Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
J Med Chem ; 67(16): 14553-14573, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39116445

RESUMEN

ACKR3, an atypical chemokine receptor, has been associated with prothrombotic events and the development of cardiovascular events. We designed, synthesized, and evaluated a series of novel small molecule ACKR3 agonists. Extensive structure-activity relationship studies resulted in several promising agonists with potencies ranging from the low micromolar to nanomolar range, for example, 23 (EC50 = 111 nM, Emax = 95%) and 27 (EC50 = 69 nM, Emax = 82%) in the ß-arrestin-recruitment assay. These compounds are selective for ACKR3 versus ACKR2, CXCR3, and CXCR4. Several agonists were subjected to investigations of their P-selectin expression reduction in the flow cytometry experiments. In particular, compounds 23 and 27 showed the highest potency for platelet aggregation inhibition, up to 80% and 97%, respectively. The most promising compounds, especially 27, exhibited good solubility, metabolic stability, and no cytotoxicity, suggesting a potential tool compound for the treatment of platelet-mediated thrombosis.


Asunto(s)
Diseño de Fármacos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Receptores CXCR , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Relación Estructura-Actividad , Agregación Plaquetaria/efectos de los fármacos , Receptores CXCR/agonistas , Receptores CXCR/metabolismo , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Selectina-P/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo
2.
Biomed Pharmacother ; 177: 117154, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018868

RESUMEN

This study investigates the antiplatelet properties of tomato pulp to combat cardiovascular diseases. Notably, it examines the formation of nitrated fatty acids (NO2-FA) in tomato pomace, renowned for its potential antiplatelet effects. Through diverse assays, including tandem mass spectrometry, microplate-based platelet aggregation, and flow cytometry, the research identifies NO2-OA, NO2-LA, and NO2-LnA as pivotal antiplatelet compounds. It demonstrates the concentration-dependent antiplatelet effects of nitrated tomato pomace against thrombin receptor activator peptide 6 (TRAP-6) and collagen-induced platelet activation, alongside the modulation of platelet activation markers. Additionally, synergistic effects were observed with nitrated tomato pomace extracts. The findings suggest therapeutic potential for NO2-FA derived from tomato pomace in preventing blood clot formation, with nitrated extracts exhibiting superior efficacy compared to non-nitrated ones. This research highlights the promising role of natural products, such as tomato pomace, in mitigating cardiovascular risks and proposes novel strategies for population health enhancement and cardiovascular disease management.


Asunto(s)
Ácidos Grasos , Extractos Vegetales , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Solanum lycopersicum , Solanum lycopersicum/química , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Agregación Plaquetaria/efectos de los fármacos , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Nitratos/farmacología , Activación Plaquetaria/efectos de los fármacos
3.
Bioorg Chem ; 150: 107615, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986420

RESUMEN

A series of stilbene analogues, in which a phenyl ring was replaced by the pyridazin-3(2H)-one nucleus, was designed and synthesized to be explored as platelet aggregation inhibitors. The proposed stilbene-pyridazinone hybrids were successfully obtained from simple starting materials and by Wittig's reaction. Most of the target compounds displayed improved in vitro activity in comparison with the standard drug, resveratrol, highlighting as the most potent the analogues 10d and 10e, with inhibition percentages of 94.15 % at 100 µM and 100 % at 50 µM, respectively. The pharmacokinetic and toxicity (ADME/T) properties of the novel hybrids were also estimated with the SwissADME and ProTox-II web servers.


Asunto(s)
Diseño de Fármacos , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Piridazinas , Estilbenos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/síntesis química , Piridazinas/química , Piridazinas/farmacología , Piridazinas/síntesis química , Estilbenos/química , Estilbenos/farmacología , Estilbenos/síntesis química , Relación Estructura-Actividad , Humanos , Estructura Molecular , Agregación Plaquetaria/efectos de los fármacos , Relación Dosis-Respuesta a Droga
4.
Chem Biodivers ; 21(5): e202400110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424689

RESUMEN

Drugs with anti-platelet aggregation and neuroprotection are of great significance for the treatment of ischemic stroke. A series of edaravone and 6-phenyl-4,5-dihydropyridazin-3(2H)-one hybrids were designed and synthesized. Among them, 6g showed the most effective cytoprotective effect against oxygen-glucose deprivation/reoxygenation-induced damage in BV2 cells and an excellent inhibitory effect on platelet aggregation induced by adenosine diphosphate and arachidonic acid. Additionally, 6g could prevent thrombosis caused by ferric chloride in rats and pose a lower risk of causing bleeding compared with aspirin. It provides better protection against ischemia/reperfusion injury in rats compared with edaravone and alleviates the oxidative stress related to cerebral ischemia/reperfusion by increasing the GSH and SOD levels and decreasing the MDA concentration. Finally, molecular docking results showed that 6g probably acts on PDE3 A and plays an anti-platelet aggregation effect. Overall, 6g could be a potential candidate compound for the treatment of ischemic stroke.


Asunto(s)
Edaravona , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Animales , Edaravona/farmacología , Edaravona/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratas , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/síntesis química , Agregación Plaquetaria/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Simulación del Acoplamiento Molecular , Masculino , Ratones , Estructura Molecular , Relación Estructura-Actividad , Ratas Sprague-Dawley , Descubrimiento de Drogas , Piridazinas/farmacología , Piridazinas/química , Estrés Oxidativo/efectos de los fármacos
5.
J Asian Nat Prod Res ; 26(7): 824-832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509703

RESUMEN

Thrombosis plays an important role in the occurrence and development of cardiovascular and cerebrovascular diseases that contribute to high mortality and morbidity in patients. L-(-)-Quebrachitol (QCT), a natural product, was first isolated from quebracho bark. It can inhibit PAF receptor and decrease gastric damage induced by indomethacin, as a drug against platelet aggregation. Here, five QCT derivatives were synthesized and investigated for their inhibitory effects on platelet aggregation. Among them, compound 3a showed anticoagulant effects comparable to aspirin, while compound 4b showed dose-independent inhibitory activities in rats that were stronger than aspirin.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Animales , Agregación Plaquetaria/efectos de los fármacos , Ratas , Estructura Molecular , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Aspirina/farmacología , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Corteza de la Planta/química , Masculino
6.
Anticancer Agents Med Chem ; 24(7): 504-513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38275051

RESUMEN

BACKGROUND: Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases. OBJECTIVE: The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits. METHODS: Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities. RESULTS: The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 µM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 µM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90. CONCLUSION: The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2 , Diseño de Fármacos , Piridinas , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Ciclooxigenasa 2/metabolismo , Animales , Relación Estructura-Actividad , Estructura Molecular , Humanos , Relación Dosis-Respuesta a Droga , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Analgésicos/farmacología , Analgésicos/síntesis química , Analgésicos/química , Simulación del Acoplamiento Molecular , Masculino , Ratas , Ratones , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química
7.
Bioorg Chem ; 119: 105485, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959176

RESUMEN

This study reports the synthesis of novel neolignans-celecoxib hybrids and the evaluation of their biological activity. Analogs8-13(L13-L18) exhibited anti-inflammatory activity, inhibited glycoprotein expression (P-selectin) related to platelet activation, and were considered non- ulcerogenic in the animal model, even with the administration of 10 times higher than the dose used in reference therapy. In silico drug-likeness showed that the analogs are compliant with Lipinski's rule of five. A molecular docking study showed that the hybrids8-13(L13-L18) fitted similarly with celecoxib in the COX-2 active site. According to this data, it is possible to infer that extra hydrophobic interactions and the hydrogen interactions with the triazole core may improve the selectivity towards the COX-2 active site. Furthermore, the molecular docking study with P-selectin showed the binding affinity of the analogs in the active site, performing important interactions with amino acid residues such as Tyr 48. Whereas the P-selectin is a promising target to the design of new anti-inflammatory drugs with antithrombotic properties, a distinct butterfly-like structure of 1,4-diaryl-1,2,3-triazole neolignan-celecoxib hybrids synthesized in this work may be a safer alternative to the traditional COX-2 inhibitors.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiulcerosos/farmacología , Edema/tratamiento farmacológico , Peritonitis/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/farmacología , Úlcera/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiulcerosos/síntesis química , Antiulcerosos/química , Carragenina , Celecoxib/química , Celecoxib/farmacología , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Lignanos/química , Lignanos/farmacología , Masculino , Ratones , Estructura Molecular , Peritonitis/inducido químicamente , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Ratas , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología , Úlcera/inducido químicamente
8.
Anesth Analg ; 134(2): 432-439, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650992

RESUMEN

Sevoflurane was first synthesized independently by Richard Wallin and Bernard Regan at Travenol Laboratories Incorporated and Ross Terrell and Louise Croix at Airco, Inc in the late 1960s, and subsequent animal studies and a phase-1 human trial of the agent published in 1981 showed promising results. Further research in the United States was halted, however, because of concerns regarding potential nephrotoxicity and the introduction of less degradable alternatives. Interest in sevoflurane resumed in Japan when Maruishi Pharmaceutical Company, Limited (Ltd) (Maruishi) decided to continue its development in 1982. They secured approval by the Japanese Ministry of Health, Labor and Welfare for its clinical use in January 1990. Because of its low blood:gas partition coefficient and resulting rapid action, sevoflurane quickly became the anesthetic of choice of Japanese anesthesiologists. In 1992 Abbott Laboratories, now AbbVie, Inc (Abbott, North Chicago, IL) finalized a licensing agreement with Maruishi to seek the US Food and Drug Administration approval for sevoflurane sales in the United States. Approved in June 1995, sevoflurane is now marketed by Abbott in 120 countries and has been administered >120 million times. This report details the Japanese contribution to the development of sevoflurane.


Asunto(s)
Composición de Medicamentos/tendencias , Desarrollo de Medicamentos/tendencias , Inhibidores de Agregación Plaquetaria/síntesis química , Sevoflurano/síntesis química , Animales , Ensayos Clínicos como Asunto/métodos , Desarrollo de Medicamentos/métodos , Humanos , Japón/epidemiología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Sevoflurano/uso terapéutico
9.
Bioorg Med Chem ; 46: 116390, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500186

RESUMEN

In order to discover antiplatelet drug with novel structure and expand our research scope, total twenty 1,3-benzenedisulfonyl piperazines, were designed and synthesized. These target compounds were divided into two series, namely 4-methoxy-1,3-benzenedisulfonyl piperazines of series 1 and 4-ethoxy-1,3-benzenedisulfonyl piperazines of series 2. With adenosine diphosphate (ADP), arachidonic acid (AA) and collagen as inducers, respectively, the Born turbidimetric method was used to screen the antiplatelet activity in vitro of all target compounds at a concentration of 1.3 µM, with aspirin and picotamide as positive control drugs. And of which, the activities of five compounds for collagen were higher than both picotamide and aspirin. In ADP or AA channel, compounds with an inhibition rate greater than 33% were selected, and their corresponding IC50 values were obtained. According to the IC50, the in vitro activity of one compound for ADP was higher than picotamide, and for AA, two compounds were higher than two positive control drugs and other two compounds only higher than or equal to aspirin. The preliminary analysis of the structure-activity relationship of the target compounds involved in this study was completed. Further, eight compounds exhibiting higher activity in one or two test channels, were subjected to cytotoxicity test on mouse fibroblasts (L929) by CCK-8 method. The in vitro cytotoxicity of most test compounds showed less than or same to control drug picotamide at 10 µM, but at the higher concentration of 100 µM, merely two compounds exhibited higher cell survival rate than that of picotamide. In addition, compound N1,N3-di(4-ethoxy-1,3-phenylenedisulfonyl)bis(1-(m-tolyl)piperazine), which is delivery activity in the three test channels, and another compound N1,N3-di(4-methoxy-1,3-phenylenedisulfonyl)bis(1-(m-tolyl)piperazine), which has the lowest cytotoxic in vitro compound among series 1 and series 2, respectively, are found and selected for simulation analysis as two most likely to dock with the receptor P2Y12. Each of synthesized compounds in silico molecular property and ADME (absorption, distribution, metabolism and excretion) are predicted by using Molinspiration property engine v2018.10 and PreADMET online servers, respectively. Compared with other series of compounds in the previous stage, the two series compounds obtained after the introduction of piperazinyl have a similar in vitro activity.


Asunto(s)
Fibroblastos/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Relación Estructura-Actividad
10.
Arch Pharm (Weinheim) ; 354(11): e2100213, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34368988

RESUMEN

To obtain new anticancer agents with antimetastatic adjunct efficacy, a series of novel N4 -hydrazone derivatives of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one were designed and synthesized by an eight-step reaction, with appropriate yields. All the synthesized compounds were evaluated for their antiproliferative activity against A549 and MCF-7 cells and for antiplatelet aggregation activity in vitro. The results showed that compounds 25 and 35 not only showed potent antiproliferative activity against the A549 (IC50 = 15.3 and 21.4 µM) and MCF-7 (IC50 = 15.6 and 10.9 µM) cell lines but also showed certain antiplatelet aggregation activity (inhibition rates: 47.0% and 45.8%). These results indicated that the structural modification on the N4 -hydrazone moiety of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one is promising to obtain novel anticancer compounds with antimetastatic adjunct efficacy. In addition, a molecular docking study was performed to investigate the possible targets, and these results indicated that compounds 25 and 35 have the potential to target EGFR, HER2, and P2Y12 .


Asunto(s)
Antineoplásicos/farmacología , Hidrazonas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Pirimidinas/farmacología , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Metástasis de la Neoplasia/prevención & control , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
11.
Eur J Med Chem ; 225: 113764, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34391031

RESUMEN

Protease activated receptor 4 (PAR4) is an important target in antiplatelet therapy to reduce the risk of heart attack and thrombotic complications in stroke. PAR4 antagonists can prevent harmful and stable thrombus growth, while retaining initial thrombus formation, by acting on the late diffusion stage of platelet aggregation, and may provide a safer alternative to other antiplatelet agents. To date, only two PAR4 antagonists, BMS-986120 and BMS-986141 have entered clinical trials for thrombosis. Thus, the development of a potent and selective PAR4 antagonist with a novel chemotype is highly desirable. In this study, we explored the activity of quinazolin-4(3H)-one-based PAR4 antagonists, beginning with their IDT analogues. By repeated structural optimisation, we developed a series of highly selective PAR4 antagonists with nanomolar potency on human platelets. Of these, 13 and 30g, with an 8-benzo[d]thiazol-2-yl-substituted quinazolin-4(3H)-one structure, showed optimal activity (h. PAR4-AP PRP IC50 = 19.6 nM and 6.59 nM, respectively) on human platelets. Furthermore, 13 and 30g showed excellent selectivity for PAR4 versus PAR1 and other receptors (IC50s > 10 µM) on human platelets. And 13 and 30g were lack of cross-reactivity for PAR1 or PAR2 (PAR1 AP FLIPR IC50 > 3162 nM, PAR2 AP FLIPR IC50 > 1000 nM) in the calcium mobilization assays. Metabolic stability assays and cytotoxicity tests of 13 and 30g indicated that these compounds could sever as promising drug candidates for the development of novel PAR4 antagonists. In summary, the quinazolin-4(3H)-one-based analogues are the first reported chemotypes with excellent activity and selectivity against PAR4, and, in the current study, we expanded the structural diversity of PAR4 antagonists. The two compounds, 13 and 30g, found in our study could be promising starting points with great potential for further research in antiplatelet therapy.


Asunto(s)
Inhibidores de Agregación Plaquetaria/farmacología , Quinazolinonas/farmacología , Receptores de Trombina/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Quinazolinonas/síntesis química , Quinazolinonas/química , Receptores de Trombina/metabolismo , Relación Estructura-Actividad
12.
Pharmacol Rep ; 73(5): 1361-1372, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34115343

RESUMEN

BACKGROUND: Antiplatelet drugs have been used in the treatment of acute coronary syndromes and for the prevention of recurrent events. Unfortunately, many patients remain resistant to the available antiplatelet treatment. Therefore, there is a clinical need to synthesize novel antiplatelet agents, which would be associated with different pathways of platelet aggregation, to develop an alternative or additional treatment for resistant patients. Recent studies have revealed that 5-HT2A receptor antagonists could constitute alternative antiplatelet therapy. METHODS: Based on the structures of the conventional 5-HT2A receptor ligands, two series of compounds with 4-phenylcyclohexane-5-spiro- or 5-methyl-5-phenyl-hydantoin core linked to various arylpiperazine moieties were synthesized and their affinity for 5-HT2A receptor was assessed. Further, we evaluated their antagonistic potency at 5-HT2A receptors using isolated rat aorta and cells expressing human 5-HT2A receptors. Finally, we studied their anti-aggregation effect and compared it with ketanserin and sarpogrelate, the reference 5-HT2A receptor antagonists. Moreover, the structure-activity relationships were studied following molecular docking to the 5-HT2A receptor model. RESULTS: Functional bioassays revealed some of the synthesized compounds to be moderate antagonists of 5-HT2A receptors. Among them, 13, 8-phenyl-3-(3-(4-phenylpiperazin-1-yl)propyl)-1,3-diazaspiro[4.5]decane-2,4-dione, inhibited collagen stimulated aggregation (IC50 = 27.3 µM) being more active than sarpogrelate (IC50 = 66.8 µM) and comparable with ketanserin (IC50 = 32.1 µM). Moreover, compounds 2-5, 9-11, 13, 14 inhibited 5-HT amplified, ADP- or collagen-induced aggregation. CONCLUSIONS: Our study confirmed that the 5-HT2A antagonists effectively suppress platelet aggregation and remain an interesting option for the development of novel antiplatelet agents with an alternative mechanism of action.


Asunto(s)
Hidantoínas/síntesis química , Hidantoínas/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/síntesis química , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Aorta , Células CHO , Cricetinae , Cricetulus , Humanos , Mianserina/farmacología , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Ratas
13.
Eur J Med Chem ; 223: 113607, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34171656

RESUMEN

A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Receptor de Adenosina A3/metabolismo , Adenosina/metabolismo , Agonistas del Receptor de Adenosina A3/síntesis química , Agonistas del Receptor de Adenosina A3/metabolismo , Animales , Compuestos de Boro/síntesis química , Compuestos de Boro/metabolismo , Compuestos de Boro/farmacología , Células CHO , Cricetulus , Células HEK293 , Humanos , Ligandos , Estructura Molecular , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Relación Estructura-Actividad
14.
Angew Chem Int Ed Engl ; 60(10): 5348-5356, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33345438

RESUMEN

Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.


Asunto(s)
Anticoagulantes/uso terapéutico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Proteínas y Péptidos Salivales/uso terapéutico , Trombosis/tratamiento farmacológico , Amblyomma/química , Animales , Anopheles/química , Anticoagulantes/síntesis química , Anticoagulantes/metabolismo , Dominio Catalítico , Humanos , Masculino , Ratones Endogámicos C57BL , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/metabolismo , Unión Proteica , Ingeniería de Proteínas , Proteínas y Péptidos Salivales/síntesis química , Proteínas y Péptidos Salivales/metabolismo , Trombina/química , Trombina/metabolismo , Moscas Tse-Tse/química
15.
Eur J Med Chem ; 208: 112767, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32916314

RESUMEN

Based on the recent observation that the antiplatelet agent ticagrelor and one of its metabolite exert bactericidal activity against gram-positive bacteria, a series of 1,2,3-triazolo[4,5-d]pyrimidines structurally related to ticagrelor were synthesized and examined as putative antiplatelet and antibacterial agents. The aim was to assess the possibility of dissociating the two biological properties and to find novel 1,2,3-triazolo[4,5-d]pyrimidines expressing antiplatelet activity and devoid of in vitro antibacterial activity. The new compounds synthesized were known metabolites of ticagrelor as well as structurally simplified analogues. Some of them were found to express antiplatelet activity and to lose the antibacterial activity, supporting the view that the two activities were not necessarily linked.


Asunto(s)
Antibacterianos/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Pirimidinas/farmacología , Triazoles/farmacología , Adulto , Antibacterianos/síntesis química , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de Agregación Plaquetaria/síntesis química , Pirimidinas/síntesis química , Relación Estructura-Actividad , Ticagrelor/química , Triazoles/síntesis química , Adulto Joven
16.
Angew Chem Int Ed Engl ; 59(37): 15928-15932, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32511855

RESUMEN

The first trans-selective cyanoboration reaction of an alkyne, specifically a 1,3-enyne, is described. The reported palladium-catalyzed cyanoboration of 1,3-enynes is site-, regio-, and diastereoselective, and is uniquely enabled by the 1,4-azaborine-based Senphos ligand structure. Tetra-substituted alkenyl nitriles are obtained providing useful boron-dienenitrile building blocks that can be further functionalized. The utility of our method has been demonstrated with the synthesis of Satigrel, an anti-platelet aggregating agent.


Asunto(s)
Boranos/química , Cianuros/química , Hidrocarburos/química , Paladio/química , Catálisis , Teoría Funcional de la Densidad , Ácidos Grasos Monoinsaturados/síntesis química , Inhibidores de Agregación Plaquetaria/síntesis química , Estereoisomerismo
17.
Eur J Med Chem ; 192: 112187, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32155530

RESUMEN

Cardiovascular diseases are the leading cause of death in the world. Platelets have a major role in cardiovascular events as they bind to the damaged endothelium activating and forming thrombi. Although some hydroquinone scaffold-containing compounds have known antiplatelet activities, currently there is a lack of evidence on the antiplatelet activity of hydroquinones carrying electron attractor groups. In this work, we evaluate the antiplatelet effect of a series of ortho-carbonyl hydroquinone derivatives on cytotoxicity and function of human platelets, using collagen and thrombin receptor activator peptide 6 (TRAP-6) as agonists. Our structure-activity relationship study shows that gem-diethyl/methyl substitutions and the addition/modifications of the third ring of ortho-carbonyl hydroquinone scaffold influence on the selective index (IC50 TRAP-6/IC50 Collagen) and the inhibitory capacity of platelet aggregation. Compounds 3 and 8 inhibit agonist-induced platelet aggregation in a non-competitive manner with IC50 values of 1.77 ± 2.09 µM (collagen) and 11.88 ± 4.59 µM (TRAP-6), respectively and show no cytotoxicity. Both compounds do not affect intracellular calcium levels and mitochondrial bioenergetics. Consistently, they reduce the expression of P-selectin, activation of glycoprotein IIb/IIIa, and release of adenosine triphosphate and CD63 from platelet. Our findings may be used for further development of new drugs in platelet-related thrombosis diseases.


Asunto(s)
Colágeno/farmacología , Hidroquinonas/farmacología , Fragmentos de Péptidos/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/química , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Humanos , Hidroquinonas/síntesis química , Hidroquinonas/química , Estructura Molecular , Fragmentos de Péptidos/química , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Relación Estructura-Actividad
18.
Curr Drug Targets ; 21(9): 864-891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32156235

RESUMEN

Heterocyclic compounds play a significant role in various biological processes of the human body and many of them are in clinical use due to their diverse, chemical and biological properties. Among these, indole is one of the most promising pharmacologically active molecules. Due to its chemical reactivity, indole has been willingly modified to obtain a variety of new lead molecules, which has been successfully utilized to obtained novel drug candidates for the treatment of different pharmacological diseases. Indole-based compounds such as vincristine (anticancer), reserpine (antihypertensive), amedalin (antidepressant) and many more describe the medicinal and pharmacological importance of the indole in uplifting human life. In this review, we compiled various reports on indole derivatives and their biological significance, including antifungal, antiprotozoal, antiplatelet, anti- Alzheimer's, anti-Parkinson's, antioxidant and anticancer potential from 2015 onwards. In addition, structure-activity relationship studies of the different derivatives have been included. We have also discussed novel synthetic strategies developed during this period for the synthesis of different indole derivatives. We believe that this review article will provide comprehensive knowledge about the medicinal importance of indoles and will help in the design and synthesis of novel indole-based molecules with high potency and efficacy.


Asunto(s)
Indoles/química , Indoles/farmacología , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antioxidantes/síntesis química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiparkinsonianos/síntesis química , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Humanos , Indoles/uso terapéutico , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico
19.
Arch Pharm (Weinheim) ; 353(2): e1900231, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31808975

RESUMEN

A series of 4-methoxy-3-arylamido-N-(substitutedphenyl)benzamides 6a-u were designed according to the splicing principle of structural design in the medicinal chemistry theory and were synthesized in five steps: nitration, acylation, ammoniation, reduction, and secondary ammoniation. The structures of the target compounds were characterized and verified by infrared, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and electron spray ionization spectroscopy. Their in vitro antiplatelet aggregation activities induced by adenosine diphosphate (ADP) or arachidonic acid (AA) were assessed by Born's method. The biological evaluation revealed that all compounds exhibited certain levels of activities in both of the antiplatelet aggregation assays; compounds 6c (IC50 = 3.84 µM) and 6f (IC50 = 3.12 µM) displayed the strongest antiplatelet aggregation activities in the ADP-induced and AA-induced assay, separately. Moreover, compounds that had stronger activities were chosen for cell toxicity testing via the cell counting kit-8 assay. The results indicated that none of the compounds had obvious cell toxicity against L929 cells at the doses of 10 and 20 µM. It is worth pointing out that compound 6c showed the highest antiplatelet activity and the lowest cell toxicity. In general, 4-methoxy-3-arylamido-N-(substitutedphenyl)benzamides have the potential to become a kind of safer and more effective antiplatelet agents.


Asunto(s)
Benzamidas/farmacología , Diseño de Fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Adenosina Difosfato/farmacología , Benzamidas/síntesis química , Benzamidas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Relación Estructura-Actividad
20.
Naunyn Schmiedebergs Arch Pharmacol ; 393(6): 967-978, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31802171

RESUMEN

R-/S-2-(2-hydroxypropanamido) benzoic acid (R-/S-HPABA), marine-derived anti-inflammatory antiplatelet drugs, were initially synthesised in our group. However, preliminary research showed that R-/S-HPABA were eliminated rapidly because of extensive hydroxylation metabolism of phenyl ring in vivo. In order to reduce significant hydroxylation metabolism to improve pharmacological activity and bioavailability, trifluoromethyl group was incorporated into R-/S-HPABA to synthesise R-/S-2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid (R-/S-HFBA), respectively. The purposes of this study were to report the synthesis of R-/S-HFBA and compare the anti-inflammatory antiplatelet effect and pharmacokinetic properties of R-/S-HFBA with those of R-/S-HPABA. Carrageenan-induced rat paw edema assay was used for the evaluation of the anti-inflammatory activity. R-/S-HFBA showed better results in inhibiting edema and were able to prolong the anti-inflammatory effect after carrageenan injection. The antiplatelet aggregation activity of R-/S-HFBA and R-/S-HPABA was studied on arachidonic acid-induced platelet aggregation of rabbit platelet-rich plasma. The aggregation inhibition rate of R-/S-HFBA was significantly (p < 0.05) higher than that of R-/S-HPABA, respectively. Molecular docking study revealed that R-/S-HFBA possess more potent binding affinity with COX-1/COX-2 than R-/S-HPABA, respectively, and that the presence of trifluoromethyl group leads to increase in activity of R-/S-HFBA. R-/S-HFBA also afford more favorable pharmacokinetic properties than R-/S-HPABA, respectively, such as higher Cmax, larger AUC0-∞, and longer t1/2, which, as expected, are more metabolically stable.


Asunto(s)
Antiinflamatorios/síntesis química , Simulación del Acoplamiento Molecular , Inhibidores de Agregación Plaquetaria/síntesis química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Masculino , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Conejos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA