Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.453
Filtrar
1.
Clin Exp Pharmacol Physiol ; 51(10): e13915, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39227010

RESUMEN

S-Limonene (s-Lim) is a monocyclic monoterpene found in a variety of plants and has been shown to present antioxidant and cardioprotective activity in experimental models of myocardial infarction. The aim of this study was to evaluate the potential mechanism by which s-Lim exerts its antiarrhythmic effect, focusing on the blockade of ß-adrenoceptor (ß-AR) and its effects on various in vivo and in vitro parameters, including electrocardiogram (ECG) measurements, left ventricular developed pressure (LVDP), the ß-adrenergic pathway, sarcomeric shortening and L-type calcium current (ICa,L). In isolated hearts, 10 µM of s-Lim did not alter the ECG profile or LVPD. s-Lim increased the heart rate corrected QT interval (QTc) (10.8%) at 50 µM and reduced heart rate at the concentrations of 30 (12.4%) and 50 µM (16.6%). s-Lim (10 µM) also inhibited the adrenergic response evoked by isoproterenol (ISO) (1 µM) reducing the increased of heart rate, LVDP and ECG changes. In ventricular cardiomyocyte, s-Lim antagonized the effect of dobutamine by preventing the increase of sarcomeric shortening, demonstrating a similar effect to atenolol (blocker ß1-AR). In vivo, s-Lim antagonized the effect of ISO (agonists ß1-AR), presenting a similar effect to propranolol (a non-selective blocker ß-AR). In ventricular cardiomyocyte, s-Lim did not alter the voltage dependence for ICa,L activation or the ICa,L density. In addition, s-Lim did not affect changes in the ECG effect mediated by 5 µM forskolin (an activator of adenylate cyclase). In an in vivo caffeine/ISO-induced arrhythmia model, s-Lim (1 mg/kg) presented antiarrhythmic action verified by a reduced arrhythmia score, heart rate, and occurrence of ventricular premature beats and inappropriate sinus tachycardia. These findings indicate that the antiarrhythmic activity of s-Lim is related to blockade of ß-AR in the heart.


Asunto(s)
Antiarrítmicos , Limoneno , Ratas Wistar , Receptores Adrenérgicos beta , Transducción de Señal , Animales , Ratas , Antiarrítmicos/farmacología , Masculino , Receptores Adrenérgicos beta/metabolismo , Limoneno/farmacología , Transducción de Señal/efectos de los fármacos , Terpenos/farmacología , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Ciclohexenos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
2.
Europace ; 26(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39230049

RESUMEN

AIMS: Atrial fibrosis and autonomic remodelling are proposed pathophysiological mechanisms in atrial fibrillation (AF). Their impact on conduction velocity (CV) dynamics and wavefront propagation was evaluated. METHODS AND RESULTS: Local activation times (LATs), voltage, and geometry data were obtained from patients undergoing ablation for persistent AF. LATs were obtained at three pacing intervals (PIs) in sinus rhythm (SR). LATs were used to determine CV dynamics and their relationship to local voltage amplitude. The impact of autonomic modulation- pharmacologically and with ganglionated plexi (GP) stimulation, on CV dynamics, wavefront propagation, and pivot points (change in wavefront propagation of ≥90°) was determined in SR. Fifty-four patients were included. Voltage impacted CV dynamics whereby at non-low voltage zones (LVZs) (≥0.5 mV) the CV restitution curves are steeper [0.03 ± 0.03 m/s ΔCV PI 600-400 ms (PI1), 0.54 ± 0.09 m/s ΔCV PI 400-250 ms (PI2)], broader at LVZ (0.2-0.49 mV) (0.17 ± 0.09 m/s ΔCV PI1, 0.25 ± 0.11 m/s ΔCV PI2), and flat at very LVZ (<0.2 mV) (0.03 ± 0.01 m/s ΔCV PI1, 0.04 ± 0.02 m/s ΔCV PI2). Atropine did not change CV dynamics, while isoprenaline and GP stimulation resulted in greater CV slowing with rate. Isoprenaline (2.7 ± 1.1 increase/patient) and GP stimulation (2.8 ± 1.3 increase/patient) promoted CV heterogeneity, i.e. rate-dependent CV (RDCV) slowing sites. Most pivot points co-located to RDCV slowing sites (80.2%). Isoprenaline (1.3 ± 1.1 pivot increase/patient) and GP stimulation (1.5 ± 1.1 increase/patient) also enhanced the number of pivot points identified. CONCLUSION: Atrial CV dynamics is affected by fibrosis burden and influenced by autonomic modulation which enhances CV heterogeneity and distribution of pivot points. This study provides further insight into the impact of autonomic remodelling in AF.


Asunto(s)
Fibrilación Atrial , Fibrosis , Atrios Cardíacos , Humanos , Femenino , Masculino , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Persona de Mediana Edad , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/inervación , Anciano , Potenciales de Acción , Ablación por Catéter , Remodelación Atrial , Frecuencia Cardíaca , Técnicas Electrofisiológicas Cardíacas , Sistema Nervioso Autónomo/fisiopatología , Función del Atrio Izquierdo , Isoproterenol/farmacología , Atropina/farmacología , Factores de Tiempo , Sistema de Conducción Cardíaco/fisiopatología , Resultado del Tratamiento
3.
J Am Heart Assoc ; 13(17): e035246, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39189473

RESUMEN

BACKGROUND: Increased left atrial pressure (LAP) contributes to dyspnea and heart failure with preserved ejection fraction in patients with atrial fibrillation (AF). The purpose of this study was to investigate the differences in baseline LAP and LAP response to rapid pacing between paroxysmal and persistent AF. METHODS AND RESULTS: This observational study prospectively enrolled 1369 participants who underwent AF catheter ablation, excluding those with reduced left ventricular ejection fraction. H2FPEF score was calculated by echocardiography and baseline characteristics. Patients underwent LAP measurements during AF, sinus rhythm, and heart rates of 90, 100, 110, and 120 beats per minute (bpm), induced by right atrial pacing and isoproterenol. The baseline LAP-peak in the persistent AF group consistently exceeded that in the paroxysmal AF (PAF) group across each H2FPEF score subgroup (all P<0.05). LAP-peak increased with pacing (19.5 to 22.5 mm Hg) but decreased with isoproterenol (20.4 to 18.4 mm Hg). Under pacing, patients with PAF exhibited a significantly lower LAP-peak (90 bpm) than those with persistent AF (17.7±8.2 versus 21.1±9.3 mm Hg, P<0.001). However, there was no difference in LAP-peak (120 bpm) between the 2 groups (22.1±8.1 versus 22.9±8.4 mm Hg, P=0.056) because the LAP-peak significantly increased with heart rate in the group with PAF. CONCLUSIONS: Patients with PAF exhibited lower baseline LAP with greater increases during rapid pacing compared with individuals with persistent AF, indicating a need to revise the H2FPEF score for distinguishing PAF from persistent AF and emphasizing the importance of rate and rhythm control in PAF for symptom control. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT02138695.


Asunto(s)
Fibrilación Atrial , Presión Atrial , Insuficiencia Cardíaca , Volumen Sistólico , Humanos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/terapia , Fibrilación Atrial/cirugía , Femenino , Masculino , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Volumen Sistólico/fisiología , Presión Atrial/fisiología , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Frecuencia Cardíaca/fisiología , Ablación por Catéter , Ecocardiografía , Estimulación Cardíaca Artificial , Función del Atrio Izquierdo/fisiología , Función Ventricular Izquierda/fisiología , Isoproterenol/administración & dosificación
4.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201573

RESUMEN

The present study examined three hallucinogenic amphetamine derivatives, namely, 2,5-dimethoxy-4-iodoamphetamine (DOI) as well as 2,5-dimethoxy-4-methylamphetamine (DOM) and 4-methylmethcathinone (mephedrone). The objective of this study was to test the hypothesis that DOI, DOM, and mephedrone would increase the contractile force in isolated human atrial preparations in a manner similar to amphetamine. To this end, we measured contractile force under isometric conditions in electrically stimulated (1 Hz) human atrial preparations obtained during open surgery. DOI and DOM alone or in the presence of isoprenaline reduced the contractile force concentration-dependently in human atrial preparations. These negative inotropic effects of DOM and DOI were not attenuated by 10 µM atropine. However, mephedrone increased the contractile force in human atrial preparations in a concentration- and time-dependent manner. Furthermore, these effects were attenuated by the subsequent addition of 10 µM propranolol or pretreatment with 10 µM cocaine in the organ bath. Therefore, it can be concluded that amphetamine derivatives may exert opposing effects on cardiac contractile force. The precise mechanism by which DOI and DOM exert their negative inotropic effects remains unknown at present. The cardiac effects of mephedrone are probably due to the release of cardiac noradrenaline.


Asunto(s)
Alucinógenos , Atrios Cardíacos , Contracción Miocárdica , Humanos , Atrios Cardíacos/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Alucinógenos/farmacología , Masculino , Femenino , Isoproterenol/farmacología , Metanfetamina/farmacología , Metanfetamina/análogos & derivados , Atropina/farmacología , Anfetaminas/farmacología , Persona de Mediana Edad , Propranolol/farmacología , Anfetamina/farmacología , Adulto
5.
Int Immunopharmacol ; 140: 112894, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39126736

RESUMEN

Cardiac fibrosis is characterized by the over-proliferation, over-transdifferentiation and over-deposition of extracellular matrix (ECM) of cardiac fibroblasts (CFs). Cardiac sympathetic activation is one of the leading causes of myocardial fibrosis. Meanwhile, cardiac fibrosis is often together with cardiac inflammation, which accelerates fibrosis by mediating inflammatory cytokines secretion. Recently, the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling pathway has been confirmed by its vital role during the progression of cardiac fibrosis. Thus, JAK/STAT3 signaling pathway is thought to be a potential therapeutic target for cardiac fibrosis. Baricitinib (BR), a novel JAK1/2 inhibitor, has been reported excellent effects of anti-fibrosis in multiple fibrotic diseases. However, little is known about whether and how BR ameliorates cardiac fibrosis caused by chronic sympathetic activation. Isoproterenol (ISO), a ß-Adrenergic receptor (ß-AR) nonselective agonist, was used to modulate chronic sympathetic activation in mice. As expected, our results proved that BR ameliorated ISO-induced cardiac dysfunction. Meanwhile, BR attenuated ISO-induced cardiac fibrosis and cardiac inflammation in mice. Moreover, BR also inhibited ISO-induced cardiac fibroblasts activation and macrophages pro-inflammatory secretion. As for mechanism studies, BR reduced ISO-induced cardiac fibroblasts by JAK2/STAT3 and PI3K/Akt signaling, while reduced ISO-induced macrophages pro-inflammatory secretion by JAK1/STAT3 and NF-κB signaling. In summary, BR alleviates cardiac fibrosis and inflammation caused by chronic sympathetic activation. The underlying mechanism involves BR-mediated suppression of JAK1/2/STAT3, PI3K/Akt and NF-κB signaling.


Asunto(s)
Azetidinas , Fibroblastos , Fibrosis , Ratones Endogámicos C57BL , Purinas , Pirazoles , Sulfonamidas , Animales , Fibrosis/tratamiento farmacológico , Azetidinas/farmacología , Azetidinas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Masculino , Fibroblastos/efectos de los fármacos , Purinas/farmacología , Purinas/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Miocardio/patología , Isoproterenol , Células Cultivadas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Humanos , Sistema Nervioso Simpático/efectos de los fármacos
6.
Phytomedicine ; 133: 155894, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089090

RESUMEN

BACKGROUND: According to recent research, treating heart failure (HF) by inhibiting G protein-coupled receptor kinase 2 (GRK2) to improve myocardial energy metabolism has been identified as a potential approach. Cinnamaldehyde (CIN), a phenylpropyl aldehyde compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. However, whether CIN inhibits GRK2 to ameliorate myocardial energy metabolism in HF is still unclear. PURPOSE: This study examines the effects of CIN on GRK2 and myocardial energy metabolism to elucidate its underlying mechanism to treat HF. METHODS: The isoproterenol (ISO) induced HF model in vivo and in vitro were constructed using Sprague-Dawley (SD) rats and primary neonatal rat cardiomyocytes (NRCMs). Based on this, the effects of CIN on myocardial energy metabolism and GRK2 were investigated. Additionally, validation experiments were conducted after interfering and over-expressing GRK2 in ISO-induced NRCMs to verify the regulatory effect of CIN on GRK2. Furthermore, binding capacity between GRK2 and CIN was explored by Cellular Thermal Shift Assay (CETSA) and Microscale Thermophoresis (MST). RESULTS: In vivo and in vitro, CIN significantly improved HF as demonstrated by reversing abnormal changes in myocardial injury markers, inhibiting myocardial hypertrophy and decreasing myocardial fibrosis. Additionally, CIN promoted myocardial fatty acid metabolism to ameliorate myocardial energy metabolism disorder by activating AMPK/PGC-1α signaling pathway. Moreover, CIN reversed the inhibition of myocardial fatty acid metabolism and AMPK/PGC-1α signaling pathway by GRK2 over-expression in ISO-induced NRCMs. Meanwhile, CIN had no better impact on the stimulation of cardiac fatty acid metabolism and the AMPK/PGC-1α signaling pathway in ISO-induced NRCMs when GRK2 was disrupted. Noticeably, CETSA and MST confirmed that CIN binds to GRK2 directly. The binding of CIN and GRK2 promoted the ubiquitination degradation of GRK2 mediated by murine double mimute 2. CONCLUSION: This study demonstrates that CIN exerts a protective intervention in HF by targeting GRK2 and promoting its ubiquitination degradation to activate AMPK/PGC-1α signaling pathway, ultimately improving myocardial fatty acid metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Acroleína , Quinasa 2 del Receptor Acoplado a Proteína-G , Insuficiencia Cardíaca , Miocitos Cardíacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Sprague-Dawley , Animales , Acroleína/farmacología , Acroleína/análogos & derivados , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Masculino , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/efectos de los fármacos , Isoproterenol , Metabolismo Energético/efectos de los fármacos , Modelos Animales de Enfermedad , Miocardio/metabolismo
7.
J Biochem Mol Toxicol ; 38(8): e23804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39132813

RESUMEN

The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.


Asunto(s)
Antioxidantes , Isoproterenol , Infarto del Miocardio , Xantófilas , Animales , Xantófilas/farmacología , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Ratas , Masculino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos
8.
Biomed Pharmacother ; 178: 117274, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116781

RESUMEN

BACKGROUND: Cardiovascular diseases are the most prevalent and primary cause of death globally, and the most deadly and dangerous of these diseases is myocardial infarction (MI), commonly known as heart attack, which develops due to insufficient coronary artery flow and causes irreversible myocardial cell damage. This study aimed to investigate the cardioprotective effects of Momordica charantia (MC), known for its antioxidant and anti-inflammatory properties, in an experimental acute MI model induced by isoprenaline (ISO) in rats. METHODS: In the study, forty-nine male Wistar rats were split up into 7 groups as control (CONT), Glycerin (GLCN), isoprenaline (ISO), 500 mg/kg MC (MC500), isoprenaline+100 mg/kg MC (ISO+MC100), isoprenaline+250 mg/kg MC (ISO+MC250), isoprenaline+500 mg/kg MC (ISO+MC500). Substances were administered to the groups for 30 days. Isoprenaline (85 mg/kg) was administered by subcutaneous injection on the last two days of the study (days of the 29 and 30). Electrocardiogram (ECG) recording and collecting blood samples of the animals were performed 24 hours after the last administration of the substances under the anesthesia. Serum IL-6, Nrf2, IL-10, HO-1, TNF-α, CK-MB, cTn-I and CRP levels were determined by the ELISA method. RESULTS: Compared to the ISO group, levels of CK-MB, HO-1, TNF-α, CRP, IL-6 and cTn-I were found statistically lower in MC-administered groups (p<0.05). In addition, MC restored ISO-induced abnormal ECG changes to normal levels. CONCLUSION: In conclusion, ECG findings, proinflammatory, anti-inflammatory, antioxidative and cardiac biomarkers suggest that MC may have cardioprotective properties.


Asunto(s)
Cardiotónicos , Modelos Animales de Enfermedad , Isoproterenol , Momordica charantia , Infarto del Miocardio , Extractos Vegetales , Ratas Wistar , Animales , Isoproterenol/toxicidad , Masculino , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/prevención & control , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Cardiotónicos/farmacología , Momordica charantia/química , Ratas , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Electrocardiografía
9.
Toxicol Appl Pharmacol ; 491: 117070, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151807

RESUMEN

AIMS: It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS: The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS: While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE: Our data show that activation of ß-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.


Asunto(s)
5'-Nucleotidasa , AMP Cíclico , Contracción Muscular , Ratas Wistar , Receptor de Adenosina A1 , Conducto Deferente , Masculino , Animales , Conducto Deferente/efectos de los fármacos , Conducto Deferente/metabolismo , AMP Cíclico/metabolismo , 5'-Nucleotidasa/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/efectos de los fármacos , Ratas , Contracción Muscular/efectos de los fármacos , Adenosina/farmacología , Adenosina/análogos & derivados , Adenosina/metabolismo , Isoproterenol/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Colforsina/farmacología
10.
J Pharmacol Sci ; 156(2): 142-148, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179333

RESUMEN

The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.


Asunto(s)
Cardiomegalia , Glucosa , Glucólisis , Isoproterenol , Miocitos Cardíacos , Fenilefrina , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Glucólisis/efectos de los fármacos , Glucosa/metabolismo , Fenilefrina/farmacología , Masculino , Células Cultivadas , Ratones Endogámicos C57BL , Ratas , Ratones , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
11.
Sci Rep ; 14(1): 19383, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169098

RESUMEN

The diabetic heart is characterised by functional, morphological and metabolic alterations predisposing it to contractile failure. Chronic sympathetic activation is a feature of the pathogenesis of heart failure, however the type 1 diabetic heart shows desensitisation to ß-adrenergic stimulation. Here, we sought to understand the impact of repeated isoprenaline-mediated ß-stimulation upon cardiac mitochondrial respiratory capacity and substrate metabolism in the 90% pancreatectomy (Px) rat model of type 1 diabetes. We hypothesised these hearts would be relatively protected against the metabolic impact of stress-induced cardiomyopathy. We found that individually both Px and isoprenaline suppressed cardiac mitochondrial respiration, but that this was preserved in Px rats receiving isoprenaline. Px and isoprenaline had contrasting effects on cardiac substrate metabolism, with increased reliance upon cardiac fatty acid oxidation capacity and altered ketone metabolism in the hearts of Px rats, but enhanced capacity for glucose uptake and metabolism in isoprenaline-treated rats. Moreover, Px rats were protected against isoprenaline-induced mortality, whilst isoprenaline elevated cGMP and protected myocardial energetic status in Px rat hearts. Our work suggests that adrenergic stimulation may be protective in the type 1 diabetic heart, and underlines the importance of studying pathological features in combination when modeling complex disease in rodents.


Asunto(s)
Agonistas Adrenérgicos beta , Isoproterenol , Animales , Agonistas Adrenérgicos beta/farmacología , Ratas , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Diabetes Mellitus Tipo 1/metabolismo , Glucosa/metabolismo , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos
12.
Clin Transl Med ; 14(8): e1790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118286

RESUMEN

BACKGROUND: Chronic inflammation contributes to the progression of isoproterenol (ISO)-induced heart failure (HF). Caspase-associated recruitment domain (CARD) families are crucial proteins for initiation of inflammation in innate immunity. Nonetheless, the relevance of CARDs in ISO-driven cardiac remodelling is little explored. METHODS: This study utilized Card9-/- mice and reconstituted C57BL/6 mice with either Card9-/- or Otud1-/- marrow-derived cells. Mechanistic studies were conducted in primary macrophages, cardiomyocytes, fibroblasts and HEK-293T cells. RESULTS: Here, we demonstrated that CARD9 was substantially upregulated in murine hearts infused with ISO. Either whole-body CARD9 knockout or myeloid-specific CARD9 deletion inhibited ISO-driven murine cardiac inflammation, remodelling and dysfunction. CARD9 deficiency in macrophages prevented ISO-induced inflammation and alleviated remodelling changes in cardiomyocytes and fibroblasts. Mechanistically, we found that ISO enhances the activity of CARD9 by upregulating ovarian tumour deubiquitinase 1 (OTUD1) in macrophages. We further demonstrated that OTUD1 directly binds to the CARD9 and then removes the K33-linked ubiquitin from CARD9 to promote the assembly of the CARD9-BCL10-MALT1 (CBM) complex, without affecting CARD9 stability. The ISO-activated CBM complex results in NF-κB activation and macrophage-based inflammatory gene overproduction, which then enhances cardiomyocyte hypertrophy and fibroblast fibrosis, respectively. Myeloid-specific OTUD1 deletion also attenuated ISO-induced murine cardiac inflammation and remodelling. CONCLUSIONS: These results suggested that the OTUD1-CARD9 axis is a new pro-inflammatory signal in ISO-challenged macrophages and targeting this axis has a protective effect against ISO-induced HF. KEY POINTS: Macrophage CARD9 was elevated in heart tissues of mice under chronic ISO administration. Either whole-body CARD9 knockout or myeloid-specific CARD9 deficiency protected mice from ISO-induced inflammatory heart remodeling. ISO promoted the assembly of CBM complex and then activated NF-κB signaling in macrophages through OTUD1-mediated deubiquitinating modification. OTUD1 deletion in myeloid cells protected hearts from ISO-induced injuries in mice.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Isoproterenol , Macrófagos , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Ratones , Macrófagos/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ratones Endogámicos C57BL , Humanos , Inflamación/metabolismo , Inflamación/genética , Inflamación/inducido químicamente , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Modelos Animales de Enfermedad
13.
Circ Res ; 135(6): 651-667, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082138

RESUMEN

BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isoproterenol , Miocitos Cardíacos , beta-Arrestina 1 , Animales , Fosforilación , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Isoproterenol/toxicidad , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Masculino , Receptores Adrenérgicos beta/metabolismo , Serina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Agonistas Adrenérgicos beta/farmacología , Agonistas Adrenérgicos beta/toxicidad , Células Cultivadas , Transducción de Señal , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Humanos
14.
FASEB J ; 38(14): e23842, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037554

RESUMEN

G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled ß2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.


Asunto(s)
Músculo Liso , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Fosforilación , Relajación Muscular/efectos de los fármacos , Histamina/metabolismo , Histamina/farmacología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Isoproterenol/farmacología , Calcio/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Gusto/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal , Células Cultivadas
15.
Am J Physiol Heart Circ Physiol ; 327(3): H631-H638, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39028283

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs) inhibit sympathetic reinnervation in rodent hearts post-myocardial infarction (MI), causing regional hypoinnervation that is associated with supersensitivity of ß-adrenergic receptors and increased arrhythmia susceptibility. To investigate the role of CSPGs and hypoinnervation in the heart of larger mammals, we used a rabbit model of reperfused MI and tested electrophysiological responses to sympathetic nerve stimulation (SNS). Innervated hearts from MI and sham rabbits were optically mapped using voltage and Ca2+-sensitive dyes. SNS was performed with electrical stimulation of the spinal cord, and ß-adrenergic responsiveness was tested using isoproterenol. Sympathetic nerve density and CSPG expression were evaluated using immunohistochemistry. CSPGs were robustly expressed in the infarct region of all MI hearts, and the presence of CSPGs was associated with reduced sympathetic nerve density in the infarct versus remote region. Action potential duration (APD) dispersion and tendency for induction of ventricular tachycardia/fibrillation (VT/VF) were increased with SNS in MI but not sham hearts. SNS decreased APD at 80% repolarization (APD80) in MI but not sham hearts, whereas isoproterenol decreased APD80 in both groups. Isoproterenol also shortened Ca2+ transient duration at 80% repolarization in both groups but to a greater extent in MI hearts. Our data suggest that sympathetic remodeling post-MI is similar between rodents and rabbits, with CSPGs associated with sympathetic hypoinnervation. Despite a reduction in sympathetic nerve density, the infarct region of MI hearts remained responsive to both physiological SNS and isoproterenol, potentially through preserved or elevated ß-adrenergic responsiveness, which may underlie increased APD dispersion and tendency for VT/VF.NEW & NOTEWORTHY Here, we show that CSPGs are present in the infarcts of rabbit hearts with reperfused MI, where they are associated with reduced sympathetic nerve density. Despite hypoinnervation, sympathetic responsiveness is maintained or enhanced in MI rabbit hearts, which also demonstrate increased APD dispersion and tendency for arrhythmias following sympathetic modulation. Together, this study indicates that the mechanisms of sympathetic remodeling post-MI are similar between rodents and rabbits, with hypoinnervation likely associated with enhanced ß-adrenergic sensitivity.


Asunto(s)
Potenciales de Acción , Modelos Animales de Enfermedad , Infarto del Miocardio , Sistema Nervioso Simpático , Animales , Conejos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/metabolismo , Masculino , Isoproterenol/farmacología , Agonistas Adrenérgicos beta/farmacología , Corazón/inervación , Corazón/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/etiología
16.
PLoS One ; 19(7): e0307467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038017

RESUMEN

Heart Failure (HF) continues to be a complex public health issue with increasing world population prevalence. Although overall mortality has decreased for HF and hypertrophic cardiomyopathy (HCM), a precursor for HF, their prevalence continues to increase annually. Because the etiology of HF and HCM is heterogeneous, it has been difficult to identify novel therapies to combat these diseases. Isoproterenol (ISP), a non-selective ß-adrenoreceptor agonist, is commonly used to induce cardiotoxicity and cause acute and chronic HCM and HF in mice. However, the variability in dose and duration of ISP treatment used in studies has made it difficult to determine the optimal combination of ISP dose and delivery method to develop a reliable ISP-induced mouse model for disease. Here we examined cardiac effects induced by ISP via subcutaneous (SQ) and SQ-minipump (SMP) infusions across 3 doses (2, 4, and 10mg/kg/day) over 2 weeks to determine whether SQ and SMP ISP delivery induced comparable disease severity in C57BL/6J mice. To assess disease, we measured body and heart weight, surface electrocardiogram (ECG), and echocardiography recordings. We found all 3 ISP doses comparably increase heart weight, but these increases are more pronounced when ISP was administered via SMP. We also found that the combination of ISP treatment and delivery method induces contrasting heart rate, RR interval, and R and S amplitudes that may place SMP treated mice at higher risk for sustained disease burden. Mice treated via SMP also had increased heart wall thickness and LV Mass, but mice treated via SQ showed greater increase in gene markers for hypertrophy and fibrosis. Overall, these data suggest that at 2 weeks, mice treated with 2, 4, or 10mg/kg/day ISP via SQ and SMP routes cause similar pathological heart phenotypes but highlight the importance of drug delivery method to induce differing disease pathways.


Asunto(s)
Cardiomegalia , Isoproterenol , Ratones Endogámicos C57BL , Animales , Isoproterenol/administración & dosificación , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Ratones , Masculino , Modelos Animales de Enfermedad , Ecocardiografía , Relación Dosis-Respuesta a Droga , Electrocardiografía
17.
JACC Clin Electrophysiol ; 10(7 Pt 2): 1648-1659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39084740

RESUMEN

BACKGROUND: The importance of nonpulmonary vein (PV) triggers for the initiation/recurrence of atrial fibrillation (AF) is well established. OBJECTIVES: This study sought to assess the incremental benefit of provocative maneuvers for identifying non-PV triggers. METHODS: We included consecutive patients undergoing first-time AF ablation between 2020 and 2022. The provocation protocol included step 1, identification of spontaneous non-PV triggers after cardioversion of AF and/or during sinus rhythm; step 2, isoproterenol infusion (3, 6, 12, and 20-30 µg/min); and step 3, atrial burst pacing to induce AF followed by cardioversion during residual or low-dose isoproterenol infusion or induce focal atrial tachycardia. Non-PV triggers were defined as non-PV ectopic beats triggering AF or sustained focal atrial tachycardia. RESULTS: Of 1,372 patients included, 883 (64.4%) underwent the complete stepwise provocation protocol with isoproterenol infusion and burst pacing, 334 (24.3%) isoproterenol infusion only, 77 (5.6%) burst pacing only, and 78 (5.7%) no provocative maneuvers (only step 1). Overall, 161 non-PV triggers were found in 135 (9.8%) patients. Of these, 51 (31.7%) non-PV triggers occurred spontaneously, and the remaining 110 (68.3%) required provocative maneuvers for induction. Among those receiving the complete stepwise provocation protocol, there was a 2.2-fold increase in the number of patients with non-PV triggers after isoproterenol infusion, and the addition of burst pacing after isoproterenol infusion led to a total increase of 3.6-fold with the complete stepwise provocation protocol. CONCLUSIONS: The majority of non-PV triggers require provocative maneuvers for induction. A stepwise provocation protocol consisting of isoproterenol infusion followed by burst pacing identifies a 3.6-fold higher number of patients with non-PV triggers.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Isoproterenol , Humanos , Fibrilación Atrial/cirugía , Femenino , Masculino , Persona de Mediana Edad , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Isoproterenol/administración & dosificación , Isoproterenol/uso terapéutico , Anciano , Venas Pulmonares/cirugía , Cardioversión Eléctrica , Estudios Retrospectivos
18.
Int Heart J ; 65(4): 713-722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085110

RESUMEN

Heart failure (HF) is a clinical syndrome caused by the progression of various cardiac diseases to severe stages, and exercise training plays a positive role in the development of HF. This study aimed to investigate the impact of different intensities of exercise training on HF rats.In this study, we established two HF rat models by intraperitoneal injection of isoproterenol at 2.5 mg/kg/day and abdominal aortic coarctation. After exercise training for 4 weeks, the heart weight/body weight ratio and echocardiography results were measured. Moreover, the regulatory effect of different exercise intensities on myocardial function in HF model rats was verified using tissue staining, western blotting, and reagent kits.Exercise training had a bidirectional adjust effect on HF. A running training program of 20 minutes/time had the most significant effect on improving myocardial function in HF rats, whereas exercise intensity of 40 minutes/time or 50 minutes/time did not significantly improve myocardial function in HF rats. Moreover, exercise intensities of 20 minutes/time and 30 minutes/time could reduce the expression levels of the HF markers NT-proBNP and BNP in rats, but the effect was more significant at a duration of 20 minutes/time. We also found that compared with other exercise intensities, 20 minutes/time exercise intensity could significantly improve myocardial fibrosis, promote cardiomyocyte autophagy, and reduce apoptosis in combating HF.Furthermore, an exercise intensity of 20 minutes/time can significantly ameliorate the progression of HF. However, the degree of significance of increasing exercise intensity in improving HF progression is weakened or has no significant effect.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo , Ratas , Condicionamiento Físico Animal/fisiología , Masculino , Apoptosis , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/sangre , Ecocardiografía , Miocitos Cardíacos/metabolismo , Isoproterenol/farmacología , Miocardio/metabolismo , Miocardio/patología , Autofagia/fisiología
19.
J Pharmacol Sci ; 156(1): 38-44, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068033

RESUMEN

Obesity and diabetes are major risk factors for cardiovascular diseases. Zucker fatty diabetes mellitus (ZFDM) rats are novel animal model of obesity and type 2 diabetes. We have recently reported that blood pressure in ZFDM-Leprfa/fa (Homo) rats was normal, while blood adrenaline level and heart rate were lower than those in control ZFDM-Leprfa/+ (Hetero) rats. Here, we compared the reactivity in isolated mesenteric artery between Hetero and Homo rats. Contraction induced by phenylephrine was increased, while relaxation induced by isoprenaline was decreased in Homo rats at 21-23 weeks old compared with those in Hetero rats. The mRNA expression for α1A but not ß2 adrenoreceptor in Homo rats was increased. Nitric oxide (NO)-mediated relaxation induced by acetylcholine was decreased, while the mRNA expression for endothelial NO synthase (eNOS) was rather increased in mesenteric artery from Homo rats. These findings for the first time revealed that in Homo rats with reduced plasma adrenaline, blood pressure could be maintained by enhancing vascular contractility induced by adrenaline through the increased α1 adrenoceptor expression and the attenuated ß2 adrenoceptor signaling. Additionally, NO-mediated endothelium-dependent relaxation is impaired perhaps due to eNOS dysfunction, which might also contribute to maintain the blood pressure in Homo rats.


Asunto(s)
Arterias Mesentéricas , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Fenilefrina , Ratas Zucker , Receptores Adrenérgicos beta 2 , Animales , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiopatología , Masculino , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico/metabolismo , Fenilefrina/farmacología , Modelos Animales de Enfermedad , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Isoproterenol/farmacología , Epinefrina/sangre , Epinefrina/farmacología , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Vasodilatación/efectos de los fármacos , Acetilcolina/farmacología , Ratas , Obesidad/metabolismo , Obesidad/fisiopatología , Vasoconstricción/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Presión Sanguínea/efectos de los fármacos , Técnicas In Vitro
20.
Circ Res ; 135(4): 503-517, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38957990

RESUMEN

BACKGROUND: PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated. METHOD: We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1MyHC6). RESULTS: PANX1 deletion in cardiomyocytes had no effect on unstressed heart function but increased the glycolytic metabolism and resulting glycolytic ATP production, with a concurrent decrease in oxidative phosphorylation, both in vivo and in vitro. In vitro, treatment of H9c2 (H9c2 rat myoblast cell line) cardiomyocytes with isoproterenol led to PANX1-dependent release of ATP and Yo-Pro-1 uptake, as assessed by pharmacological blockade with spironolactone and siRNA-mediated knockdown of PANX1. To investigate nonischemic heart failure and the preceding cardiac hypertrophy, we administered isoproterenol, and we demonstrated that Panx1MyHC6 mice were protected from systolic and diastolic left ventricle volume increases as a result of cardiomyocyte hypertrophy. Moreover, we found that Panx1MyHC6 mice showed decreased isoproterenol-induced recruitment of immune cells (CD45+), particularly neutrophils (CD11b+ [integrin subunit alpha M], Ly6g+ [lymphocyte antigen 6 family member G]), to the myocardium. CONCLUSIONS: Together, these data demonstrate that PANX1 deficiency in cardiomyocytes increases glycolytic metabolism and protects against cardiac hypertrophy in nonischemic heart failure at least in part by reducing immune cell recruitment. Our study implies PANX1 channel inhibition as a therapeutic approach to ameliorate cardiac dysfunction in patients with heart failure.


Asunto(s)
Conexinas , Glucólisis , Miocitos Cardíacos , Proteínas del Tejido Nervioso , Infiltración Neutrófila , Animales , Conexinas/genética , Conexinas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Isoproterenol/farmacología , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Ratones Endogámicos C57BL , Línea Celular , Masculino , Adenosina Trifosfato/metabolismo , Ratones Noqueados , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA