Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 327(3): C525-C544, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881421

RESUMEN

Sodium-glucose cotransporter 2 inhibitors (SGLT2is), initially developed for type 2 diabetes (T2D) treatment, have demonstrated significant cardiovascular and renal benefits in heart failure (HF) and chronic kidney disease (CKD), irrespective of T2D. This review provides an analysis of the multifaceted mechanisms underlying the cardiorenal benefits of SGLT2i in HF and CKD outside of the T2D context. Eight major aspects of the protective effects of SGLT2i beyond glycemic control are explored: 1) the impact on renal hemodynamics and tubuloglomerular feedback; 2) the natriuretic effects via proximal tubule Na+/H+ exchanger NHE3 inhibition; 3) the modulation of neurohumoral pathways with evidence of attenuated sympathetic activity; 4) the impact on erythropoiesis, not only in the context of local hypoxia but also systemic inflammation and iron regulation; 5) the uricosuria and mitigation of the hyperuricemic environment in cardiorenal syndromes; 6) the multiorgan metabolic reprogramming including the potential induction of a fasting-like state, improvement in glucose and insulin tolerance, and stimulation of lipolysis and ketogenesis; 7) the vascular endothelial growth factor A (VEGF-A) upregulation and angiogenesis, and 8) the direct cardiac effects. The intricate interplay between renal, neurohumoral, metabolic, and cardiac effects underscores the complexity of SGLT2i actions and provides valuable insights into their therapeutic implications for HF and CKD. Furthermore, this review sets the stage for future research to evaluate the individual contributions of these mechanisms in diverse clinical settings.


Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/fisiopatología , Animales , Riñón/efectos de los fármacos , Riñón/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores
2.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557357

RESUMEN

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Hipertensión , Ratas Endogámicas SHR , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Intercambiador 3 de Sodio-Hidrógeno , Regulación hacia Arriba , Animales , Masculino , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Presión Sanguínea/efectos de los fármacos , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos
3.
Toxicol Lett ; 341: 23-32, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476711

RESUMEN

Mercury is an environmental pollutant and a threat to human health. Mercuric chloride (HgCl2)-induced acute renal failure has been described by several reports, but the mechanisms of renal dysfunction remain elusive. This study tested the hypothesis that HgCl2 directly impairs renal vascular reactivity. Additionally, due to the mercury toxicity on the proximal tubule, we investigated whether the HgCl2-induced natriuresis is accompanied by inhibition of Na+/H+ exchanger isoform-3 (NHE3). We found that 90-min HgCl2 infusion (6.5 µg/kg i.v.) remarkably increased urinary output, reduced GFR and renal blood flow, and increased vascular resistance in rats. "In vitro" experiments of HgCl2 infusion in isolated renal vascular bed demonstrated an elevation of perfusion pressure in a concentration- and time-dependent manner, associated with changes on the endothelium-dependent vasodilatation and the flow-pressure relationship. Moreover, by employing "in vivo" stationary microperfusion of the proximal tubule, we found that HgCl2 inhibits NHE3 activity and increases the phosphorylation of NHE3 at serine 552 in the renal cortex, in line with the HgCl2-induced diuresis. Changes in renal proximal tubular function induced by HgCl2 were parallel to increased urinary markers of proximal tubular injury. Besides, atomic spectrometry showed that mercury accumulated in the renal cortex. We conclude that acute HgCl2 exposure causes renal vasoconstriction that is associated with reduced endothelial vasodilator agonist- and flow-mediated responses and inhibition of NHE3-mediated sodium reabsorption. Thus, our data suggest that HgCl2-induced acute renal failure may be attributable at least in part by its direct effects on renal hemodynamics and NHE3 activity.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Riñón/irrigación sanguínea , Cloruro de Mercurio/toxicidad , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Animales , Contaminantes Ambientales/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Resistencia Vascular/efectos de los fármacos
4.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287221

RESUMEN

The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.


Asunto(s)
Concentración de Iones de Hidrógeno , Neoplasias/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Espacio Extracelular/metabolismo , Humanos , Espacio Intracelular/metabolismo , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Pronóstico , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA