Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1744-1752, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233402

RESUMEN

In this paper, we collected the individual tree point cloud data in the plots of Larix olgensis plantations with different thinning intensities in Mengjiagang Forest Farm, applied the fractal analysis theory to extract box dimensions (Db) on MATLAB platform, and characterized the structural complexity of L. olgensis. We assessed the effect of different thinning intensities and tree attributes on the structural complexity of L. olgensis. The results showed significant differences in L. olgensis Db between control (CK: 1.68±0.07), low and medium intensity thinning (T1, T2, T3: 1.74±0.07), and high intensity thinning (T4: 1.81±0.06), which indicated that the thinning intensity increased tree structural complexity. For trunk attribute, the diameter at breast height and tree height was significantly positively correlated with Db, while the height-to-diameter ratio was significantly negatively correlated with Db. For canopy attribute, crown volume, surface area, projected area, and crown diameter was significantly positively correlated with Db. Hegyi competition index was significantly negatively correlated with Db in the control and low-moderate-intensity thinning treatments, but not significantly correlated with Db in the high-intensity thinning treatment. It indicated that thinning influenced L. olgensis structural complexity, with trunk attribute and canopy attribute as the main drivers of L. olgensis structural complexity.


Asunto(s)
Agricultura Forestal , Larix , Larix/crecimiento & desarrollo , Agricultura Forestal/métodos , China , Ecosistema , Conservación de los Recursos Naturales , Bosques , Fractales
2.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1509-1517, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235008

RESUMEN

We established a mixed-effects model incorporating climatic factors for the base diameter and length of the primary branches of Larix kaempferi using stepwise regression, based on climatic data from a total of 40 standard plots located in Xiaolongshan, Gansu Province, Changlinggang Forest Farm in Jianshi County, Hubei Province, and Dagujia Forest Farm in Qingyuan County, Liaoning Province, as well as the data from 120 L. kaempferi sample trees. Additionally, we created prediction charts for the fixed effects portion of the optimal mixed model to determine the relationship between climatic factors and base diameter and branch length, to explore the differential response of L. kaempferi branches to climatic variables. The results showed that the base diameter mixing model with annual mean temperature and water vapor deficit and the branch length mixing model with annual mean temperature had the best fitting effect, with R2 of 0.6152 and 0.6823, respectively. Based on the fixed effects prediction chart of the mixed model, the overall basal diameter showed an increasing trend with the increases of relative branch depth. The average basal diameter size was in an order of young-aged plantation

Asunto(s)
Clima , Larix , Larix/crecimiento & desarrollo , China , Temperatura , Tallos de la Planta/crecimiento & desarrollo , Modelos Teóricos , Ecosistema
3.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1474-1482, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235004

RESUMEN

Quantifying the impact of competition on individual tree biomass and its distribution pattern can provide a basis for improving the prediction accuracy of forest biomass models. To accurately quantify the effects of competition factors on individual biomass and its distribution, we constructed three different individual biomass models by using nonlinear coupling equations based on the biomass survey data of 50 Larix gmelinii from 18 plots of Pangu Forest Farm in Daxing'an Mountains. M-1 was a traditional singly additive biomass model. M-2 and M-3 were models taking the distance dependent simple competition index (CI) and distance independent relative diameter (Rd) into account, respectively. Those models were used to reveal the influence of competition factors on the prediction accuracy and distribution pattern of single tree biomass model of L. gmelinii. The results showed that the adjusted R2 of three additive models ranged from 0.694 to 0.974, mean prediction errors ranged from -0.017 to 0.021, and mean absolute errors ranged from 0.152 to 0.357. The introduction of Rd could improve the fitting degree and prediction accuracy of most biomass models, but CI did not affect the model fitting effect and prediction ability. Among the three models, M-3 model had the best performance, with good fitting degree and prediction accuracy of the biomass of each part, which could accurately estimate the single tree biomass of L. gmelinii. Further simulation results showed that the variation of biomass with DBH was mainly affected by CI and Rd grade, and the influence of Rd was stronger than CI. CI had greater influence on root and dry biomass, but less influence on branch and leaf biomass. Rd had a more significant effect on biomass of branch and leaf than on that of root and trunk.


Asunto(s)
Biomasa , Bosques , Larix , Larix/crecimiento & desarrollo , China , Predicción , Modelos Teóricos , Ecosistema , Modelos Biológicos
4.
Sci Total Environ ; 951: 175601, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154999

RESUMEN

Wood is increasingly being appreciated in construction due to its valuable environmental attributes. This paper explores the environmental and market performance of two wood supply chains in Northern Italy. Larch and chestnut wood are extracted and processed to obtain beams, planks, MDF panels and energy. LCA is performed to evaluate the environmental impacts of 1m3 of extracted wood through a cradle-to-gate approach. Then, a biogenic carbon analysis is carried out using the EN 16449:2014 standard including a comparison of different end-of-life treatments. Also, OSB is proposed as an alternative path for wood chips and contrasted to the current energy scenario. Moreover, solid wood beams and planks are compared with engineered wood products (EWPs). Lastly, a market analysis is conducted to assess the market trends of the different wood products studied. The LCA shows similar results for both wood species across most impact categories, with slightly higher values for the chestnut system. Most impacts are related to the production of MDF boards and the energy valorization of wood chips. Biogenic carbon analysis shows a negative balance of emissions with -314 and -205 kg of CO2 eq for larch and chestnut, respectively. It also suggests that OSB manufacturing can be a valuable alternative to the energy use of wood chips and that the end-of-life treatment with better results is recycling. The comparison of beams and planks with engineered wood products supports that solid wood poses a better environmental alternative in similar applications. Market analysis shows stagnation in the apparent consumption of wood products in the European market and a slight growth in the Italian one between 2018 and 2022. Overall, the systems studied suggest that the potential environmental benefits of using wood in construction are not being matched by current market trends.


Asunto(s)
Madera , Italia , Larix , Conservación de los Recursos Naturales/métodos , Materiales de Construcción , Aesculus , Fagaceae
5.
J Proteomics ; 307: 105288, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173904

RESUMEN

The adventitious root formaton (ARF) in excised plant parts is essential for the survival of isolated plant fragments. In this study, we explored the complex mechanisms of ARF in Larix kaempferi by conducting a comprehensive proteomic analysis across three distinct stages: the induction of adventitious root primordia (C1, 0-25 d), the formation of adventitious root primordia (C2, 25-35 d), and the elongation of adventitious roots (C3, 35-45 d). We identified 1976 proteins, with 263 and 156 proteins exhibiting increased abundance in the C2/C1 and C3/C2 transitions, respectively. In contrast, a decrease in the abundance of 106 and 132 proteins suggests a significant demand for metabolic processes during the C2/C1 phase. The abundance of IAA-amino acid hydrolase and S-adenosylmethionine synthase were increased in the C2/C1 phase, underscoring the role of auxin in adventitious root induction. The decrease in abundance of photosynthesis-related proteins during the C2/C1 phase highlights the significance of initial light conditions in adventitious root induction. Moreover, variation in cell wall synthesis and metabolic proteins in the C2/C1 and C3/C2 stages suggests that cell wall metabolism is integral to adventitious root regeneration. Gene Ontology enrichment analysis revealed pathways related to protein modification enzymes, including deubiquitinases and kinases, which are crucial for modulating protein modifications to promote ARF. Furthermore, the increased abundance of antioxidant enzymes, such as peroxidases and glutathione peroxidases, indicates a potential approach for enhancing ARF by supplementing the culture medium with antioxidants. Our study provides insights into metabolic changes during ARF in L. kaempferi, offering strategies to enhance adventitious root regeneration. These findings have the potential to refine plant propagation techniques and expedite breeding processes. SIGNFICANCE: The main challenge in the asexual reproduction technology of Larix kaempferi lies in adventitious root formation (ARF). While numerous studies have concentrated on the efficiency of ARF, proteomic data are currently scarce. In this study, we collected samples from three stages of ARF in L. kaempferi and subsequently performed proteomic analysis. The data generated not only reveal changes in protein abundance but also elucidate key metabolic processes involved in ARF. These insights offer a novel perspective on addressing the challenge of adventurous root regeneration.


Asunto(s)
Larix , Raíces de Plantas , Proteoma , Larix/anatomía & histología , Larix/genética , Larix/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción Asexuada , Proteómica , Análisis Espectral , Ontología de Genes , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Sci Total Environ ; 951: 175725, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181256

RESUMEN

Biochar is widely used in integrated soil management, and can directly alter the soil environment and drastically affect the soil microbial community. Given the important role of soil microorganisms in the carbon cycling of soils, it is important to understand how biochar alters the stability of soil organic carbon (SOC) pools in Dahurian larch (Larix gmelinii) forests through microbial pathways unburned and high-severity burned soils to guide comprehensive soil management and restore ecological functions in postfire soils. This study employed the r/K ecological strategy theory to quantify the ecological strategy propensities of soil microbial communities. The ratio of oligotrophic species to copiotrophic species was used to measure these propensities. The study aimed to establish a link between the ecological strategy choices of microbial communities and SOC pools. We found: that (1) biochar increases the mass of SOC regardless of whether the soil has experienced fire, (2) biochar addition to unburned stands makes the K-strategy dominant in microbial communities, significantly decreasing the mineral-associated organic carbon (MAOC) to SOC ratio and weakening the of SOC pool stability; (3) biochar addition to high-severity burned stands shifts the dominant microbial strategy to r-strategy, restoring the damaged microbial community to its preburned state. The MAOC/SOC ratio significantly increased, contributing to the restoration of the SOC pool stability and enhancing the soil carbon sequestration capacity. This study elucidates the effects of biochar addition on the dominant ecological strategy of microbial communities and alterations in the structure and stability of SOC pools, which is important for understanding how biochar affects SOC pools through biochemical pathways, and provides important references for unraveling the relation between microbial ecological strategies and soil carbon pools.


Asunto(s)
Carbono , Carbón Orgánico , Bosques , Larix , Microbiología del Suelo , Suelo , Carbón Orgánico/química , Suelo/química , China , Microbiota , Ciclo del Carbono
7.
PeerJ ; 12: e17820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131607

RESUMEN

Plantation forests enhance carbon storage in terrestrial ecosystems in China. Larix kaempferi (Lamb.) Carrière (Lamb.) (Larix olgensis Henry) is the main species for afforestation in the eastern Liaoning Province. Therefore, it is important to understand the correlation between the site class and carbon sink potential of Larix kaempferi plantations in Liaoning Province for afforestation and carbon sink in this area. The model was fitted using three classical theoretical growth equations: the Richards model, the Korf model, and the Hossfeld model. This study used the forest resource inventory data for management in Liaoning Province in 2011 to build six dynamic height-age models for a Larix kaempferi plantation in Dandong City regardless of base-age. The optimal model derived by the generalized algebraic difference approach (GADA) method was compared with the model derived by the algebraic difference approach (ADA) method. The superiority of GADA was demonstrated by comparison. The Levenberg-Marquardt algorithm was used to fit the model. The statistical and biological characteristics were considered synthetically when comparing the models. The best model was screened out by statistical analysis and graphic analysis. The results show that the differential height-age model derived from Richards equation can well explain the growth process of Larix kaempferi in Dandong City, Liaoning Province under different conditions. The site index model based on Richards equation and derived by GADA was used to calculate the site class of a Larix kaempferi plantation in Dandong City. The net primary productivity (NPP) value from the past ten years was extracted from the MOD17A3HGF data set. Spearman correlation analysis and Kendall correlation analysis were used to show that there is a significant positive correlation between NPP value and site class of Larix kaempferi plantation in Dandong City. Among them, the highest growth occurred in 2016; NPP increased by about 3.914 gC/m2/year for every two increases in height-age grade; the lowest increase in NPP was in 2014; NPP increased by about 2.113 gC/m2/year for every two increases in height-age grade; and for every two increases in height-age grade in the recent ten years, the average NPP value increased by about 2.731 gC/m2/year.


Asunto(s)
Larix , Larix/crecimiento & desarrollo , China , Bosques , Secuestro de Carbono , Ecosistema , Modelos Teóricos , Conservación de los Recursos Naturales , Pueblos del Este de Asia
8.
Phys Life Rev ; 50: 228-251, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39178631

RESUMEN

Forest management by thinning can mitigate the detrimental impact of increasing drought caused by global warming. Growing evidence shows that the soil microbiota can coordinate the dynamic relationship between forest functions and drought intensity, but how they function as a cohesive whole remains elusive. We outline a statistical topology model to chart the roadmap of how each microbe acts and interacts with every other microbe to shape the dynamic changes of microbial communities under forest management. To demonstrate its utility, we analyze a soil microbiota data collected from a two-way longitudinal factorial experiment involving three stand densities and three levels of rainfall over a growing season in artificial plantations of a forest tree - larix (Larix kaempferi). We reconstruct the most sophisticated soil microbiota networks that code maximally informative microbial interactions and trace their dynamic trajectories across time, space, and environmental signals. By integrating GLMY homology theory, we dissect the topological architecture of these so-called omnidirectional networks and identify key microbial interaction pathways that play a pivotal role in mediating the structure and function of soil microbial communities. The statistical topological model described provides a systems tool for studying how microbial community assembly alters its structure, function and evolution under climate change.


Asunto(s)
Bosques , Calentamiento Global , Microbiota , Microbiología del Suelo , Larix/microbiología
9.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999933

RESUMEN

Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth.


Asunto(s)
Larix , Hojas de la Planta , Proteínas de Plantas , Proteoma , Proteómica , Larix/metabolismo , Larix/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Acetilación , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas , Lisina/metabolismo
10.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1025-1032, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884237

RESUMEN

In this study, we explored the thickness influence of undecomposed litter layer and semi-decomposed litter layer on the natural regeneration in an artificial pure forest of Larix principis-rupprechtii in the forest area of Guandi Mountain. We divided the litter into an undecomposed layer and a semi-decomposed layer, which was further divided into eight groups based on the thickness. The results showed that when the thickness of undecomposed layer was 0.32-0.83 cm, and that of semi-decomposed layer was 0.18-0.89 cm, the regeneration index was larger (≥0.15), and the regeneration was better. When the thickness of undecomposed layer was more than 1.1 cm and that of semi-decomposed layer was more than 0.5 cm, the regeneration index was smaller (≤0.07), and the rege-neration of understory was worse. Results of redundancy analysis showed that the undecomposed layer thickness of litter had a high and stable explanatory ability for natural regeneration, with a contribution rate of 38.7%, while the semi-decomposed layer thickness had no significant effect on natural regeneration. Structural equation modeling revealed that the thickness of undecomposed layer of litter increased the mechanical resistance to seed germination which had a negative direct effect on natural regeneration (-0.617), and a positive indirect effect on natural rege-neration by influencing the content of alkali-hydrolyzed nitrogen and available phosphorus (+0.178). The combined effects (-0.439) showed an inhibitory effect on the natural regeneration. In conclusion, the thickness of undecomposed layer of litter under L. principis-rupprechtii was most closely related to natural regeneration, and the thickness of semi-decomposed layer had a minimal effect on natural regeneration.


Asunto(s)
Larix , Larix/crecimiento & desarrollo , China , Hojas de la Planta/crecimiento & desarrollo , Conservación de los Recursos Naturales , Ecosistema , Bosques , Suelo/química
11.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1055-1063, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884240

RESUMEN

To accurately estimate the age of individual tree and to achieve full-cycle sustainable management of natural Larix gmelinii forest in Great Xing'an Mountains of northeastern China, we constructed individual tree age prediction model using stepwise regression and random forest algorithms based on 44 fixed plots data and 280 stan-dard tree cores obtained from the Pangu Forest Farm. We analyzed the influence of stand structure, site conditions, and competition index on the accuracy of model prediction. The model was evaluated by the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The results showed that the random forest model had the highest prediction accuracy when number of decision trees was 1500 and number of node con-tention variables was 8. The random forest model had better accuracy and prediction ability than the stepwise regression model, with R2, RMSE and MAE of 0.5882, 9.9259 a, 8.1155 a. Diameter at breast height was the most important factor affecting age prediction (83.8%), followed by tree height (34.4%), elevation (17.9%), and basal area per hectare (17.5%). The random forest algorithm exhibited better adaptability and modeling effect on constructing a predictive model for individual tree age. This research contributed to improving the accuracy of growth and harvest estimation for L. gmelinii, and could provide a reference for other scientific studies related to tree age estimation in forests.


Asunto(s)
Algoritmos , Bosques , Larix , Larix/crecimiento & desarrollo , China , Conservación de los Recursos Naturales , Ecosistema , Modelos Teóricos , Bosques Aleatorios
12.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1169-1176, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886414

RESUMEN

In recent years, a surge in drought occurrences has dramatically impacted tree growth worldwide. We examined the ecological resilience of Larix principis-rupprechtii plantations with varying densities (1950, 2355, and 2595 trees·hm-2) at the Saihanba Mechanical Forest Farm, by extracting the increment cores using the standard dendrochronological method to measure individual-tree basal area increments (BAI) as part of our assessment of ecological resilience, including resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that drought events occurred in 2006-2010, 2015, and 2018. The Rt for L. principis-rupprechtii plantations varied from 0.76 to 2.01 across three drought events, indicating generally high resistance, except for the plantation with 2355 trees·hm-2 during the second dry year (Rt=0.69). The Rt for the plantation with 2595 trees·hm-2 significantly decreased across all drought events, while no significant change was observed in the plantations with 1950 and 2355 trees·hm-2. The Rc showed no differences in response to a single drought event across plantation densities, with a significant upward trend for all the densities with each occurrence of drought event. There was no significant difference in the resilience of different densities of L. principis-rupprechtii to the first drought event, whereas the plantation with 2595 trees·hm-2 exhibited significantly lower Rs during the second and third drought events compared with 1950 and 2355 trees·hm-2, respectively. During the 2015 drought event, plantation with 2595 trees·hm-2 experienced a significant growth decline (radial growth change rate was -26.5%), while no such decline was observed in the plantations with 1950 and 2355 trees·hm-2. Overall, the plantation with 2595 trees·hm-2 demonstrated the lowest resilience to drought events.


Asunto(s)
Sequías , Larix , Larix/crecimiento & desarrollo , China , Ecosistema , Densidad de Población
13.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1177-1186, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886415

RESUMEN

The radial growth of trees in alpine timberline is particularly sensitive to climate change. We sampled and disposed tree-ring cores of three coniferous tree species including Juniperus saltuaria, Abies forrestii, and Larix potaninii at alpine timberline in Yading Nature Reserve. The standard tree-ring chronology was used to explore the response of radial growth of different timberline species to climate change. The results showed that radial growth of L. potaninii increased after 2000, while that of A. forrestii declined after 2002, and J. saltuaria showed a significant decreasing growth trend in the past 10 years. Such results indicated divergent growth responses to climate factors among the three tree species at alpine timberline. The radial growth of J. saltuaria was sensitive to temperature, and was positively correlated with the minimum temperature from previous October to current August, the mean tempera-ture from previous November to current April and from current July to October, but was negatively associated with the relative humidity from current July to October. The radial growth of A. forrestii showed negative correlation with mean temperature and the maximum temperature from May to June in the current year, while it exhibited positive association with the relative humidity and the Palmer drought severity index from May to June in the current year. L. potaninii radial growth was positively associated with mean temperature and the maximum temperature of November-December in the previous year, the maximum temperature of current March and mean temperature of current August. The temporal stability of climate-growth relationship varied among different timberline species. The positive correlation between radial growth of A. forrestii and J. saltuaria and temperature gradually decreased, while the posi-tive relationship of L. potaninii radial growth and temperature gradually increased. Under the background of climate warming, rapid rise in surface air temperatures may promote the radial growth of L. potaninii, while inhibit that of J. saltuaria and A. forrestii, which may change the position of regional timberline.


Asunto(s)
Cambio Climático , Larix , China , Larix/crecimiento & desarrollo , Juniperus/crecimiento & desarrollo , Abies/crecimiento & desarrollo , Ecosistema , Árboles/crecimiento & desarrollo , Conservación de los Recursos Naturales , Temperatura , Tallos de la Planta/crecimiento & desarrollo , Altitud
14.
Microbiol Spectr ; 12(8): e0411223, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38912806

RESUMEN

In order to provide a highly feasible research pathway for the control of larch shoot blight, healthy larch branches and leaves were collected from 13 sampling sites in 8 provinces in China. The antagonistic endophytic bacteria obtained from the screening were used to carry out disease control experiments in potted seedlings. The safety evaluation test was conducted on the antagonistic bacteria. Subsequently, the strains with better preventive effect and high safety were identified by morphological and molecular methods. A total of 391 strains of endophytic bacteria were isolated from healthy larch branches and leaves. Seventy-eight strains of larch endophytic bacteria with antagonistic effect were obtained by primary sieving. Ten strains of endophytic bacteria with obvious antagonism were further obtained by secondary sieving, and all of them had an inhibition rate of more than 57%. Among them, strains YN 2, JL 6, NMG 23, and JL 54 showed the highest inhibition rate of 63.16%-65.08%, which was significantly different from the other treatments. The results of the pot test showed that 14 days after inoculation with the pathogen, strains YN 2 and JL 54 were more effective in the control of larch shoot blight, with the preventive effects reaching 57.7% and 50.0%, respectively. Strains JL 6 and JL 54 were biologically safe in the safety evaluation test. Therefore, strain JL 54 was selected for identification. It was identified as Bacillus amyloliquefaciens through morphological observation, 16S rDNA sequence, gyrB gene sequence and 16S rDNA-gyrB tandem feature sequence analysis. IMPORTANCE: Larch shoot blight is a widely distributed, damaging, and rapidly spreading fungal disease of forest trees that poses a serious threat to larch plantations. Endophytic bacteria have biological effects on host plants against pests and diseases, and they have a growth-promoting effect on plants. In this paper, we investigated for the first time the biocontrol effect of endophytic bacteria on larch shoot blight by screening endophytic bacteria with the function of antagonizing dieback fungi. Bacillus amyloliquefaciens JL 54 has a better prospect of biocontrol against larch shoot blight, which lays the foundation for the application of this bacterium in the future.


Asunto(s)
Antibiosis , Endófitos , Larix , Enfermedades de las Plantas , Endófitos/aislamiento & purificación , Endófitos/clasificación , Endófitos/fisiología , Endófitos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Larix/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/aislamiento & purificación , Ascomicetos/fisiología , China , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética , Filogenia
15.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38905265

RESUMEN

With climate warming and economic globalization, insect-microbe assemblages are becoming increasingly responsible for various devastating forest diseases worldwide. Japanese larch (Larix kaempferi) is extensively cultivated in China because of its high survival rate, rapid maturation and robust mechanical properties. Endoconidiophora fujiensis, an ophiostomatoid fungus associated with Ips subelongatus, has been identified as a lethal pathogen of L. kaempferi in Japan. However, there is a dearth of research on the pathogenicity of E. fujiensis in larches in China. Therefore, we investigated the pathogenicity of E. fujiensis in introduced L. kaempferi and indigenous larch (Larix olgensis) trees and compared the induced resistance responses to the pathogen in both tree species in terms of physiology and gene expression. Five-year-old saplings and 25-year-old adult trees of L. olgensis and L. kaempferi were inoculated in parallel during the same growing season. Endoconidiophora fujiensis exhibited high pathogenicity in both larch species, but particularly in L. kaempferi compared with L. olgensis adult trees; adult L. olgensis was more resistant to E. fujiensis than adult L. kaempferi, which was reflected in higher accumulation of defensive monoterpenes, such as myrcene, 3-carene and limonene and the earlier induction of defense genes catalase (CAT) and pathogenesis-related protein 1 (PR1). This study contributes to our understanding of the interactions between bark beetle-associated ophiostomatoid fungi and host larches, from phenotypic responses to alterations in secondary metabolites via defense- and metabolism-related gene activation, providing a valuable foundation for the management of larch diseases and pests in the future.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Larix , Enfermedades de las Plantas , Larix/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/fisiología , Ascomicetos/patogenicidad , China , Virulencia
16.
Sci Rep ; 14(1): 11290, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760385

RESUMEN

Larch, a prominent afforestation, and timber species in northeastern China, faces growth limitations due to drought. To further investigate the mechanism of larch's drought resistance, we conducted full-length sequencing on embryonic callus subjected to PEG-simulated drought stress. The sequencing results revealed that the differentially expressed genes (DEGs) primarily played roles in cellular activities and cell components, with molecular functions such as binding, catalytic activity, and transport activity. Furthermore, the DEGs showed significant enrichment in pathways related to protein processing, starch and sucrose metabolism, benzose-glucuronic acid interconversion, phenylpropyl biology, flavonoid biosynthesis, as well as nitrogen metabolism and alanine, aspartic acid, and glutamic acid metabolism. Consequently, the transcription factor T_transcript_77027, which is involved in multiple pathways, was selected as a candidate gene for subsequent drought stress resistance tests. Under PEG-simulated drought stress, the LoMYB8 gene was induced and showed significantly upregulated expression compared to the control. Physiological indices demonstrated an improved drought resistance in the transgenic plants. After 48 h of PEG stress, the transcriptome sequencing results of the transiently transformed LoMYB8 plants and control plants exhibited that genes were significantly enriched in biological process, cellular component and molecular function. Function analyses indicated for the enrichment of multiple KEGG pathways, including energy synthesis, metabolic pathways, antioxidant pathways, and other relevant processes. The pathways annotated by the differential metabolites mainly encompassed signal transduction, carbohydrate metabolism, amino acid metabolism, and flavonoid metabolism.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Larix , Proteínas de Plantas , Estrés Fisiológico , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polietilenglicoles/farmacología , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Larix/genética , Larix/fisiología
17.
Sci Total Environ ; 938: 173521, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38802012

RESUMEN

Forests are experiencing increasingly severe drought stress worldwide. Although most studies have quantified how tree growth was affected by extreme droughts, how trees recover from different drought intensities are still poorly understood for different species. We used a network of tree-ring data comprising 731 Quercus mongolica trees across 29 sites, 312 Larix olgensis Henry trees from 13 sites, and 818 Larix principis-rupprechtii trees from 34 sites, covering most of their distribution range in northern China, to compare the influences of drought intensity on post-drought recovery. The results showed that summer droughts had strong negative influences on tree growth. Post-drought growth varied with drought intensity for the three species. Larix species exhibited strong legacy effects after severe droughts, which is related to the lack of compensatory growth. In contrast, the compensatory growth of Q. mongolica reduced drought legacy effect. However, the compensatory growth of Q. mongolica gradually weaken with increasing drought intensity and disappeared during severe drought. Our findings indicated that influence of drought on Q. mongolica growth mainly shown in drought years, but Larix species suffered from long-term drought legacy effects, implying Q. mongolica rapidly recovered from droughts but Larix species need several years to recover from droughts, thus the two genera have different recovery strategy.


Asunto(s)
Sequías , Bosques , Larix , Quercus , Larix/fisiología , Quercus/fisiología , Quercus/crecimiento & desarrollo , China , Árboles/fisiología , Resistencia a la Sequía
18.
Tree Physiol ; 44(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38769900

RESUMEN

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.


Asunto(s)
Betula , Larix , Hielos Perennes , Agua , Larix/crecimiento & desarrollo , Larix/fisiología , Betula/crecimiento & desarrollo , Betula/fisiología , Agua/metabolismo , China , Cambio Climático , Taiga , Calentamiento Global
19.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612390

RESUMEN

Dormancy release and reactivation in temperate trees are mainly controlled by temperature and are affected by age, but the underlying molecular mechanisms are still unclear. In this study, we explored the effects of low temperatures in winter and warm temperatures in spring on dormancy release and reactivation in Larix kaempferi. Further, we established the relationships between cell-cycle genes and cambium cell division. The results showed that chilling accelerated L. kaempferi bud break overall, and the longer the duration of chilling is, the shorter the bud break time is. After dormancy release, warm temperatures induced cell-cycle gene expression; when the configuration value of the cell-cycle genes reached 4.97, the cambium cells divided and L. kaempferi reactivated. This study helps to predict the impact of climate change on wood production and provides technical support for seedling cultivation in greenhouses.


Asunto(s)
Larix , Larix/genética , Cámbium , Genes cdc , División Celular , Cambio Climático
20.
Sci Total Environ ; 927: 172241, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582119

RESUMEN

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered until now. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit a high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.


Asunto(s)
Secuestro de Carbono , Carbono , Cryptomeria , Agricultura Forestal , Bosques , Árboles , Japón , Carbono/análisis , Larix/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Chamaecyparis , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA