other cash crops.


Asunto(s)
Agricultores , Macadamia , Humanos , Persona de Mediana Edad , Malaui , Estudios Transversales , Fitomejoramiento
10.
Bioresour Technol ; 396: 130417, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316229

RESUMEN

Global food waste emits substantial quantities of nitrogen to the environment (6.3 Mtons annually), chicken feather (CF) waste is a major contributor to this. Pyrolysis, in particular co-pyrolysis of nitrogen-rich and lignocellulosic waste streams is a promising strategy to improve the extent of pyrolytic nitrogen retention by incorporating nitrogen in its solid biochar structure. As such, this biochar can serve as a precursor for nitrogen-enriched activated carbons for application in supercapacitors. Therefore, this study investigates the co-pyrolysis of CF with macadamia nut shells (MNS) to create nitrogen-rich activated carbons. Co-pyrolysis increased nitrogen retention during pyrolysis from 9 % to 18 % compared to CF mono-pyrolysis, while the porosity was maintained. After removing undesirable inorganic impurities by dilute acid washing, this led to a specific capacitance of 21F/g using a scan rate of 20 mV/s. Finally, cycling stability tests demonstrated good stability with 73 % capacitance retention after 10 000 cycles.


Asunto(s)
Carbón Orgánico , Macadamia , Eliminación de Residuos , Animales , Pollos , Nitrógeno/química , Plumas , Alimentos , Pirólisis , Electrodos
11.
J Med Food ; 27(3): 257-266, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38386536

RESUMEN

This study aims to examine the ameliorative effect of macadamia nut protein peptides (MPP) on acetaminophen (APAP)-induced liver injury (AILI) in mice, and develop a new strategy for identifying hepatoprotective functional foods. The molecular weight distribution and amino acid composition of MPP were first studied. Forty mice were then randomized into four groups: control group (CON), APAP model group, APAP+MPP low-dose group (APAP+L-MPP), and APAP+MPP high-dose group (APAP+H-MPP). The APAP+L-MPP (320 mg/kg per day) and APAP+H-MPP (640 mg/kg per day) groups received continuous MPP gavage for 2 weeks. A 12 h of APAP (200 mg/kg) gavage resulted in liver damage. Pathological alterations, antioxidant index levels, expression of toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB), and associated inflammatory factors were determined for each treatment group. The results revealed that the total amino acid content of MPP was 39.58 g/100 g, with Glu, Arg, Asp, Leu, Tyr, and Gly being the major amino acids. The molecular weight range of 0-1000 Da accounted for 73.54%, and 0-500 Da accounted for 62.84% of MPP. MPP ameliorated the pathological morphology and reduced the serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase of AILI in mice. MPP significantly increased the activities of superoxide dismutase and glutathione peroxidase in the liver compared with the APAP group. MPP inhibited the expression of TLR4, NF-κB, interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) genes in AILI mice. MPP also inhibited the expression levels of inflammatory factors (TNF-α and IL-6). Our study concludes that MPP alleviates AILI in mice by enhancing antioxidant capacity and inhibiting TLR4/NF-κB pathway-related gene activation.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Acetaminofén/efectos adversos , Antioxidantes/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Macadamia/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Hígado/metabolismo , Aminoácidos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo
12.
Food Funct ; 15(5): 2406-2421, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38265095

RESUMEN

Nuts are highly nutritious and good sources of dietary fibre, when consumed as part of a healthy human diet. Upon consumption, nut particles of various sizes containing lipids entrapped by the plant cell walls enter the large intestine where they are fermented by the resident microbiota. This study investigated the microbial community shifts during in vitro fermentation of almond and macadamia substrates, of two particle sizes including fine particles (F = 250-500 µm) and cell clusters (CC = 710-1000 µm). The aim was to determine how particle size and biomass attachment altered the microbiota. Over the 48 h fermentation duration, short chain fatty acid concentrations increased due to particle size rather than nut type (almond or macadamia). However, nut type did change microbial population dynamics by stimulating specific genera. Tyzzerella, p253418B5 gut group, Lachnospiraceae UCG001, Geotrichum, Enterococcus, Amnipila and Acetitomaculum genera were unique for almonds. For macadamia, three unique genera including Prevotellaceae UCG004, Candidatus Methanomethylophilus and Alistipes were noted. Distinct shifts in the attached microbial biomass were noted due to nut particle size. Bacterial attachment to nut particles was visualised in situ during fermentation, revealing a decrease in lipids and an increase in attached bacteria over time. This interaction may be a pre-requisite for lipid breakdown during nut particle disappearance. Overall, this study provides insights into how nut fermentation alters the gut microbiota and the possible role that gut microbes have in lipid degradation.


Asunto(s)
Microbioma Gastrointestinal , Prunus dulcis , Humanos , Porcinos , Animales , Macadamia , Tamaño de la Partícula , Fermentación , Biomasa , Nueces , Lípidos
13.
Bioresour Technol ; 394: 130281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181996

RESUMEN

In this study, the sorption properties of ciprofloxacin, ofloxacin, sulfamethoxazole, and trimethoprim on biochar derived from macadamia nut shells were investigated. The raw biomass was pyrolyzed at 600 °C to create a highly porous material with a surface area of 392 m2 g-1. The produced biochar was found to be a valuable material for both environmental remediation and carbon sequestration due to its high carbon and oxygen content. The sorption properties of four antibiotics on the produced biochar were compared using Bayesian nonlinear regression based on second-order kinetics and the Langmuir model. The Bayesian estimation successfully compared the adsorption coefficients of the antibiotics, which can be directly visualized through graphical grammar using the probability density distribution. The results demonstrated the ability of macadamia nut shell biochar to remove antibiotics from water at neutral pH, and this material has the potential to be used for treating other emerging contaminants.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Antibacterianos/química , Macadamia , Teorema de Bayes , Ciprofloxacina , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Cinética
14.
Environ Res ; 247: 118281, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266891

RESUMEN

This study reports on the application of activated carbons from macadamia nut shells as adsorbents for the removal of 2,4-dichlorophenoxyacetic acid, a commonly used pesticide, from water. Different activating agents (FeCl3, ZnCl2, KOH and H3PO4) were used to obtain adsorbents within a wide range of porous texture and surface properties. The characterization of the resulting activated carbons was performed by N2 adsorption-desorption, elemental analysis, TG and pHPZC. The adsorption experiments were conducted in batch at 25, 45 and 65 °C. The adsorption kinetics on activated carbons obtained with FeCl3 H3PO4 or KOH was well described by the pseudo-second order model, whereas for the resulting from ZnCl2 activation the experimental data fit better the pseudo-first order model. The equilibrium studies were performed with the KOH- and ZnCl2-activated carbons, the two showing higher surface area values. In both cases, high adsorption capacities were obtained (c.a. 600 mg g-1) and the experimental data were better described by the Langmuir and Toth models. The thermodynamic study allows concluding the spontaneous and endothermic character of the adsorption process, as well as an increase of randomness at the solid/liquid interface. Breakthrough curves were also obtained and fitted to the logistic model.


Asunto(s)
Cloruros , Compuestos Férricos , Herbicidas , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Macadamia , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético , Cinética , Contaminantes Químicos del Agua/análisis
16.
Food Res Int ; 172: 113098, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689870

RESUMEN

In this study, macadamia oil-based oleogels were prepared using monoglyceride stearate (MG) as a gelator with a low critical gelation concentration (3.0 wt%). The physical properties of the oleogels were evaluated by polarized light microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, texture and rheological analysis. And the lipid digestion and oxidative stability of the macadamia oil were determined by pH titration and accelerated oxidation test, respectively. The results showed that the hardness, oil binding capacity, and thermal stability of the oleogels increased with increasing MG concentration, which was attributed to the formation of a network of MG crystals held together by van der Waals interactions and hydrogen bonds. Rheological analysis indicated that all the oleogels exhibited a thermally reversible solid-to-liquid transition and viscoelastic behavior at ambient temperatures. Moreover, the formation of oleogels increased fatty acid release during in vitro lipid digestion and improved the oxidative stability of the macadamia oil. In addition, the potential application of these oleogels as replacements for saturated fats in foods was demonstrated by creating a chocolate product where the cocoa butter was replaced with macadamia oil-based oleogels with a high degree of unsaturation. These results can provide guidance for the preparation of macadamia oil-based oleogels, which may increase their application in foods.


Asunto(s)
Lipólisis , Macadamia , Ácidos Grasos , Estrés Oxidativo
17.
J Nutr Sci ; 12: e55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180485

RESUMEN

We sought to examine the effects of daily consumption of macadamia nuts on body weight and composition, plasma lipids and glycaemic parameters in a free-living environment in overweight and obese adults at elevated cardiometabolic risk. Utilising a randomised cross-over design, thirty-five adults with abdominal obesity consumed their usual diet plus macadamia nuts (~15 % of daily calories) for 8 weeks (intervention) and their usual diet without nuts for 8 weeks (control), with a 2-week washout. Body composition was determined by bioelectrical impedance; dietary intake was assessed with 24-h dietary recalls. Consumption of macadamia nuts led to increased total fat and MUFA intake while SFA intake was unaltered. With mixed model regression analysis, no significant changes in mean weight, BMI, waist circumference, percent body fat or glycaemic parameters, and non-significant reductions in plasma total cholesterol of 2⋅1 % (-4⋅3 mg/dl; 95 % CI -14⋅8, 6⋅1) and low-density lipoprotein (LDL-C) of 4 % (-4⋅7 mg/dl; 95 % CI -14⋅3, 4⋅8) were observed. Cholesterol-lowering effects were modified by adiposity: greater lipid lowering occurred in those with overweight v. obesity, and in those with less than the median percent body fat. Daily consumption of macadamia nuts does not lead to gains in weight or body fat under free-living conditions in overweight or obese adults; non-significant cholesterol lowering occurred without altering saturated fat intake of similar magnitude to cholesterol lowering seen with other nuts. Clinical Trial Registry Number and Website: NCT03801837 https://clinicaltrials.gov/ct2/show/NCT03801837?term = macadamia + nut&draw = 2&rank = 1.


Asunto(s)
Enfermedades Cardiovasculares , Macadamia , LDL-Colesterol , Sobrepeso , Colesterol , Enfermedades Cardiovasculares/prevención & control , Obesidad
18.
Funct Plant Biol ; 50(7): 559-570, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37211614

RESUMEN

Knowledge of the ionome of plant organs helps us understand a plant's nutritional status. However, the ionome of Macadamia (Proteaceae), which is an important nut-producing tree, remains unknown. We aimed to characterise the allocation of biomass and nutrient-partitioning patterns in three macadamia genotypes. We excavated 15 productive trees (three cultivars at 21years of age; two cultivars at 16years of age) in an orchard. Biomass, nutrient concentrations, and contents of roots, stems, branches, and leaves were analysed. Dry weight of roots, stems, branches and leaves accounted for 14-20%, 19-30%, 36-52%, and 12-18% of total plant weight, respectively. No significant difference was found in the total biomass among the cultivars at the same age. Compared with most crop plants, macadamia had low phosphorus (P) concentrations in all organs (<1gkg-1 ), and low leaf zinc (Zn) concentration (8mgkg-1 ). In contrast, macadamia accumulated large amounts of manganese (Mn), with a 20-fold higher leaf Mn concentration than what is considered sufficient for crop plants. Leaves exhibited the highest nutrient concentrations, except for iron and Zn, which exhibited the highest concentrations in roots. The organ-specific ionomics of Macadamia is characterised by low P and high Mn concentrations, associated with adaptation to P-impoverished habitats.


Asunto(s)
Macadamia , Proteaceae , Manganeso , Biomasa , Plantas , Árboles , Fósforo
19.
Food Res Int ; 168: 112772, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120222

RESUMEN

Macadamia oil is rich in monounsaturated fatty acids, especially a high level of palmitoleic acid, which may have beneficial health effects by lowering blood lipid levels. In our study, the hypolipidemic effects of macadamia oil and its potential mechanisms of action were investigated using a combination of in vitro and in vivo assays. The results showed that macadamia oil significantly reduced lipid accumulation, and improved triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in oleic acid-induced high-fat HepG2 cells. The macadamia oil treatment also exhibited antioxidant effects, as seen by its ability to reduce reactive oxygen species and malondialdehyde (MDA) levels, and increase superoxide dismutase (SOD) activity. The effects of 1000 µg/mL of macadamia oil were comparable to that of 4.19 µg/mL simvastatin. The results of qRT-PCR and western blotting analyses indicated that macadamia oil effectively inhibited hyperlipidemia by reducing the expression levels of SREBP-1c, PPAR-γ, ACC and FAS and by enhancing the expression levels of HO-1, NRF2 and γ-GCS, via AMPK activation and oxidative stress relief, respectively. In addition, different doses of macadamia oil were found to significantly improve liver lipid accumulation, reduce serum and liver TC, TG, and LDL-C levels, increase HDL-C levels, increase antioxidant enzyme (SOD, GSH-Px, and T-AOC) activity, and decrease the MDA content of mice on a high-fat diet. These results indicated that macadamia oil had a hypolipidemic effect and provide insights that might facilitate the development of functional food and dietary supplements.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Macadamia , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , LDL-Colesterol , Lípidos , Triglicéridos , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo
20.
Plant Dis ; 107(1): 76-82, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35657716

RESUMEN

Husk spot, a fungal disease of macadamia pericarps (Pseudocercospora macadamiae), induces premature abscission in several major commercial cultivars. Breeding for resistance to husk spot is a priority of the Australian macadamia industry. Due to the large tree size of macadamia and high numbers of progeny in breeding populations, inoculating for resistance screening is laborious and time consuming. Previously utilized methods included direct applications of P. macadamiae suspensions and the hanging of bags of diseased husks above developing fruit in tree canopies. In this study, both methods were modified to allow for efficient application in large-scale breeding populations, and their efficacy was evaluated. Two quantities of diseased husk per bag, 'large' (75 g) and 'small' (30 g), and two concentrations of sprayed P. macadamiae suspensions, 'stock' (5 × 105 propagules/ml) and 'dilute' (2.5 × 105 propagules/ml), were tested across two fruiting seasons. Treatments were compared against a control (sterile water) in commercial cultivars A38 and A4. Husk spot incidence and severity produced by small bags were significantly affected by season. A significant season effect was less common for other treatments. All four treatments infected over 50% of target fruit in each season, but the highest husk spot incidence across both seasons (≥85%) was produced from large bags. Overall, the large bags were the most reliable method for infection of target fruit. Results also demonstrate the importance of considering the effect of season when selecting husk spot inoculation methods.


Asunto(s)
Macadamia , Fitomejoramiento , Australia , Macadamia/genética , Incidencia , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA