RESUMEN
The role of ferroptosis and iron metabolism dysregulation in the pathophysiology of cardiovascular diseases is increasingly recognized. Conditions such as hypertension, cardiomyopathy, atherosclerosis, myocardial ischemia/reperfusion injury, heart failure, and cardiovascular complications associated with COVID-19 have been linked to these processes. Inflammation is central to these conditions, prompting exploration into the inflammatory and immunoregulatory molecular pathways that mediate ferroptosis and its contribution to cardiovascular disease progression. Notably, emerging evidence highlights interleukin-37 as a protective cytokine with the ability to activate the nuclear factor erythroid 2-related factor 2 pathway, inhibit macrophage ferroptosis, and attenuate atherosclerosis progression in murine models. However, a comprehensive review focusing on interleukin-37 and its protective role against ferroptosis in CVD is currently lacking. This review aims to fill this gap by summarizing existing knowledge on interleukin-37, including its regulatory functions and impact on ferroptosis in conditions such as atherosclerosis and myocardial infarction. We also explore experimental strategies and propose that targeting interleukin-37 to modulate ferroptosis presents a promising therapeutic approach for the prevention and treatment of cardiovascular diseases.
Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Interleucina-1 , Humanos , Interleucina-1/metabolismo , Enfermedades Cardiovasculares/metabolismo , Animales , COVID-19/metabolismo , COVID-19/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , SARS-CoV-2/metabolismoRESUMEN
OBJECTIVE: Endogenous melatonin is produced from tryptophan which is an essential amino acid. Besides its role in the regulation of sleep patterns, melatonin has anti-inflammatory effects. In this case-control study, we aimed to compare tryptophan and melatonin levels and their relationship with the inflammatory response, specifically serum interleukin-1, interleukin-6, and c-reactive protein levels following major abdominal surgery in patients with food restriction and who receive parenteral nutritional therapy. METHODS: We enrolled 40 patients between the ages of 18 and 65 years in the study. We collected blood and urine samples 48 h before the operation and on postoperative days 1, 3, and 5. RESULTS AND CONCLUSION: The tryptophan levels in the experimental group were higher than in the control group but failed to reach any statistical difference. Melatonin levels were increased in both groups following the surgery compared with preoperative levels. The increase in the experimental group was statistically different 3 days after the surgery. The difference in the level of interleukin-1 between the control and the experimental groups was greatest on postoperative day 3. On postoperative day 3, the interleukin-6 level in the treatment group was slightly higher than in the control group. We did not find any difference in the levels of c-reactive protein between the groups. As a result, the levels of tryptophan and melatonin were increased in the parenteral nutrition group, irrespective of the postoperative inflammatory response.
Asunto(s)
Proteína C-Reactiva , Interleucina-6 , Melatonina , Nutrición Parenteral , Triptófano , Humanos , Melatonina/sangre , Melatonina/orina , Persona de Mediana Edad , Nutrición Parenteral/métodos , Triptófano/sangre , Adulto , Masculino , Femenino , Proteína C-Reactiva/análisis , Estudios de Casos y Controles , Interleucina-6/sangre , Adulto Joven , Anciano , Adolescente , Interleucina-1/sangre , Inflamación/sangre , Factores de Tiempo , Suplementos Dietéticos , Periodo PosoperatorioRESUMEN
BACKGROUND: Osteoarthritis (OA) affects the entire joint, causing structural changes in articular cartilage, subchondral bone, ligaments, capsule, synovial membrane, and periarticular muscles that afflicts millions of people globally, leading to persistent pain and diminished quality of life. The intra-articular use of platelet-rich plasma (PRP) is gaining recognition as a secure therapeutic approach due to its potential regenerative capabilities. However, there is controversial clinical data regarding efficacy of PRP for OA treatment. In this context, gathering scientific evidence on the effects of PRP in treating OA in animal models could provide valuable insights into understanding its impact on aspects like cartilage health, synovial tissue integrity, and the inflammatory process in affected joints. Thus, the objective of this study was to assess the effects of PRP injections on inflammation and histopathological aspects of cartilage and synovium in animal models of OA through a comprehensive systematic review with meta-analysis. METHODS: A electronic search was conducted on Medline, Embase, Web of Science, The Cochrane Library, LILACS, and SciELO databases for relevant articles published until June 2022. A random-effects meta-analysis was employed to synthesize evidence on the histological characteristics of cartilage and synovium, as well as the inflammatory process. The GRADE approach was utilized to categorize the quality of evidence, and methodological quality was assessed using SYRCLE's RoB tool. RESULTS: Twenty-one studies were included in the review, with twelve of them incorporated into the meta-analysis. PRP treatment demonstrated superior outcomes compared to the control group in terms of cartilage histology (very low quality; p = 0.0002), synovium histology (very low quality; p < 0.0001), and reductions in proinflammatory markers, including IL-1 (low quality; p = 0.002), IL-6 (very low quality; p < 0.00001), and TNF-α (very low; p < 0.00001). However, PRP treatment did not yield a significant impact on PDGF-A levels (very low quality; p = 0.81). CONCLUSION: PRP appears capable of reducing proinflammatory markers (IL-1, IL-6, TNF-α) and mitigating cartilage and synovium damage in animals with OA. However, the levels of evidence of these findings are low to very low. Therefore, more rigorous studies with larger samples are needed to improve the quality of evidence. PROSPERO REGISTRATION: CRD42022250314.
Asunto(s)
Cartílago Articular , Osteoartritis , Plasma Rico en Plaquetas , Animales , Humanos , Factor de Necrosis Tumoral alfa , Interleucina-6 , Calidad de Vida , Osteoartritis/terapia , Membrana Sinovial , Inyecciones Intraarticulares , Cartílago Articular/patología , Interleucina-1RESUMEN
OBJECTIVE: Despite some knowledge gaps in scientific evidence, MgCl2 is largely used for pain relief in musculoskeletal diseases. Mg salts were shown to provide analgesia postoperatively in orthopedic surgery and low Mg levels were linked to arthritis development and severity. We determined the anti-inflammatory activity of MgCl2 in an acute arthritis model. METHODS: Mice received 0.1 mg/25µL Zymosan (Zy) or saline into the knees. Joint pain was evaluated using von Frey test; cell influx, and interleukin (IL)-1 level were assessed in joint lavage at 6 h. Synovia were excised for histopathology and analysis of immunoexpression of nuclear factor kappa B (NFκB) and tumor necrosis factor (TNF)-α. Groups (n = 6/group) received either 90 mg/kg MgCl2/100 µL or saline per os (systemic) or 500 µg/25 µL MgCl2 or saline intra-articularly (i.a.) 30 min prior to Zy. RESULTS: MgCl2 given either systemically or locally significantly reduced cell influx (p = 0.0012 and p = 0.0269, respectively), pain (p = 0.0005 and p = 0.0038, respectively), and intra-articular IL-1 level (p = 0.0391), as compared to saline. Systemic MgCl2 significantly decreased NFκB (p < 0.05) immmunoexpression, as compared to saline. CONCLUSION: MgCl2 given systemically or locally displayed anti-inflammatory activity in a severe acute arthritis model reducing cell influx, pain, and cytokine release. MgCl2 operates at least partially via inhibiting NFκB activation. This is the first in vivo demonstration that MgCl2 decreases cytokine release in arthritis, prompting reduction of inflammation and pain relief.
Asunto(s)
Artritis Experimental , Ratas , Humanos , Ratones , Animales , Cloruro de Magnesio/uso terapéutico , Ratas Wistar , Artritis Experimental/tratamiento farmacológico , Citocinas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Factor de Necrosis Tumoral alfa , Interleucina-1 , DolorRESUMEN
Bovine alphaherpesvirus type 1 (BoAHV-1) is associated with respiratory and reproductive syndromes. Until present the immunologic mechanisms involved in BoAHV-1 abortion are partially known. We studied key elements of the innate immune response in the placentas and fetal lungs from cattle experimentally-inoculated with BoAHV-1. These tissues were analyzed by histopathology. Furthermore, virus identification was performed by qPCR and the expression of the inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 1-alpha and inflammatory mediators like inducible nitric oxide synthase and cyclooxeganse-2 was evaluated by immunohistochemistry. The viral transplacental infection was confirmed by the detection of BoAHV-1 by qPCR in the placenta and fetal organs, which revealed mild inflammatory lesions. Inducible nitric oxide synthase immunolabelling was high in the lungs of infected fetuses and placentas, as well as for tumor necrosis factor-alpha in the pulmonary parenchyma and cyclooxeganse-2 in fetal annexes. However, the expression of interleukin 1-alpha was weak in these organs. To our knowledge, this is the first study that provides strong evidence of an early immune response to BoAHV-1 infection in the conceptus. Advances in the knowledge of the complex immunological interactions at the feto-maternal unit during BoAHV-1 infection are needed to clarify the pathogenesis of abortion.
Asunto(s)
Citocinas , Factor de Necrosis Tumoral alfa , Embarazo , Femenino , Bovinos , Animales , Citocinas/genética , Citocinas/metabolismo , Ciclooxigenasa 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Placenta , Pulmón/patología , Interleucina-1/metabolismoRESUMEN
BACKGROUND: Anabolic androgenic steroid (AAS) abuse has been associated with coronary artery disease (CAD). Pericoronary fat attenuation (pFA) is a marker of coronary inflammation, which is key in the atherosclerotic process. OBJECTIVE: To evaluate pFA and inflammatory profile in AAS users. METHODS: Twenty strength-trained AAS users (AASU), 20 AAS nonusers (AASNU), and 10 sedentary controls (SC) were evaluated. Coronary inflammation was evaluated by mean pericoronary fat attenuation (mPFA) in the right coronary artery (RCA), left anterior descending coronary artery (LAD), and left circumflex (LCx). Interleukin (IL)-1 (IL-1), IL-6, IL-10, and TNF-alpha were evaluated by optical density (OD) in a spectrophotometer with a 450 nm filter. P<0.05 indicated statistical significance. RESULTS: AASU had higher mPFA in the RCA (-65.87 [70.51-60.70] vs. -78.07 [83.66-72.87] vs.-78.46 [85.41-71.99] Hounsfield Units (HU), respectively, p<0.001) and mPFA in the LAD (-71.47 [76.40-66.61] vs. -79.32 [84.37-74.59] vs. -82.52 [88.44-75.81] HU, respectively, p=0.006) compared with AASNU and SC. mPFA in the LCx was not different between AASU, AASNU, and SC (-72.41 [77.17-70.37] vs. -80.13 [86.22-72.23] vs. -78.29 [80.63-72.29] HU, respectively, p=0.163). AASU compared with AASNU and SC, had higher IL-1, (0.975 [0.847-1.250] vs. 0.437 [0.311-0.565] vs. 0.530 [0.402-0.780] OD, respectively, p=0.002), IL-6 (1.195 [0.947-1.405] vs. 0.427 [0.377-0.577] vs. 0.605 [0.332-0.950] OD, p=0.005) and IL-10 (1.145 [0.920-1.292] vs. 0.477 [0.382-0.591] vs. 0.340 [0.316-0.560] OD, p<0.001). TNF-α was not different between the AASU, AASNU, and SC groups (0.520 [0.250-0.610] vs. 0.377 [0.261-0.548] vs. 0.350 [0.182-430]), respectively. CONCLUSION: Compared with ASSNU and controls, AASU have higher mPFA and higher systemic inflammatory cytokines profile suggesting that AAS may induce coronary atherosclerosis through coronary and systemic inflammation.
FUNDAMENTO: O uso abusivo de esteroides anabólicos androgênicos (EAA) tem sido associado à doença arterial coronariana (DAC). A atenuação de gordura pericoronária (AGp) é um marcador de inflamação coronária, a qual exerce um papel chave no processo aterosclerótico. OBJETIVO: Avaliar AGp e perfil inflamatório em usuários de EAA. MÉTODO: Vinte indivíduos que realizavam treinamento de força, usuários de EAA (UEAA), 20 não usuários de EAA (NUEAA), e 10 indivíduos sedentários controle (SC) foram avaliados. Inflamação coronária foi avaliada por atenuação de gordura pericoronária média (AGPm) artéria coronária direita (ACD), artéria descendente anterior esquerda (ADA) e artéria circunflexa (ACX). Interleucina (IL)-1 (IL-1), IL-6, IL-10, e TNF-alfa foram avaliados por densidade ótica (DO) em um espectrofotômetro com um filtro de 450 nm. Um p<0,05 indicou significância estatística. RESULTADOS: Os UEAA apresentaram maior AGPm na ACD [-65,87 (70,51-60,70) vs. -78,07 (83,66-72,87) vs.-78,46 (85,41-71,99] unidades Hounsfield (HU), respectivamente, p<0,001) e AGPm na ADA [-71,47 (76,40-66,610 vs. -79,32 (84,37-74,59) vs. -82,52 (88,44-75,81) HU, respectivamente, p=0,006) em comparação aos NUEAA e CS. A AGPm na ACX não foi diferente entre os grupos UEAA, NUEAA e CS [-72,41 (77,17-70,37) vs. -80,13 (86,22-72,23) vs. -78,29 (80,63-72,29) HU, respectivamente, p=0,163). Em comparação aos NUEAA e aos CS, o grupo UEAA apresentaram maiores níveis de IL-1 [0,975 (0,847-1,250) vs. 0,437 (0,311-0,565) vs. 0,530 (0,402-0,780) DO, respectivamente, p=0,002), IL-6 [1,195 (0,947-1,405) vs. 0,427 (0,377-0,577) vs. 0,605 (0,332-0,950) DO, p=0,005) e IL-10 [1,145 (0,920-1,292) vs. 0,477 (0,382-0,591) vs. 0,340 (0,316-0,560) DO, p<0,001]. TNF-α não foi diferente entre os grupos UEAA, NUEAA e CS [0,520 (0,250-0,610) vs. 0,377 (0.261-0,548) vs. 0,350 (0,182-430)]. CONCLUSÃO: Em comparação aos NUEAA e controles, os UEAA apresentam maior AGPm e maior perfil de citocinas inflamatórias sistêmicas, sugerindo que os EAA podem induzir aterosclerose por inflamação coronária e sistêmica.
Asunto(s)
Esteroides Anabólicos Androgénicos , Enfermedad de la Arteria Coronaria , Humanos , Masculino , Interleucina-10 , Angiografía Coronaria/métodos , Interleucina-6 , Tomografía Computarizada por Rayos X , Enfermedad de la Arteria Coronaria/inducido químicamente , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Inflamación/inducido químicamente , Inflamación/diagnóstico por imagen , Interleucina-1 , Vasos Coronarios , Angiografía por Tomografía Computarizada , Tejido AdiposoAsunto(s)
Infarto del Miocardio , Infarto del Miocardio con Elevación del ST , Humanos , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1 , Blanco , Infarto del Miocardio con Elevación del ST/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológicoRESUMEN
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Asunto(s)
Esfingomielina Fosfodiesterasa , Venenos de Araña , Animales , Humanos , Inflamación , Interleucina-1/metabolismo , Hidrolasas Diéster Fosfóricas/toxicidad , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Arañas/química , Arañas/metabolismo , Venenos de Araña/toxicidad , Picaduras de Arañas/patología , Receptores ErbB/metabolismoRESUMEN
Tomato plants are sensitive to drought stress throughout their growth cycle. To be considered drought-tolerant, a cultivar should display tolerance at all developmental stages. This study aimed to evaluate whether Solanum pennellii introgression lines (ILs) previously selected as drought-tolerant during germination/seedling growth maintained this tolerance in the vegetative/reproductive stage. We then investigated these ILs to uncover candidate genes. The plants were subjected to two different environmental conditions: well-watered and drought-stressed (water withheld for ≤ 20 d after flowering). Phenotyping for morphological, physiological, fruit quality, and yield-related traits was performed, and the data was analyzed using a mixed-model approach. Using a multi-trait index that relies on factor analysis and genotype-ideotype distance (FAI-BLUP index), the genotypes were ordered based on how far they were from the drought-tolerant ideotype. Afterward, the tomato IL population map furnished by the SOL Genomics Network was utilized to identify introgressed segments of significance for the identification of candidate genes. Significant genotypic differences were found in the yield, water content, mean weight, length, and width of the fruit, the percentage of fruits displaying blossom-end rot, and titratable acidity. The drought-tolerance ideotype was built considering the maximum values for the fruit water content, number of fruits, mean fruit weight, and yield, minimum values for blossom-end rot, and mean values for titratable acidity. IL 1-4-18, IL 7-4-1, IL 7-1, IL 7-5-5, and IL 1-2 were ranked above M-82 and therefore considered drought-tolerant during the vegetative/reproductive stage. IL 1-4-18 and IL1-2 sustained drought tolerance displayed during germination/seedling growth into the vegetative/reproductive stage. The following candidate genes associated with drought tolerance were identified: AHG2, At1g55840, PRXIIF, SAP5, REF4-RELATED 1, PRXQ, CFS1, LCD, CCD1, and SCS. Because they are already associated with genetic markers, they can be transferred to elite tomato cultivars through marker-assisted technology after validation.
Asunto(s)
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Solanum/genética , Resistencia a la Sequía , Interleucina-7 , Sequías , Agua , Interleucina-1RESUMEN
Diabetes mellitus (DM) and hypothyroidism (HT) are prevalent diseases associated with dry eye (DE). Their impact on the lacrimal functional unit (LFU) is poorly known. This work evaluates the changes in the LFU in DM and HT. Adult male Wistar rats had the disease induced as follows: (a) DM: streptozotocin and (b) HT: methimazole. The tear film (TF) and blood osmolarity were measured. Cytokine mRNA was compared in the lacrimal gland (LG), trigeminal ganglion (TG), and cornea (CO). Oxidative enzymes were evaluated in the LG. The DM group showed lower tear secretion (p = 0.02) and higher blood osmolarity (p < 0.001). The DM group presented lower mRNA expression of TRPV1 in the cornea (p = 0.03), higher Il1b mRNA expression (p = 0.03), and higher catalase activity in the LG (p < 0.001). The DM group presented higher Il6 mRNA expression in the TG (p = 0.02). The HT group showed higher TF osmolarity (p < 0.001), lower expression of Mmp9 mRNA in the CO (p < 0.001), higher catalase activity in the LG (p = 0.002), and higher expression of Il1b mRNA in the TG (p = 0.004). The findings revealed that DM and HT induce distinct compromises to the LG and the entire LFU.
Asunto(s)
Diabetes Mellitus , Hipotiroidismo , Aparato Lagrimal , Ratas , Animales , Masculino , Aparato Lagrimal/metabolismo , Catalasa/metabolismo , Ratas Wistar , Lágrimas/metabolismo , Interleucina-1/metabolismo , Diabetes Mellitus/metabolismo , Hipotiroidismo/metabolismo , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Magnesium (Mg2+) is an essential mineral nutrient, necessary for many biochemical reactions in the human body, including energy metabolism, protein and DNA synthesis, maintenance of the electrical potential of nervous and cardiac tissues, control of blood glucose, and regulation of blood pressure. However, currently, the world population suffers from a severe problem because the consumption of Mg2+ in the diet is deficient and generalized in the populations. Mg2+ deficiency causes oxidative stress (OS) due to the increase in reactive oxygen species (ROS) that originate from mitochondrial dysfunction, activation of the renin-angiotensin-aldosterone system (RAAS), and abnormal regulation of calcium homeostasis. In addition, Mg2+ deficiency also causes inflammation by increasing the production of proinflammatory molecules such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α), which in turn can exacerbate the production of ROS. The combination of inflammation and OS induced by Mg2+ deficiency increases the risk of developing chronic diseases. This review describes Mg2+ deficiency, its complications, and its relationship with OS and chronic inflammatory diseases. In addition, the importance of increasing the intake of Mg2+ throughout the world is highlighted.
Asunto(s)
Magnesio , Pandemias , Humanos , Especies Reactivas de Oxígeno , Estrés Oxidativo , Inflamación , Interleucina-1RESUMEN
OBJECTIVE: To analyze, in a cohort of pediatric patients with recurrent pericarditis undergoing anti-interleukin (IL)-1 treatment: the agent and dosing used as first-line treatment, the long-term efficacy of IL-1 blockers, the percentage of patients achieving a drug-free remission, and the presence of variables associated with drug-free remission. STUDY DESIGN: Data were collected from patients' charts. The annualized relapse rate (ARR) was used for evaluation of treatment efficacy, and bivariate logistic regression analysis was used for variables associated with drug-free remission. RESULTS: Fifty-eight patients, treated between 2008 and 2018, were included in the study (mean follow-up. 2.6 years). Of the 56 patients treated with first-line drugs, 14 not responsive patients were underdosed. Fifty-seven patients were treated with anakinra: the ARR before and during daily treatment was 3.05 and 0.28, respectively (P < .0001); an increase to 0.83 was observed after the reduction/withdrawal of treatment (P < .0001). The switch from anakinra to canakinumab (5 patients) was associated to an increase of the ARR (0.49 vs 1.46), but without statistical significance (P = .215). At last follow-up, only 9 of the 58 patients had withdrawn all treatments. With the limits of a retrospective study and the heterogeneity between the patients enrolled in the study, a shorter duration of treatment with anakinra was the only variable associated with drug-free remission. CONCLUSIONS: This study shows that most pediatric patients with recurrent pericarditis needing IL-1 blockade received an inadequate treatment with first-line agents. The effectiveness of anakinra is supported by this study, but few patients achieved drug-free remission. The different rate of response to anakinra and canakinumab may suggest a possible role of IL-1α in the pathogenesis of recurrent pericarditis.
Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Pericarditis , Humanos , Niño , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Estudios Retrospectivos , Interleucina-1/uso terapéutico , Nivel de Atención , Resultado del Tratamiento , Pericarditis/tratamiento farmacológico , RecurrenciaRESUMEN
Collagen-based products are found in different pharmaceuticals, medicine, food, and cosmetics products for a wide variety of applications. However, its use to prevent or improve the health of skin is growing dizzyingly. Therefore, this study investigated whether collagen peptides could induce fibroblast and keratinocyte proliferation and activation beyond reducing an inflammatory response induced by lipopolysaccharide (LPS). Human skin fibroblasts (CCD-1072Sk) and human keratinocytes (hKT-nh-skp-KT0026) were seeded at a concentration of 5 × 104 cells/mL. LPS (10 ng/mL) and three doses of collagen peptides (2.5 mg/mL, 5 mg/mL, 10 mg/mL) were used. The readout parameters were cell proliferation; expression of inducible nitric oxide synthase (iNOS); expression of pro-collagen-1α by fibroblasts; and secretion of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), transforming growth factor ß (TGF-ß), and vascular endothelial growth factor (VEGF) by both cell types. The results demonstrated that all doses of collagen supplementation induced increased proliferation of both human fibroblasts (p < 0.01) and human keratinocytes (p < 0.001), while only the dose of 10 mg/mL induced an increased expression of pro-collagen-1α by fibroblasts. Similarly, only the dose of 10 mg/mL reduced LPS-induced iNOS expression in fibroblasts (p < 0.05) and keratinocytes (p < 0.01). In addition, collagen supplementation reduced the LPS-induced IL-1ß (p < 0.05), IL-6 (p < 0.001), IL-8 (p < 0.01), and TNF-α (p < 0.05), and increased the TGF-ß and VEGF expression in fibroblasts. Furthermore, collagen supplementation reduced the LPS-induced IL-1ß (p < 0.01), IL-6 (p < 0.01), IL-8 (p < 0.01), and TNF-α (p < 0.001), and increased the TGF-ß (p < 0.05) and VEGF (p < 0.05) expression in keratinocytes. In conclusion, collagen peptides were found to induce fibroblast and keratinocyte proliferation and pro-collagen-1α expression, involving increased expression of TGF-ß and VEGF, as well as the suppression of an inflammatory response induced by LPS.
Asunto(s)
Interleucina-8 , Factor de Necrosis Tumoral alfa , Humanos , Antiinflamatorios/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Colágeno/farmacologíaRESUMEN
Mesangial cells (MC) maintain the architecture and cellular communication and indirectly join in the glomerular filtration rate for the correct functioning of the glomerulus. Consequently, these cells are activated constantly in response to changes in the intraglomerular environment due to a metabolic imbalance or infection. IL-36, a member of the IL-1 family, is a cytokine that initiates and maintains inflammation in different tissues in acute and chronic pathologies, including the skin, lungs, and intestines. In the kidney, IL-36 has been described in the development of tubulointerstitial lesions, the production of an inflammatory environment, and is associated with metabolic and mesangioproliferative disorders. The participation of IL-36 in functional dysregulation and the consequent generation of the inflammatory environment by MCs in the presence of microbial stimulation is not yet elucidated. In this work, the MES SV40 cell cultures were stimulated with classical pathogen-associated molecular patterns (PAMPs), mimicking an infection by negative and positive bacteria as well as a viral infection. Lipopolysaccharide (LPS), peptidoglycan (PGN) microbial wall components, and a viral mimic poly I:C were used, and the mRNA and protein expression of the IL-36 members were assessed. We observed a differential and dose-dependent IL-36 mRNA and protein expression under LPS, PGN, and poly I:C stimulation. IL-36ß was only found when the cells were treated with LPS, while IL-36α and IL-36γ were favored by PGN and poly I:C stimulation. We suggest that the microbial components participate in the activation of MCs, leading them to the production of IL-36, in which a specific member may participate in the origin and maintenance of inflammation in the glomerular environment that is associated with infections.
Asunto(s)
Citocinas , Lipopolisacáridos , Citocinas/metabolismo , Humanos , Inflamación , Interleucina-1/genética , Interleucina-1/metabolismo , Lipopolisacáridos/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos , Peptidoglicano/farmacología , Poli I-C , ARN Mensajero/genéticaRESUMEN
OBJECTIVE: Alcohol consumption combined with ageing alters the healing process of the skin. We evaluated whether ageing decreases the healing of incisional wounds in the skin of Wistar rats of Universidade de Chile of variety B (UChB). METHOD: A total of 20 adult rats and 20 older UChB rats, divided into two groups which underwent surgical aggression in the anterior region of the abdomen, were used: G1, adult rats (100 days old, control) with water and 10% ethanol; G2, aged rats (540 days old, experimental) with water and 10% ethanol; evaluated at 4, 7, 14 and 21 days after surgery. RESULTS: Ageing did not alter the rupture force and collagen elasticity and resistance. There were increases in telomerase with the implementation of cellular senescence, in interleukin 1-alpha (IL-1α) at 14 days of healing, in epidermal growth factor (EGF) at 14 and 21 days of healing with delayed growth and development of keratinocytes, also an increase of IL-ß at 4 days, and decrease in tumour necrosis factor (TNFα) at 7 days, associated with chronic scarring. There was an increase in vascular endothelial growth factor (VEGF) at 4 and 7 days, responsible for the early vessels re-establishment. There was a decrease in transforming growth factor 2-beta (TGFß2) and ß3 at 4 and 7 days of healing respectively, and estradiol at 4 days. CONCLUSION: Ageing decreases the skin healing in incisional wounds in alcohol-preferring rats.
Asunto(s)
Telomerasa , Factor A de Crecimiento Endotelial Vascular , Envejecimiento , Animales , Colágeno/metabolismo , Factor de Crecimiento Epidérmico , Estradiol/metabolismo , Etanol/metabolismo , Interleucina-1/metabolismo , Ratas , Ratas Wistar , Piel/lesiones , Telomerasa/metabolismo , Factor de Crecimiento Transformador beta , Factores de Crecimiento Transformadores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Agua/metabolismoRESUMEN
Mucosal innate immunity functions as the first line of defense against invading pathogens. Members of the IL-1 family are key cytokines upregulated in the inflamed mucosa. Inflammatory cytokines are regulated by limiting their function and availability through their activation and secretion mechanisms. IL-1 cytokines secretion is affected by the lack of a signal peptide on their sequence, which prevents them from accessing the conventional protein secretion pathway; thus, they use unconventional protein secretion pathways. Here we show in mouse macrophages that LPS/ATP stimulation induces cytokine relocalization to the plasma membrane, and conventional secretion blockade using monensin or Brefeldin A triggers no IL-36γ accumulation within the cell. In silico modeling indicates IL-36γ can pass through both the P2X7R and Gasdermin D pores, and both IL-36γ, P2X7R and Gasdermin D mRNA are upregulated in inflammation; further, experimental blockade of these receptors' limits IL-36γ release. Our results demonstrate that IL-36γ is secreted mainly by an unconventional pathway through membrane pores formed by P2X7R and Gasdermin D.
Asunto(s)
Inmunidad Mucosa , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Transporte Biológico , Citocinas/metabolismo , Interleucina-1 , RatonesRESUMEN
BACKGROUND: Remote ischemic preconditioning (rIPC) has been applied to attenuate tissue injury. We tested the hypothesis that rIPC applied to fetal lambs undergoing cardiac bypass (CB) reduces fetal systemic inflammation and placental dysfunction. METHODS: Eighteen fetal lambs were divided into three groups: sham, CB control, and CB rIPC. CB rIPC fetuses had a hindlimb tourniquet applied to occlude blood flow for four cycles of a 5-min period, followed by a 2-min reperfusion period. Both study groups underwent 30 min of normothermic CB. Fetal inflammatory markers, gas exchange, and placental and fetal lung morphological changes were assessed. RESULTS: The CB rIPC group achieved higher bypass flow rates (p < .001). After CB start, both study groups developed significant decreases in PaO2 , mixed acidosis, and increased lactate levels (p < .0004). No significant differences in tissular edema were observed on fetal lungs and placenta (p > .391). Expression of Toll-like receptor 4 and intercellular adhesion molecule-1 in the placenta and fetal lungs did not differ among the three groups, as well as with vascular cell adhesion molecule-1 (VCAM-1) of fetal lungs (p > .225). Placental VCAM-1 expression was lower in the rIPC group (p < .05). Fetal interleukin-1 (IL-1) and thromboxane A2 (TXA2) levels were lower at 60 min post-CB in the CB rIPC group (p < .05). There were no significant differences in tumor necrosis factor-α, prostaglandin E2, IL-6, and IL-10 plasma levels of the three groups at 60-min post-bypass (p > .133). CONCLUSION: Although rIPC allowed increased blood flow during fetal CB and decreased IL-1 and TXA2 levels and placental VCAM-1, it did not prevent placental dysfunction in fetal lambs undergoing CB.
Asunto(s)
Precondicionamiento Isquémico , Molécula 1 de Adhesión Celular Vascular , Animales , Femenino , Feto , Interleucina-1 , Placenta , Embarazo , OvinosRESUMEN
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Asunto(s)
Inflamación/fisiopatología , Receptores de Interleucina-1/fisiología , Animales , COVID-19/fisiopatología , Síndrome de Liberación de Citoquinas/fisiopatología , Citocinas/fisiología , Interacciones Huésped-Patógeno , Humanos , Interleucina-1/fisiología , Interleucinas/clasificación , Intestinos/metabolismo , Intestinos/patología , Ligandos , Pulmón/metabolismo , Pulmón/patología , Sistema de Señalización de MAP Quinasas , Ratones , FN-kappa B/metabolismo , Dominios Proteicos , Receptores de Interleucina/clasificación , Receptores de Interleucina-1/agonistas , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/química , SARS-CoV-2 , Transducción de Señal , Piel/metabolismo , Piel/patologíaRESUMEN
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.