RESUMEN
Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.
Asunto(s)
Cocos , Lipasa , Lipasa/aislamiento & purificación , Lipasa/química , Lipasa/biosíntesis , Lipasa/metabolismo , Cocos/química , Aceites de Plantas/química , Fermentación , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/química , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genéticaRESUMEN
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 â). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas , Lipasa , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Adsorción , Concentración de Iones de Hidrógeno , Aspergillus/enzimología , Proteínas Fúngicas/química , TemperaturaRESUMEN
Fungal lipolytic enzymes play crucial roles in various lipid bio-industry processes. Here, we elucidated the biochemical and structural characteristics of an unexplored fungal lipolytic enzyme (TaLip) from Thermoascus aurantiacus var. levisporus, a strain renowned for its significant industrial relevance in carbohydrate-active enzyme production. TaLip belongs to a poorly understood phylogenetic branch within the class 3 lipase family and prefers to hydrolyze mainly short-chain esters. Nonetheless, it also displays activity against natural long-chain triacylglycerols. Furthermore, our analyses revealed that the surfactant sodium dodecyl sulfate (SDS) enhances the hydrolytic activity of TaLip on pNP butyrate by up to 5.0-fold. Biophysical studies suggest that interactions with SDS may prevent TaLip aggregation, thereby preserving the integrity and stability of its monomeric form and improving its performance. These findings highlight the resilience of TaLip as a lipolytic enzyme capable of functioning in tandem with surfactants, offering an intriguing enzymatic model for further exploration of surfactant tolerance and activation in biotechnological applications.
Asunto(s)
Esterasas , Lipasa , Tensoactivos , Tensoactivos/química , Tensoactivos/farmacología , Lipasa/metabolismo , Lipasa/química , Esterasas/metabolismo , Esterasas/química , Dodecil Sulfato de Sodio/química , Especificidad por Sustrato , Hidrólisis , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Aniones/química , Aniones/metabolismo , Estabilidad de EnzimasRESUMEN
This work evaluated structured lipids (SLs) through chemical and enzymatic interesterification (CSLs and ESLs). Blends of soybean oil and peanut oil 1:1 wt% were used, with gradual addition of fully hydrogenated crambe to obtain a final behenic acid concentration of 6, 12, 18, and 24 %. Chemical catalysis used sodium methoxide (0.4 wt%) at 100 °C for 30 min, while enzymatic catalysis used Lipozyme TL IM (5 wt%) at 60 °C for 6 h. Major fatty acids identified were C16:0, C18:0, and C22:0. It was observed that with gradual increase of hard fat, the CSLs showed high concentrations of reaction intermediates, indicating further a steric hindrance, unlike ESLs. Increased hard fat also altered crystallization profile and triacylglycerols composition and ESLs showed lower solid fat, unlike CSLs. Both methods effectively produced SLs as an alternative to trans and palm fats, view to potential future applications in food products.
Asunto(s)
Aceite de Palma , Aceite de Soja , Aceite de Palma/química , Aceite de Soja/química , Esterificación , Aceite de Cacahuete/química , Ácidos Grasos trans/química , Ácidos Grasos trans/análisis , Ácidos Grasos/química , Lípidos/química , Triglicéridos/química , Manipulación de Alimentos/métodos , Lipasa/química , Lipasa/metabolismo , HidrogenaciónRESUMEN
Lipases are enzymes that hydrolyze long-chain carboxylic esters, and in the presence of organic solvents, they catalyze organic synthesis reactions. However, the use of solvents in these processes often results in enzyme denaturation, leading to a reduction in enzymatic activity. Consequently, there is significant interest in identifying new lipases that are resistant to denaturing conditions, with extremozymes emerging as promising candidates for this purpose. Lip7, a lipase from Geobacillus sp. ID17, a thermophilic microorganism isolated from Deception Island, Antarctica, was recombinantly expressed in E. coli C41 (DE3) in functional soluble form. Its purification was achieved with 96% purity and 23% yield. Enzymatic characterization revealed Lip7 to be a thermo-alkaline enzyme, reaching a maximum rate of 3350 U mg-1 at 50 °C and pH 11.0, using p-nitrophenyl laurate substrate. Notably, its kinetics displayed a sigmoidal behavior, with a higher kinetic efficiency (kcat/Km) for substrates of 12-carbon atom chain. In terms of thermal stability, Lip7 demonstrates stability up to 60 °C at pH 8.0 and up to 50 °C at pH 11.0. Remarkably, it showed high stability in the presence of organic solvents, and under certain conditions even exhibited enzymatic activation, reaching up to 2.5-fold and 1.35-fold after incubation in 50% v/v ethanol and 70% v/v isopropanol, respectively. Lip7 represents one of the first lipases from the bacterial subfamily I.5 and genus Geobacillus with activity and stability at pH 11.0. Its compatibility with organic solvents makes it a compelling candidate for future research in biocatalysis and various biotechnological applications.
Asunto(s)
Estabilidad de Enzimas , Geobacillus , Lipasa , Proteínas Recombinantes , Solventes , Geobacillus/enzimología , Geobacillus/genética , Lipasa/genética , Lipasa/química , Lipasa/metabolismo , Lipasa/aislamiento & purificación , Solventes/química , Regiones Antárticas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Especificidad por Sustrato , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismoRESUMEN
Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.
Asunto(s)
Enzimas Inmovilizadas , Eurotiales , Lipasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Esterificación , Eurotiales/enzimología , Biocatálisis , Hidrólisis , Sulfonas/química , Sulfonas/farmacología , TemperaturaRESUMEN
This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, 1,2,3-propanetriol, and 1,2 propanediol. The hydrolysis of p-nitrophenyl laureate was carried out with the lipase Candida antarctica Lipase B (CALB) as a reaction model to evaluate the solvent effect and tested in different DES/buffer phosphate mixtures at different % w/w. The results showed that two mixtures of different DES at 25 % w/w were the most promising solvents, as this percentage enhanced the activities of CALB, as evidenced by its higher catalytic efficiency (kcatKM). The solvent analysis shows that the enzymatic reaction requires a reaction media rich in water molecules to enable hydrogen-bond formation from the reaction media toward the enzymatic reaction, suggesting a better interaction between the substrate and the enzyme-active site. This interaction could be attributed to high degrees of freedom influencing the enzyme conformation given by the reaction media, suggesting that CALB acquires a more restrictive structure in the presence of DES or the stabilized network given by the hydrogen bond from water molecules in the mixture improves the enzymatic activity, conferring conformational stability by solvent effects. This study offers a promising approach for applications and further perspectives on genuinely green industrial solvents.
Asunto(s)
Disolventes Eutécticos Profundos , Proteínas Fúngicas , Enlace de Hidrógeno , Lipasa , Agua , Lipasa/química , Lipasa/metabolismo , Agua/química , Disolventes Eutécticos Profundos/química , Proteínas Fúngicas/química , Catálisis , Hidrólisis , Solventes/química , Biocatálisis , CinéticaRESUMEN
GDSL-type esterase/lipase protein (GELP) genes are crucial in the specialized lipid metabolism, in the responses to abiotic stresses, and in the regulation of plant homeostasis. R. communis is an important oilseed crop species that can sustain growth and productivity when exposed to harsh environmental conditions. Herein, we raised the question of whether the GELP gene family could be involved in the acquisition of R. communis tolerance to abiotic stresses during seed germination and seedling establishment. Thus, we used bioinformatics and transcriptomics to characterize the R. communis GELP gene family. R. communis genome possesses 96 GELP genes that were characterized by extensive bioinformatics, including phylogenetic analysis, subcellular localization, exon-intron distribution, the analysis of regulatory cis-elements, tandem duplication, and physicochemical properties. Transcriptomics indicated that numerous RcGELP genes are readily responsive to high-temperature and salt stresses and might be potential candidates for genome editing techniques to develop abiotic stress-tolerant crops.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas , Ricinus , Plantones , Estrés Fisiológico , Plantones/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Germinación/genética , Ricinus/genética , Ricinus/metabolismo , Esterasas/genética , Esterasas/metabolismo , Filogenia , Lipasa/genética , Lipasa/metabolismo , Familia de Multigenes , Genoma de Planta/genéticaRESUMEN
Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.
Asunto(s)
Biocatálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas , Lipasa , Dióxido de Silicio , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Dióxido de Silicio/química , Porosidad , Temperatura , Adsorción , Concentración de Iones de Hidrógeno , Eurotiales/enzimología , Cinética , Glutaral/químicaRESUMEN
Peroxyacid synthesis is the first step in Prilezhaev epoxidation, which is an industrial method to form epoxides. Motivated by the development of a kinetic model as a tool for solvent selection, the effect of solvent type and acid chain length on the lipase-catalyzed peroxyacid synthesis was studied. A thermodynamic activity-based ping-pong kinetic expression was successfully applied to predict the effect of the reagent loadings in hexane. The activity-based reaction quotients provided a prediction of solvent-independent equilibrium constants. However, this strategy did not achieve satisfactory estimations of initial rates in solvents of higher polarity. The lack of compliance with some assumptions of this methodology could be confirmed through molecular dynamics calculations i.e. independent solvation energies and lack of solvent interaction with the active site. A novel approach is proposed combining the activity-based kinetic expression and the free binding energy of the solvent with the active site to predict kinetics upon solvent change. Di-isopropyl ether generated a strong interaction with the enzyme's active site, which was detrimental to kinetics. On the other hand, toluene or limonene gave moderate interaction with the active site rendering improved catalytic yield compared with less polar solvents, a finding sharpened when peroctanoic acid was produced.
Asunto(s)
Lipasa , Simulación de Dinámica Molecular , Solventes , Solventes/química , Lipasa/química , Lipasa/metabolismo , Cinética , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismoRESUMEN
The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.
Asunto(s)
Quitinasas , Fermentación , Péptido Hidrolasas , Quitinasas/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Lipasa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/metabolismo , Hongos/metabolismo , Control Biológico de Vectores/métodos , Beauveria/enzimología , Beauveria/metabolismo , Estabilidad de EnzimasRESUMEN
Triacylglycerols (TAGs) are a primary energy source for marine mammals during lipid digestion. Walruses (Odobenus rosmarus divergens) consume prey with a high content of long-chain polyunsaturated fatty acids; however, their digestive physiology and lipid digestion remain poorly studied. The present study aims to model and characterize the gastric (PWGL) and pancreatic (PWPL) lipases of Pacific walruses using an in-silico approach. The confident 3D models of PWGL and PWPL were obtained via homology modeling and protein threading and displayed the structural features of lipases. Molecular docking analysis demonstrated substrate selectivity for long-chain TAG (Trieicosapentaenoin; TC20:5n-3) in PWGL and short-chain TAG (Trioctanoin; TC8:0) in PWPL. Molecular dynamics simulations demonstrate that PWGL bound to tridocosahexaenoin (TC22:6n-3), the protein is considerably stable at all three salinity conditions, but fluctuations are observed in the regions associated with catalytic sites and the lid, indicating the potential hydrolysis of the substrate. This is the first study to report on the digestion of TAGs in walruses, including modeling and lipases characterization and proposing a digestive tract for pinnipeds.
Asunto(s)
Lipasa , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Páncreas , Animales , Lipasa/metabolismo , Lipasa/química , Páncreas/enzimología , Morsas/metabolismo , Metabolismo de los Lípidos , Especificidad por Sustrato , Triglicéridos/metabolismo , Digestión , Estómago/enzimología , Secuencia de AminoácidosRESUMEN
Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer numerous health benefits. Enriching these fatty acids in fish oil using cost-effective methods, like lipase application, has been studied extensively. This research aimed to investigate F. solani as a potential lipase producer and compare its efficacy in enhancing polyunsaturated omega-3 fatty acids with commercial lipases. Submerged fermentation with coconut oil yielded Lipase F2, showing remarkable activity (215.68 U/mL). Lipase F2 remained stable at pH 8.0 (activity: 93.84 U/mL) and active between 35 and 70 °C, with optimal stability at 35 °C. It exhibited resistance to various surfactants and ions, showing no cytotoxic activity in vitro, crucial for its application in the food and pharmaceutical industries. Lipase F2 efficiently enriched EPA and DHA in fish oil, reaching 22.1 mol% DHA and 23.8 mol% EPA. These results underscore the economic viability and efficacy of Lipase F2, a partially purified enzyme obtained using low-cost techniques, demonstrating remarkable stability and resistance to diverse conditions. Its performance was comparable to highly pure commercially available enzymes in omega-3 production. These findings highlight the potential of F. solani as a promising lipase source, offering opportunities for economically producing omega-3 and advancing biotechnological applications in the food and supplements industry.
Asunto(s)
Ácidos Grasos Omega-3 , Fusarium , Lipasa , Fusarium/enzimología , Fusarium/efectos de los fármacos , Lipasa/metabolismo , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/metabolismo , Aceites de Pescado/química , Fermentación , Proteínas Fúngicas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Aceite de Coco/química , Aceite de Coco/metabolismo , TemperaturaRESUMEN
In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.
Asunto(s)
Simulación por Computador , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Animales , Simulación del Acoplamiento Molecular , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Lipasa/metabolismo , Lipasa/antagonistas & inhibidores , Terapia Molecular Dirigida/métodosRESUMEN
Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.
Asunto(s)
Fermentación , Lipasa , Ácidos Oléicos , Penicillium , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/metabolismo , Penicillium/metabolismo , Lipasa/metabolismo , Esterificación , Biocatálisis , LipólisisRESUMEN
BACKGROUND: Surgical site infections are one of the major clinical problems in surgical departments that cost hundreds of millions of dollars to healthcare systems around the world. AIM: The study aimed to address the pressing issue of surgical site infections, which pose significant clinical and financial burdens on healthcare systems globally. Recognizing the substantial costs incurred due to these infections, the research has focused on understanding the role of lipase and protease production by multi-drug resistant bacteria isolated from surgical wounds in the development of post-surgical wound infections. METHODS: For these purposes, 153 pus specimens were collected from patients with severe post-surgical wound infections having prolonged hospital stays. The specimens were inoculated on appropriate culture media. Gram staining and biochemical tests were used for the identification of bacterial growth on suitable culture media after 24 hours of incubation. The isolated pathogens were then applied for lipase and protease, key enzymes that could contribute to wound development, on tributyrin and skimmed milk agar, respectively. Following the CSLI guidelines, the Kirby-Bauer disc diffusion method was used to assess antibiotic susceptibility patterns. The results revealed that a significant proportion of the samples (127 out of 153) showed bacterial growth of Gram-negative (n = 66) and Gram-positive (n = 61) bacteria. In total, isolated 37 subjects were declared MDR due to their resistance to three or more than three antimicrobial agents. The most prevalent bacteria were Staphylococcus aureus (29.13%), followed by S. epidermidis (18.89%), Klebsiella pneumoniae (18.89%), Escherichia coli (14.96%), Pseudomonas aeruginosa (10.23%), and Proteus mirabilis (7.87%). Moreover, a considerable number of these bacteria exhibited lipase and protease activity with 70 bacterial strains as lipase positive on tributyrin agar, whereas 74 bacteria showed protease activity on skimmed milk agar with P. aeruginosa as the highest lipase (69.23%) and protease (76.92%) producer, followed by S. aureus (lipase 62.16% and protease 70.27%). RESULTS: The antimicrobial resistance was evaluated among enzyme producers and non-producers and it was found that the lipase and protease-producing bacteria revealed higher resistance to selected antibiotics than non-producers. Notably, fosfomycin and carbapenem were identified as effective antibiotics against the isolated bacterial strains. However, gram-positive bacteria displayed high resistance to lincomycin and clindamycin, while gram-negative bacteria were more resistant to cefuroxime and gentamicin. CONCLUSION: In conclusion, the findings suggest that lipases and proteases produced by bacteria could contribute to drug resistance and act as virulence factors in the development of surgical site infections. Understanding the role of these enzymes may inform strategies for preventing and managing post-surgical wound infections more effectively.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Lipasa , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas , Humanos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Lipasa/metabolismo , Lipasa/biosíntesis , Antibacterianos/farmacología , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/biosíntesis , Infección de la Herida Quirúrgica/microbiología , Infección de la Herida Quirúrgica/tratamiento farmacológico , Infección de Heridas/microbiología , Infección de Heridas/tratamiento farmacológico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/aislamiento & purificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificaciónRESUMEN
Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.
Asunto(s)
Aciltransferasas , Tejido Adiposo , Acido Graso Sintasa Tipo I , Leucocitos Mononucleares , Lipasa , Trypanosoma cruzi , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Tejido Adiposo/parasitología , Tejido Adiposo/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética , Lipasa/genética , Lipasa/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Carga de Parásitos , Expresión Génica , Células CultivadasRESUMEN
Mono- and diglycerides play a crucial role in the food industry as multifunctional food additives and emulsifiers. Their importance stems from their unique properties, which allow them to improve the quality, texture, and stability of various food products. Here, results of the kinetic modeling of the mono- and diglycerides synthesis mediated by the lipase Lipozyme® TL 100 L immobilized on the clayey support Spectrogel® type C are reported. The support was characterized by TEM, SEM, and FTIR. Firstly, the influence of pH and lipase load on the immobilization process was analyzed, resulting in an enzymatic activity of 93.2 ± 0.7 U g-1 under optimized conditions (170.9 U g-1 of lipase and pH of 7.1). Afterward, the effects of reaction temperature and concentration of immobilized biocatalyst in the feedstock conversion were evaluated. At optimized parameters, a triglycerides conversion of 97% was obtained at 36.5 °C, 7.9 vol.% of enzyme, a glycerol to feedstock molar ratio of 2:1, and 2 h. The optimized conditions were used to determine the kinetic constants of the elementary reactions involved in the glycerolysis, where a fit superior to 0.99 was achieved between experimental values and predicted data.
Asunto(s)
Enzimas Inmovilizadas , Lipasa , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Cinética , Diglicéridos/química , Diglicéridos/biosíntesis , Arcilla/química , Concentración de Iones de Hidrógeno , Temperatura , Modelos QuímicosRESUMEN
The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).
Asunto(s)
Aceite de Ricino , Ácidos Grasos no Esterificados , Hexanoles , Esterificación , Ésteres/química , Ácidos Grasos/química , Lipasa/metabolismo , Etanol , Catálisis , Enzimas Inmovilizadas/químicaRESUMEN
Lipid storage in the form of triacylglycerol (TAG) is essential for insect life, as it enables flight, development, and reproduction. The activity of the lipase brummer (bmm) has been shown to be essential to insects' homeostasis. The objective of this study was to evaluate how bmm expression occurs in Aedes aegypti larvae and adults, and to observe TAG levels during fasting in adult females. The bmm sequence was identified in A. aegypti and exhibited a patatin-like phospholipase domain reinforced by the presence of a catalytic dyad with serine and aspartate residues, revealing a high degree of similarity with other organisms. Bmm expression was differentiated in the larvae and adult fat body (FB) following TAG reserve dynamics. Bmm was expressed three times in larval stages L3, L4, and pupae compared with L1 and L2, which could indicate its role in the maturation of these insects. In the postemergence (PE) and post-blood meal (PBM) FB of adult insects, bmm expression varied over several days. PE adults showed a pronounced bmm increase from the third day onward compared with those not subjected to fasting. This was accompanied by a decrease in TAG from the third day onward, suggesting the participation of bmm. Six hours after blood feeding, TAG levels increased in mosquitos reared in the absence of sucrose, suggesting lipid accumulation to guarantee reproduction. Bmm responded positively to fasting, followed by TAG mobilization in adult FB. During the previtellogenic period, bmm levels responded to low TAG levels, unlike the PBM period.