Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Chem Biol Drug Des ; 104(1): e14581, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997237

RESUMEN

N-heterocyclic compounds are important molecular scaffolds in the search for new drugs, since most drugs contain heterocyclic moieties in their molecular structure, and some of these classes of heterocycles are able to provide ligands for two or more biological targets. Ketene dithioacetals are important building blocks in organic synthesis and are widely used in the synthesis of N-heterocyclic compounds. In this work, we used double vinylic substitution reactions on ketene dithioacetals to synthesize a small library of heterocyclic derivatives and evaluated their cytotoxic activity in breast and ovarian cancer cells, identifying two benzoxazoles with good potency and selectivity. In silico predictions indicate that the two most active derivatives exhibit physicochemical properties within the range of drug-like compounds and showed potential to interact with HDAC8 and ERK1 cancer-related targets.


Asunto(s)
Antineoplásicos , Etilenos , Compuestos Heterocíclicos , Cetonas , Humanos , Línea Celular Tumoral , Etilenos/química , Etilenos/farmacología , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Relación Estructura-Actividad , Histona Desacetilasas/metabolismo , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Acetales/química , Acetales/farmacología , Acetales/síntesis química , Proteínas Represoras
2.
Anticancer Agents Med Chem ; 24(15): 1109-1125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835122

RESUMEN

AIMS: Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site. BACKGROUND: Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called "self-docking or re-docking" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest. OBJECTIVE: In this study, several molecular docking studies were conducted using five X-ray structures of HDAC8-ligand complexes from the PDB. METHODS: Ligands initially complexed with HDAC8 were removed and re-docked onto the free protein, revealing a poor reproduction of the expected binding mode. In response to this, we observed that most HDAC8-ligand complexes contained one to two water molecules in the catalytic site, which were crucial for maintaining the cocrystallized ligand. RESULTS: These water molecules enhance the binding mode of the co-crystallized ligand by stabilizing the proteinligand complex through hydrogen bond interactions between ligand and water molecules. Notably, these interactions are lost if water molecules are removed, as is often done in classical docking methodologies. Considering this, molecular docking simulations were repeated, both with and without one or two conserved water molecules near Zn+2 in the catalytic cavity. Simulations indicated that replicating the native binding pose of co-crystallized ligands on free HDAC8 without these water molecules was challenging, showing greater coordinate displacements (RMSD) compared to those including conserved water molecules from crystals. CONCLUSION: The study highlighted the importance of conserved water molecules within the active site, as their presence significantly influenced the successful reproduction of the ligands' native binding modes. The results suggest an optimal molecular docking procedure for validating methods suitable for filtering new HDAC8 inhibitors for future experimental assays.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Simulación del Acoplamiento Molecular , Proteínas Represoras , Agua , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Agua/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Ligandos , Proteínas Represoras/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Estructura Molecular , Relación Estructura-Actividad , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X
3.
Nutrition ; 125: 112465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38823252

RESUMEN

OBJECTIVES: It is unclear whether parental consumption of non-nutritive sweetener (NNS) can affect subsequent generations. The aim of this study was to determine whether chronic parental consumption of sucralose and stevia in mice affects body weight gain and liver and intestinal expression of histone deacetylase 3 (Hdac3) in these animals and in the subsequent first filial (F1) and second filial (F2) generations. METHODS: Male and female mice (n = 47) were divided into three groups to receive water alone or supplemented with sucralose (0.1 mg/mL) or stevia (0.1 mg/mL) for 16 wk (parental [F0] generation). F0 mice were bred to produce the F1 generation; then, F1 mice were bred to produce the F2 generation. F1 and F2 animals did not receive NNSs. After euthanasia, hepatic and intestinal expression of Hdac3 was determined by quantitative reverse transcription polymerase chain reaction. RESULTS: Body weight gain did not differ between the three groups in the F0 generation, but it was greater in the F1 sucralose and stevia groups than in the control group. Consumption of both NNSs in the F0 generation was associated with lower Hdac3 expression in the liver and higher in the intestine. Hepatic Hdac3 expression was normalized to the control values in the F1 and F2 animals of the sucralose and stevia groups. Intestinal expression was still higher in the F1 generations of the sucralose and stevia groups but was partially normalized in the F2 generation of these groups, compared with control. CONCLUSIONS: NNS consumption differentially affects hepatic and intestinal Hdac3 expression. Changes in hepatic expression are not transmitted to the F1 and F2 generations whereas those in intestinal expression are enhanced in the F1 and attenuated in the F2 generations.


Asunto(s)
Histona Desacetilasas , Hígado , Stevia , Sacarosa , Edulcorantes , Animales , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Masculino , Sacarosa/análogos & derivados , Sacarosa/farmacología , Femenino , Ratones , Hígado/efectos de los fármacos , Hígado/metabolismo , Edulcorantes/farmacología , Aumento de Peso/efectos de los fármacos , Edulcorantes no Nutritivos/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Peso Corporal/efectos de los fármacos
4.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 40-47, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814236

RESUMEN

Periodontal ligament stem cells (PDLSCs) show plasticity towards the adipogenic lineage; however, little has been done on the participation of epigenetic mechanisms. Histone acetylation is a dynamic process, though balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) activities. This process can be halted by HDACs inhibitors, such as trichostatin A (TSA) and valproic acid (VPA). This study aimed to determine the role of HDACs class I in adipogenic differentiation of PDL cells. PDLSCs were treated with TSA at concentrations of 100, 200, and 250 nM, or VPA at 1, 4 and 8 mM. Cell viability was assessed using MTT assays. Gene expression of pluripotency markers (NANOG, OCT4, SOX2), HAT genes (p300, GCN5), and HDACs genes (HDAC1-3) was analyzed by RT-qPCR. Adipogenic differentiation was evaluated via oil red O staining, and acetylation of histone H3 lysine 9 (H3K9ac) was examined by Western blot. VPA treatment resulted in a 60% reduction in cell proliferation, compared to a 50% when using TSA. Cell viability was not affected by either inhibitor. Furthermore, both TSA and VPA induced adipogenic differentiation, through an increase in the deposition of lipid droplets and in GCN5 and p300 expression were observed. Western blot analysis showed that TSA increased H3K9ac levels on adipogenic differentiation of PDLSCs. These findings highlight the potential of HDAC inhibitors as a tool for modulating H3K9 acetylation status and thus influencing adipogenic differentiation of PDLCs.


Asunto(s)
Adipogénesis , Diferenciación Celular , Supervivencia Celular , Inhibidores de Histona Desacetilasas , Ligamento Periodontal , Ácido Valproico , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Ácido Valproico/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Acetilación/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Células Cultivadas , Histonas/metabolismo , Proliferación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo
5.
Curr Neurovasc Res ; 20(5): 586-598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288841

RESUMEN

BACKGROUND: Major depression has a complex and multifactorial etiology constituted by the interaction between genetic and environmental factors in its development. OBJECTIVE: The aim of this study was to evaluate the effects of sodium butyrate (SD) on epigenetic enzyme alterations in rats subjected to animal models of depression induced by maternal deprivation (MD) or chronic mild stress (CMS). METHODS: To induce MD, male Wistar rats were deprived of maternal care during the first 10 days of life. To induce CMS, rats were subjected to the CMS for 40 days. Adult rats were then treated with daily injections of SD for 7 days. Animals were subjected to the forced swimming test (FST), and then, histone deacetylase (HDAC), histone acetyltransferase (HAT), and DNA methyltransferase (DNMT) activities were evaluated in the brain. RESULTS: MD and CMS increased immobility time in FST and increased HDAC and DNMT activity in the animal brains. SD reversed increased immobility induced by both animal models and the alterations in HDAC and DNMT activities. There was a positive correlation between enzyme activities and immobility time for both models. HDAC and DNMT activities also presented a positive correlation between themselves. CONCLUSION: These results suggest that epigenetics can play an important role in major depression pathophysiology triggered by early or late life stress and its treatment.


Asunto(s)
Antidepresivos , Encéfalo , Ácido Butírico , Epigénesis Genética , Privación Materna , Ratas Wistar , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/tratamiento farmacológico , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Depresión/tratamiento farmacológico , Histona Acetiltransferasas/metabolismo , Natación/psicología
6.
Mol Cell Proteomics ; 23(3): 100722, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272115

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Células Endoteliales/metabolismo , Espectrometría de Masas en Tándem , Matriz Extracelular/metabolismo , Glioma/metabolismo , Epigénesis Genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Microambiente Tumoral , Proteínas de la Membrana/metabolismo , Proteínas ADAM/metabolismo
7.
J Neurochem ; 165(4): 603-621, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943192

RESUMEN

The neuronal membrane glycoprotein M6a (GPM6A) belongs to the family of myelin proteolipid protein and plays a role in neuronal remodeling and plasticity. Decreased expression of GPM6A mRNA is observed in the hippocampal tissue of suicide victims who suffered from depression and after chronic stress exposure in animals. The regulatory mechanisms that impact expression of GPM6A under chronic stress or in pathological conditions are not well understood. Previously, miRNAs miR-133b, miR-124-3p, and miR-9-5p have been shown to regulate the expression of Gpm6a mRNA under normal conditions. Here, we employed the paradigm of chronic-restraint stress in rats and using quantitative polymerase chain reaction (qPCR) showed down-regulation of expression of Gpm6a and the brain-derived neurotrophic factor (Bdnf) genes at mRNA level as well as miR-133b, and miR-124-3p, but not miR-9-5p in the hippocampus of chronically stressed rats. Furthermore, we observed alterations in the expression of histone deacetylase (Hdac5) and myocyte enhancer factor 2C (Mef2c) mRNAs. Our data suggest that chronic stress influences Gpm6a expression by miR-124-mediated impact on the expression of Hdac5 and Mef2c. Upon miR-124 over-expression in hippocampal neurons cultured in vitro, we observed enhanced neuronal arborization as evaluated by Sholl analysis, increased Gpm6a and Mef2c expression, and decreased Hdac5 expression. Moreover, treatment of hippocampal neurons cultured in vitro with BDNF resulted in an elevation in the miR-124-3p expression, a decrease in the miR-9-5p expression but did not affect miR-133b. This was accompanied by augmented expression of Gpm6a and Mef2c mRNAs and significantly lower levels of Hdac5 mRNA. Altogether, these results indicate that the regulatory mechanism that influence expression of Gpm6a under chronic stress involves miR-124-mediated impact on the expression of Hdac5 and Mef2c and a role of BDNF in the activation of Gpm6a expression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , MicroARNs , Animales , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo , Hipocampo/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo
8.
Behav Brain Res ; 441: 114303, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36657665

RESUMEN

Social deprivation can be stressful for group-living mammals. On the other hand, an amazing response of these animals to stress is seeking social contact to give and receive joint protection in threatening situations. We explored the effects of social isolation and social support on epigenetic and behavioral responses to chronic stress. More specifically, we investigated the behavioral responses, corticosterone levels, BDNF gene expression, and markers of hippocampal epigenetic alterations (levels of H3K9 acetylation and methylation, H3K27 methylation, HDAC5, DNMT1, and DNMT3a gene expressions) in middle-aged adult rats maintained in different housing conditions (isolation or accompanied housing) and exposed to the chronic unpredictable stress protocol (CUS). Isolation was associated with decreased basal levels of corticosterone, impaired long-term memory, and decreased expression of the BDNF gene, besides altering the balance of H3K9 from acetylation to methylation and increasing the DNMT1 gene expression. The CUS protocol decreased H3K9 acetylation, besides increasing H3K27 methylation and DNMT1 gene expression, but had no significant effects on memory and BDNF gene expression. Interestingly, the effects of CUS on corticosterone and HDAC5 gene expression were seen only in isolated animals, whereas the effects of CUS on DNMT1 gene expression were more pronounced in isolated than accompanied animals. In conclusion, social isolation in middle age showed broader effects than chronic unpredictable stress on behavioral and epigenetic alterations potentially associated with decreased BDNF expression. Moreover, social support prevented the adverse effects of CUS on HPA axis functioning, HDAC5, and DNMT1 gene expressions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corticosterona , Ratas , Animales , Ratas Sprague-Dawley , Corticosterona/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Aislamiento Social , Epigénesis Genética , Hipocampo/metabolismo , Estrés Psicológico/metabolismo , Mamíferos/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
9.
J Oral Pathol Med ; 51(6): 529-537, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35678235

RESUMEN

BACKGROUND: Chemoresistance is associated with recurrence and metastasis in oral squamous cell carcinoma (OSCC). The cancer stem cell (CSC) subpopulation is highly resistant to therapy, and they are regulated by epigenetic mechanisms. HDACs are histone deacetylase enzymes that epigenetically regulate gene expression. HDAC6 acts on several physiological processes, including oxidative stress, autophagy and DNA damage response, and its accumulation is associated with cancer. Here, we investigate the role of HDAC6 in CSC-mediated chemoresistance in oral carcinoma in addition to its application as a therapeutic target to reverse chemoresistance. METHODS: Wild-type oral carcinoma cell lines (CAL27 WT and SCC9 WT), cisplatin-resistant (CAL27 CisR and SCC9 CisR), and the subpopulations of cancer stem cells (CSC+) and non-stem (CSC-) derived from CisR cells were investigated. HDAC6 accumulation was analyzed by Western blot and immunofluorescence; DNA damage was evaluated by immunofluorescence of phospho-H2A.X; the qPCR for PRDX2, PRDX6, SOD2, and TXN and ROS assay assessed oxidative stress. Apoptosis and CSC accumulation were investigated by flow cytometry. RESULTS: We identified the accumulation of HDAC6 in CisR cell lines and CSC. Cisplatin-resistant cell lines and CSC demonstrated a reduction in DNA damage and ROS and elevated expression of PRDX2. The administration of tubastatin A (a specific HDAC6 inhibitor) increased oxidative stress and DNA damage and decreased PRDX2. Tubastatin A as a monotherapy induced apoptosis in CisR and CSC and reduced the stemness phenotype. CONCLUSION: High levels of HDAC6 sustain CSC subpopulation and chemoresistance in OSCC, suggesting HDAC6 as a pharmacological target to overcome resistance and perhaps prevent recurrence in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de Cabeza y Cuello/patología , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Neoplasias de la Boca/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
10.
J Comp Pathol ; 193: 51-58, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35487622

RESUMEN

The objective of this study was to investigate the immunolabelling of acetylated histones and histone desacetylase (HDAC) enzymes in canine soft tissue sarcomas (STSs) and to correlate them with histological and clinical features in order to identify possible prognostic and therapeutic targets in these neoplasms. Fifteen canine STS samples were evaluated and were submitted to immunohistochemistry for acetylated histones 3 (H3) and 4 (H4) and deacetylating enzymes (HDAC1, HDAC2 and HDAC6). Intense immunolabelling of H4 was seen in comparison with H3. A strong positive correlation was observed between the H3 intensity score and the number of mitotic figures (P = 0.004, r = 0.7). Intense immunolabelling of HDAC1 was found in comparison to the expression of HDAC2 and HDAC6 in the evaluated STSs. This finding suggests that HDAC1 may be a potential target for HDAC inhibitors in STSs in dogs.


Asunto(s)
Enfermedades de los Perros , Sarcoma , Animales , Perros , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Inmunohistoquímica , Pronóstico , Sarcoma/veterinaria
11.
Neurotox Res ; 39(6): 2134-2140, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34581974

RESUMEN

IEGs play a critical functional role of in molecular, cellular, and behavioral alterations induced by psychostimulants. IEGs appear to have specific chromatin structures that may contribute to the rapid activation of their transcription. HDAC enzymes regulate reversible acetylation of lysine residues of histones and non-histone proteins. Dysregulation of HDACs has been proposed to modulate the establishment and maintenance of aberrant transcriptional programs and behaviors associated with cognitive dysfunctions and drug addiction. In this mini-review we focus our attention on recent discoveries concerning networks of protein-protein interactions for the two classes of HDAC protein family members that are highly expressed in neurons, class I and IIa HDACs. Because dynamic histone acetylation appears to be critical to IEG expression in the brain, we discuss the role of these epigenetic regulators on IEG expression induced by cocaine and methamphetamine intake.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Genes Inmediatos-Precoces , Histona Desacetilasas/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Epigénesis Genética/efectos de los fármacos , Humanos
12.
Tissue Cell ; 73: 101627, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34425516

RESUMEN

The requirement to achieve natural looking restorations is one of the most challenging aspects in dentistry. Although zirconia has provided new opportunities for achieving superior aesthetics and physicochemical outcomes, very little has been achieved for its cellular and molecular performance, especially considering angiogenesis and osteogenesis. As angiogenesis is a secondary event and concomitant to osteogenesis, an indirect effect of dental implant on endothelial cells could be the release of active molecules such as those already reported affecting osteoblasts. To better address this issue, we challenged human endothelial cells (HUVECs) with zirconia-conditioned medium up to 72 h to allow analysis specific gene expression and protein pattern of mediators of epigenetic machinery in full. Our data shows involvement of zirconia in triggering intracellular signaling through MAPK-ERK activation, leading the signal to activate histone deacetylase HDAC6 likely with concomitant well-modulated DNA methylation profile by DNMTs and TETs. These signaling pathways seem to culminate in cytoskeleton rearrangement of endothelial cells, an important prerequisite to cell migration expected in angiogenesis. Collectively, this study demonstrates for the first time epigenetic-related molecular mechanism involved in endothelial cells responding to zirconia, revealing a repertoire of signaling molecules capable of executing the reprogramming process of gene expression, which are necessary to drive cell proliferation, migration, and consequently angiogenesis. This set of data can further studies using gene editing approaches to better elucidate functional roles.


Asunto(s)
Epigénesis Genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transducción de Señal , Circonio/farmacología , Medios de Cultivo/química , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Carcinogenesis ; 42(8): 1026-1036, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33999989

RESUMEN

Hepatocellular carcinoma (HCC) presents with a high treatment resistance and poor prognosis. Early diagnosis and preventive approaches such as chemoprevention are essential for the HCC control. Therefore, we evaluated the chemopreventive effects of butyrate-containing structured lipids (STLs) administered during the promotion stage of hepatocarcinogenesis in rats submitted to the 'resistant hepatocyte' (RH) model. Administration of butyrate-containing STLs inhibited the incidence and mean number of visible hepatic nodules per rat and reduced the number and area of glutathione S-transferase placental form-positive (GST-P+) preneoplastic focal lesions in the livers. This was accompanied by the induction of apoptosis and an increased level of hepatic butyric acid. Treatment with butyrate-containing STLs resulted in increased histone H3 lysine 9 (H3K9) acetylation, reduction of total histone deacetylase (HDAC) activity, and lower levels of HDAC4 and HDAC6 proteins. The chemopreventive effect of butyrate-containing STLs was also associated with the increased nuclear compartmentalization of p53 protein and reduced expression of the Bcl-2 protein. In addition, rats treated with butyrate-containing STLs showed decreased DNA damage and telomerase activity in the livers. These results demonstrate that the suppressive activity of butyrate-containing STLs is associated with inhibition of elevated during hepatocarcinogenesis chromatin-modifying proteins HDAC4 and HDAC6, subcellular redistribution of the p53 protein, and decreased DNA damage and telomerase activity.


Asunto(s)
Butiratos/metabolismo , Daño del ADN , Gutatión-S-Transferasa pi/metabolismo , Histona Desacetilasa 6/metabolismo , Histona Desacetilasas/metabolismo , Lípidos/química , Neoplasias Hepáticas Experimentales/patología , Telomerasa/metabolismo , Animales , Carcinogénesis , Caspasa 3/metabolismo , Neoplasias Hepáticas Experimentales/enzimología , Neoplasias Hepáticas Experimentales/genética , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Wistar , Fracciones Subcelulares/enzimología , Proteína p53 Supresora de Tumor/metabolismo , Ácido alfa-Linolénico/metabolismo
14.
Life Sci ; 277: 119599, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33989666

RESUMEN

The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.


Asunto(s)
Acetilación/efectos de los fármacos , Enfermedades Cardiovasculares/enzimología , Corazón/fisiología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Miocardio/metabolismo , Oxidación-Reducción , Sustancias Protectoras/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
15.
Sci Rep ; 11(1): 9882, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972627

RESUMEN

In bees from genus Melipona, differential feeding is not enough to fully explain female polyphenism. In these bees, there is a hypothesis that in addition to the environmental component (food), a genetic component is also involved in caste differentiation. This mechanism has not yet been fully elucidated and may involve epigenetic and metabolic regulation. Here, we verified that the genes encoding histone deacetylases HDAC1 and HDAC4 and histone acetyltransferase KAT2A were expressed at all stages of Melipona scutellaris, with fluctuations between developmental stages and castes. In larvae, the HDAC genes showed the same profile of Juvenile Hormone titers-previous reported-whereas the HAT gene exhibited the opposite profile. We also investigated the larvae and larval food metabolomes, but we did not identify the putative queen-fate inducing compounds, geraniol and 10-hydroxy-2E-decenoic acid (10HDA). Finally, we demonstrated that the histone deacetylase inhibitor 10HDA-the major lipid component of royal jelly and hence a putative regulator of honeybee caste differentiation-was unable to promote differentiation in queens in Melipona scutellaris. Our results suggest that epigenetic and hormonal regulations may act synergistically to drive caste differentiation in Melipona and that 10HDA is not a caste-differentiation factor in Melipona scutellaris.


Asunto(s)
Abejas/fisiología , Conducta Alimentaria/fisiología , Regulación del Desarrollo de la Expresión Génica , Jerarquia Social , Monoterpenos Acíclicos/metabolismo , Animales , Epigénesis Genética , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo
16.
J Med Chem ; 64(12): 8208-8220, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33770434

RESUMEN

Epigenetic targets are of significant importance in drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents many structure-activity relationships that have not been exploited thus far to develop predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26 318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. We built predictive models with high accuracy for small molecules' epigenetic target profiling through a systematic comparison of the machine learning models trained on different molecular fingerprints. The models were thoroughly validated, showing mean precisions of up to 0.952 for the epigenetic target prediction task. Our results indicate that the models reported herein have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as a freely accessible web application.


Asunto(s)
Descubrimiento de Drogas/métodos , Epigenómica/métodos , Aprendizaje Automático , Compuestos Orgánicos/química , Bases de Datos de Compuestos Químicos/estadística & datos numéricos , Histona Desacetilasas/metabolismo , Estructura Molecular , Compuestos Orgánicos/metabolismo , Prueba de Estudio Conceptual , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
17.
ChemMedChem ; 16(3): 448-457, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33049098

RESUMEN

The discovery of histone deacetylase (HDAC) inhibitors is a hot topic in the medicinal chemistry community regarding cancer research. This is related primarily to two factors: success in the clinic, e. g., the four FDA-approved HDAC inhibitors, and strong versatility to combine their pharmacophoric features to design new hybrid compounds with multitarget profiles. Thus, the selection of adequate pharmacophores to combine, i. e., combining targets that can result in a synergistic effect, is desirable, as it increases the probability of discovering a new useful therapeutic strategy. In this work, we highlight the design of multitarget HDAC/PI3K inhibitors. Although this approach is still in its early stages, many significant works have described the design and pharmacological evaluation of this new promising class of multitarget inhibitors, where compound CUDC-907, which is already in clinical trials, stands out. Therefore, the question emerges of whether there still space for the design and evaluation of new multitarget HDAC/PI3K inhibitors. When considering the selectivity profile of the described multitarget compounds, the answer appears to be in the affirmative, especially since the first examples of compounds with a certain selectivity profile only recently appeared in 2020.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Inhibidores de las Quinasa Fosfoinosítidos-3/síntesis química , Inhibidores de las Quinasa Fosfoinosítidos-3/química
18.
Curr Mol Pharmacol ; 14(4): 570-578, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-32744980

RESUMEN

BACKGROUND: Valproic acid (VPA) is an HDAC inhibitor (HDACI) with an anticancer activity, but is hepatotoxic. N-(2-hydroxyphenyl)-2-propylpentanamide (o-OH-VPA) is a VPA aryl derivative designed in silico as a selective inhibitor of HDAC8 with biological properties against HeLa, rhabdomyosarcoma and breast cancer cell cultures. OBJECTIVE: We studied the epigenetic mechanism of o-OH-VPA as an HDACI and evaluated whether it was toxic to normal cells. METHODS: HeLa cells and primary human fibroblasts were used for this study as carcinogenic and normal cells, respectively. Cell survival was evaluated by MTT assay, whereas viability and doubling time were determined by the Trypan-blue method. HDAC activity was tested using the colorimetric HDAC activity assay. The expression of p21 was analyzed by PCR and HDAC8 expression was also evaluated by real-time PCR. Cell cycle and caspase-3 activity were analyzed by flow cytometry and caspase-3 colorimetric assay, respectively. RESULTS: o-OH-VPA (IC50 = 0.1 mM) was fifty-eight times more effective than VPA (IC50 = 5.8 mM) to reduce HeLa cell survival. Furthermore, o-OH-VPA increased the doubling time of HeLa cells by 33% with respect to the control. o-OH-VPA acted as HDACI in HeLa cells without affecting the HDAC8 expression, arresting the cell cycle of HeLa cells in the G0/G1 phase due to the increase in p21 expression with the inhibition of caspase-3 activity without exhibiting toxicity toward normal cells. CONCLUSION: Our results revealed that o-OH-VPA is an HDACI with a selective effect against HeLa cells but without the known toxicity exerted by most pan-HDACIs on normal cells.


Asunto(s)
Epigénesis Genética , Ácido Valproico , Amidas , Línea Celular Tumoral , Células HeLa , Histona Desacetilasas/metabolismo , Humanos , Pentanos , Proteínas Represoras/metabolismo , Ácido Valproico/farmacología
19.
Cells ; 9(12)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276563

RESUMEN

In this study we surveyed a rat skeletal muscle RNA-Seq for genes that are induced by hindlimb immobilization and, in turn, become attenuated by leucine supplementation. This approach, in search of leucine-atrophy protection mediating genes, identified histone deacetylase 4 (HDAC4) as highly responsive to both hindlimb immobilization and leucine supplementation. We then examined the impact of leucine on HDAC4 expression, tissue localization, and target genes. A total of 76 male Wistar rats (~280 g) were submitted to hindlimb immobilization and/or leucine supplementation for 3, 7 and 12 days. These animals were euthanized, and soleus muscle was removed for further analysis. RNA-Seq analysis of hindlimb immobilized rats indicated a sharp induction (log2 = 3.4) of HDAC4 expression which was attenuated by leucine supplementation (~50%). Real-time PCR and protein expression analysis by Western blot confirmed increased HDAC4 mRNA after 7 days of hindlimb immobilization and mitigation of induction by leucine supplementation. Regarding the HDAC4 localization, the proportion of positive nuclei was higher in the immobilized group and decreased after leucine supplementation. Also, we found a marked decrease of myogenin and MAFbx-atrogin-1 mRNA levels upon leucine supplementation, while CAMKII and DACH2 mRNA levels were increased by leucine supplementation. Our data suggest that HDAC4 inhibition might be involved in the anti-atrophic effects of leucine.


Asunto(s)
Suplementos Dietéticos , Miembro Posterior/patología , Histona Desacetilasas/metabolismo , Leucina/uso terapéutico , Músculo Esquelético/metabolismo , Animales , Peso Corporal , Miembro Posterior/metabolismo , Suspensión Trasera , Masculino , Microscopía Fluorescente , Atrofia Muscular/patología , RNA-Seq , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
20.
Cell Physiol Biochem ; 54(6): 1143-1162, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33201644

RESUMEN

BACKGROUND/AIMS: Chronic malnutrition (M) affects >1 billion people worldwide. Epidemiological data point to long-term renal and cardiovascular outcomes (e.g. arterial hypertension, cardiorenal syndromes). The renin-angiotensin-aldosterone system (RAAS) has been implicated in the physiopathology of these disturbances, but M-induced alterations in RAAS-modulated renal Na+ handling and their cardiovascular repercussions are not known. Moreover, altered tissue-specific histone deacetylases (HDAC) results in arterial hypertension and the use of sodium Valproate (Val; a HDAC inhibitor) reduces blood pressure. However, there are no reports regarding the renal and cardiovascular effects of HDAC inhibition in M, or on the signaling pathways involved. The central aim of our study has been to investigate whether alterations in the HDAC/RAAS axis underpin alterations in active Na+ transport in the kidney and heart, and affects blood pressure. METHODS: Male rats aged 28 days were given either a control (C) or a multideficient diet (Regional Basic Diet, RBD), which mimics alimentary habits from developing countries. Subgroups received Losartan (Los), a blocker of type 1 Angiotensin II receptors. When the rats reached 70 days, new subgroups received Val until they were 90 days of age. Homogenates and enriched plasma membrane fractions from renal cortex corticis and cardiomyocytes were obtained by differential centrifugation of the tissues. The activity of renal and cardiac deacetylases was assayed by measuring - after incubation with the membranes - the amount of deacetylated lysines in a substrate containing an acetylated lysine side chain. Protein kinases activities were measured following the incorporation of the γ-phosphoryl group of [γ-32P]ATP into Ser/Thr residues of histone type III-S. The activity of Na+-transporting ATPases (kidney and heart) was quantified by measuring the release of Pi from ATP that was sensitive to ouabain ((Na++K+)ATPase), or sensitive to furosemide (Na+-ATPase). Tail-cuff plethysmography was used to measure systolic blood pressure and heart rate. RESULTS: M provoked HDAC downregulation, which was reversed by Los and Val, either alone or in combination, with selective upregulation of protein kinases C and A (PKC, PKA) in renal cortex corticis, but not in left ventricle cardiomyocytes. The 2 kinases were strongly inhibited by Los and Val in both organs. Malnourished rats developed elevated systolic arterial pressure (SAP) and heart rate (HR) at 70 days of age; Los and Val restored the control SAP, but not HR. Functional and the above biochemical alterations were associated with the deregulation of renal and cardiac Na+-transporting ATPases. (Na++K+)ATPase activities were downregulated in M rats in both organs, and were further inhibited by the pharmacological treatments in the renal cortex corticis (C and M groups) and the left ventricle (only in C rats). No additional effect was found in cardiac (Na++K+)ATPase from M rats. Ouabain-resistant Na+-ATPase was upregulated in renal cortex corticis and downregulated in cardiomyocytes, returning to C values after administration of Los and Val. CONCLUSION: The HDAC/RAAS axis appears to be a key regulator of Na+-transporting ATPases in renal cortex corticis and cardiomyocytes via an appropriate balance of PKC and PKA activities. Modifications within the HDAC/RAAS axis provoked by chronic M - with repercussions in renal and cardiac Na+ transport - underpin alterations in bodily Na+ homeostasis that culminate with the onset of arterial hypertension and potential cardiorenal syndrome.


Asunto(s)
Histona Desacetilasas/metabolismo , Corteza Renal/metabolismo , Desnutrición/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Sistema Renina-Angiotensina , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Enfermedad Crónica , Femenino , Corteza Renal/patología , Masculino , Desnutrición/patología , Miocardio/patología , Miocitos Cardíacos/patología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA