Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.715
Filtrar
1.
Artif Intell Med ; 156: 102969, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182468

RESUMEN

Hematoxylin and Eosin (H&E) color variation among histological images from different laboratories can significantly degrade the performance of Computer-Aided Diagnosis systems. The staining procedure is the primary factor responsible for color variation, and consequently, the methods designed to reduce such variations are designed in concordance with this procedure. In particular, Blind Color Deconvolution (BCD) methods aim to identify the true underlying colors in the image and to separate the tissue structure from the color information. Unfortunately, BCD methods often assume that images are stained solely with pure staining colors (e.g., blue and pink for H&E). This assumption does not hold true when common artifacts such as blood are present, requiring an additional color component to represent them. This is a challenge for color standardization algorithms, which are unable to correctly identify the stains in the image, leading to unexpected results. In this work, we propose a Blood-Robust Bayesian K-Singular Value Decomposition model designed to simultaneously detect blood and extract color from histological images while preserving structural details. We evaluate our method using both synthetic and real images, which contain varying amounts of blood pixels.


Asunto(s)
Algoritmos , Teorema de Bayes , Color , Humanos , Eosina Amarillenta-(YS) , Hematoxilina , Interpretación de Imagen Asistida por Computador/métodos , Coloración y Etiquetado/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Comput Biol Med ; 180: 108958, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094325

RESUMEN

Hematoxylin and eosin (H&E) staining is a crucial technique for diagnosing glioma, allowing direct observation of tissue structures. However, the H&E staining workflow necessitates intricate processing, specialized laboratory infrastructures, and specialist pathologists, rendering it expensive, labor-intensive, and time-consuming. In view of these considerations, we combine the deep learning method and hyperspectral imaging technique, aiming at accurately and rapidly converting the hyperspectral images into virtual H&E staining images. The method overcomes the limitations of H&E staining by capturing tissue information at different wavelengths, providing comprehensive and detailed tissue composition information as the realistic H&E staining. In comparison with various generator structures, the Unet exhibits substantial overall advantages, as evidenced by a mean structure similarity index measure (SSIM) of 0.7731 and a peak signal-to-noise ratio (PSNR) of 23.3120, as well as the shortest training and inference time. A comprehensive software system for virtual H&E staining, which integrates CCD control, microscope control, and virtual H&E staining technology, is developed to facilitate fast intraoperative imaging, promote disease diagnosis, and accelerate the development of medical automation. The platform reconstructs large-scale virtual H&E staining images of gliomas at a high speed of 3.81 mm2/s. This innovative approach will pave the way for a novel, expedited route in histological staining.


Asunto(s)
Aprendizaje Profundo , Glioma , Glioma/diagnóstico por imagen , Glioma/patología , Glioma/metabolismo , Humanos , Coloración y Etiquetado/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imágenes Hiperespectrales/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Eosina Amarillenta-(YS)/química , Hematoxilina/química
3.
Med Image Anal ; 97: 103289, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106763

RESUMEN

Large amounts of digitized histopathological data display a promising future for developing pathological foundation models via self-supervised learning methods. Foundation models pretrained with these methods serve as a good basis for downstream tasks. However, the gap between natural and histopathological images hinders the direct application of existing methods. In this work, we present PathoDuet, a series of pretrained models on histopathological images, and a new self-supervised learning framework in histopathology. The framework is featured by a newly-introduced pretext token and later task raisers to explicitly utilize certain relations between images, like multiple magnifications and multiple stains. Based on this, two pretext tasks, cross-scale positioning and cross-stain transferring, are designed to pretrain the model on Hematoxylin and Eosin (H&E) images and transfer the model to immunohistochemistry (IHC) images, respectively. To validate the efficacy of our models, we evaluate the performance over a wide variety of downstream tasks, including patch-level colorectal cancer subtyping and whole slide image (WSI)-level classification in H&E field, together with expression level prediction of IHC marker, tumor identification and slide-level qualitative analysis in IHC field. The experimental results show the superiority of our models over most tasks and the efficacy of proposed pretext tasks. The codes and models are available at https://github.com/openmedlab/PathoDuet.


Asunto(s)
Eosina Amarillenta-(YS) , Inmunohistoquímica , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico por imagen , Hematoxilina , Interpretación de Imagen Asistida por Computador/métodos , Coloración y Etiquetado , Aprendizaje Automático Supervisado , Algoritmos
4.
J Int Med Res ; 52(6): 3000605241259682, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38886869

RESUMEN

OBJECTIVE: To compare the staining quality between rapid hematoxylin and eosin (H&E) staining and routine H&E staining of frozen breast tissue sections. METHODS: In this cross-sectional observational study, 120 frozen breast tissue sections were randomly assigned to rapid or routine H&E staining (n = 60 per group). Rapid H&E staining used a 7:1 mixture of modified Gill's hematoxylin and alcohol-soluble 1% eosin Y. The staining quality of each section was evaluated and scored. A score of >7 was considered excellent, a score of 6 to 7 good, and a score of ≤5 poor. RESULTS: The staining time for rapid staining was approximately 3 minutes, whereas that of routine staining was approximately 12 minutes. There were no significant differences in the staining quality scores or proportions of sections in each grade between the two staining methods. The proportions of sections that were classified as excellent or good were 96.7% and 98.3% for rapid and routine staining, respectively. CONCLUSIONS: In frozen breast tissue sections, rapid H&E staining may provide staining quality that is comparable to that of routine staining, while markedly reducing the staining time.


Asunto(s)
Mama , Eosina Amarillenta-(YS) , Secciones por Congelación , Hematoxilina , Coloración y Etiquetado , Humanos , Femenino , Coloración y Etiquetado/métodos , Secciones por Congelación/métodos , Mama/patología , Estudios Transversales , Persona de Mediana Edad , Adulto , Neoplasias de la Mama/patología , Anciano
6.
Opt Lett ; 49(12): 3356-3359, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875619

RESUMEN

Mueller matrix microscopy can provide comprehensive polarization-related optical and structural information of biomedical samples label-freely. Thus, it is regarded as an emerging powerful tool for pathological diagnosis. However, the staining dyes have different optical properties and staining mechanisms, which can put influence on Mueller matrix microscopic measurement. In this Letter, we quantitatively analyze the polarization enhancement mechanism from hematoxylin and eosin (H&E) staining in multispectral Mueller matrix microscopy. We examine the influence of hematoxylin and eosin dyes on Mueller matrix-derived polarization characteristics of fibrous tissue structures. Combined with Monte Carlo simulations, we explain how the dyes enhance diattenuation and linear retardance as the illumination wavelength changed. In addition, it is demonstrated that by choosing an appropriate incident wavelength, more visual Mueller matrix polarimetric information can be observed of the H&E stained tissue sample. The findings can lay the foundation for the future Mueller matrix-assisted digital pathology.


Asunto(s)
Coloración y Etiquetado , Microscopía de Polarización/métodos , Eosina Amarillenta-(YS)/química , Método de Montecarlo , Hematoxilina , Humanos
7.
Lab Invest ; 104(8): 102094, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871058

RESUMEN

Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In this study, an artificial intelligence-powered deep learning framework was developed for the weakly supervised prediction of EGFR mutations in non-small cell lung cancer from hematoxylin and eosin-stained histopathology whole-slide images. The study cohort was partitioned into training and validation subsets. Foreground regions containing tumor tissue were extracted from whole-slide images. A convolutional neural network employing a contrastive learning paradigm was implemented to extract patch-level morphologic features. These features were aggregated using a vision transformer-based model to predict EGFR mutation status and classify patient cases. The established prediction model was validated on unseen data sets. In internal validation with a cohort from the University of Science and Technology of China (n = 172), the model achieved patient-level areas under the receiver-operating characteristic curve (AUCs) of 0.927 and 0.907, sensitivities of 81.6% and 83.3%, and specificities of 93.0% and 92.3%, for surgical resection and biopsy specimens, respectively, in EGFR mutation subtype prediction. External validation with cohorts from the Second Affiliated Hospital of Anhui Medical University and the First Affiliated Hospital of Wannan Medical College (n = 193) yielded patient-level AUCs of 0.849 and 0.867, sensitivities of 79.2% and 80.7%, and specificities of 91.7% and 90.7% for surgical and biopsy specimens, respectively. Further validation with The Cancer Genome Atlas data set (n = 81) showed an AUC of 0.861, a sensitivity of 84.6%, and a specificity of 90.5%. Deep learning solutions demonstrate potential advantages for automated, noninvasive, fast, cost-effective, and accurate inference of EGFR alterations from histomorphology. Integration of such artificial intelligence frameworks into routine digital pathology workflows could augment existing molecular testing pipelines.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Receptores ErbB , Hematoxilina , Neoplasias Pulmonares , Mutación , Humanos , Receptores ErbB/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Eosina Amarillenta-(YS) , Femenino , Masculino , Persona de Mediana Edad , Anciano
8.
Acta Histochem ; 126(4): 152169, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38850586

RESUMEN

Alveolar, the smallest structural and functional units within the respiratory system, play a crucial role in maintaining lung function. Alveolar damage is a typical pathological hallmark of respiratory diseases. Nevertheless, there is currently no simple, rapid, economical, and unbiased method for quantifying alveolar size for entire lung tissue. Here, firstly, we conducted lung sample slicing based on the size, shape, and distribution of airway branches of different lobes. Next, we performed HE staining on different slices. Then, we provided an unbiased quantification of alveolar size using free software ImageJ. Through this protocol, we demonstrated that C57Bl/6 mice exhibit varying alveolar sizes among different lobes. Collectively, we provided a simple and unbiased method for a more comprehensive quantification of alveolar size in mice, which holds promise for a broader range of respiratory research using mouse models.


Asunto(s)
Eosina Amarillenta-(YS) , Hematoxilina , Pulmón , Ratones Endogámicos C57BL , Alveolos Pulmonares , Coloración y Etiquetado , Animales , Ratones , Alveolos Pulmonares/patología , Coloración y Etiquetado/métodos , Pulmón/patología , Masculino
9.
Medicina (Kaunas) ; 60(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38674213

RESUMEN

Background and Objectives: There are many surgical techniques for oroantral communication treatment, one of which is the buccal fat pad. Of particular interest is the high reparative potential of the buccal fat pad, which may be contributed to by the presence of mesenchymal stem cells. The purpose of this work is to evaluate the reparative potential of BFP cells using morphological and immunohistochemical examination. Materials and Methods: 30 BFP samples were provided by the Clinic of Maxillofacial and Plastic Surgery of the Russian University of Medicine (Moscow, Russia) from 28 patients. Morphological examination of 30 BFP samples was performed at the Institute of Clinical Morphology and Digital Pathology of Sechenov University. Hematoxylin-eosin, Masson trichrome staining and immunohistochemical examination were performed to detect MSCs using primary antibodies CD133, CD44 and CD10. Results: During staining with hematoxylin-eosin and Masson's trichrome, we detected adipocytes of white adipose tissue united into lobules separated by connective tissue layers, a large number of vessels of different calibers, as well as the general capsule of BFP. The thin connective tissue layers contained neurovascular bundles. Statistical processing of the results of the IHC examination of the samples using the Mann-Whitney criterion revealed that the total number of samples in which the expression of CD44, CD10 and CD133 antigens was confirmed was statistically significantly higher than the number of samples where the expression was not detected (p < 0.05). Conclusions: During the morphological study of the BFP samples, we revealed statistically significant signs of MSCs presence (p < 0.05), including in the brown fat tissue, which proves the high reparative potential of this type of tissue and can make the BFP a choice option among other autogenous donor materials when eliminating OAC and other surgical interventions in the maxillofacial region.


Asunto(s)
Tejido Adiposo , Compuestos Azo , Mejilla , Inmunohistoquímica , Humanos , Inmunohistoquímica/métodos , Femenino , Masculino , Antígeno AC133/análisis , Receptores de Hialuranos/análisis , Neprilisina/análisis , Células Madre Mesenquimatosas , Adulto , Eosina Amarillenta-(YS) , Hematoxilina , Verde de Metilo
10.
Cell Rep Methods ; 4(5): 100759, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38626768

RESUMEN

We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole-slide image (WSI), optimized for patient-derived xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genome input and stand-alone image analysis. We show the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of H&E imaging features reveal similar patterns arising from the two data modalities.


Asunto(s)
Xenoinjertos , Humanos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Eosina Amarillenta-(YS) , Hematoxilina , Transcriptoma , Procesamiento de Imagen Asistido por Computador/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nat Commun ; 15(1): 3063, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594278

RESUMEN

Programmed cell death ligand 1 (PDL1), as an important biomarker, is quantified by immunohistochemistry (IHC) with few established histopathological patterns. Deep learning aids in histopathological assessment, yet heterogeneity and lacking spatially resolved annotations challenge precise analysis. Here, we present a weakly supervised learning approach using bulk RNA sequencing for PDL1 expression prediction from hematoxylin and eosin (H&E) slides. Our method extends the multiple instance learning paradigm with the teacher-student framework, which assigns dynamic pseudo-labels for intra-slide heterogeneity and retrieves unlabeled instances using temporal ensemble model distillation. The approach, evaluated on 12,299 slides across 20 solid tumor types, achieves a weighted average area under the curve of 0.83 on fresh-frozen and 0.74 on formalin-fixed specimens for 9 tumors with PDL1 as an established biomarker. Our method predicts PDL1 expression patterns, validated by IHC on 20 slides, offering insights into histologies relevant to PDL1. This demonstrates the potential of deep learning in identifying diverse histological patterns for molecular changes from H&E images.


Asunto(s)
Destilación , Neoplasias , Humanos , Biomarcadores , Eosina Amarillenta-(YS) , Hematoxilina , Neoplasias/genética , Estudiantes
12.
PLoS One ; 19(4): e0302194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630690

RESUMEN

Cancer cachexia causes skeletal muscle atrophy, impacting the treatment and prognosis of patients with advanced cancer, but no treatment has yet been established to control cancer cachexia. We demonstrated that transcutaneous application of carbon dioxide (CO2) could improve local blood flow and reduce skeletal muscle atrophy in a fracture model. However, the effects of transcutaneous application of CO2 in cancer-bearing conditions are not yet known. In this study, we calculated fat-free body mass (FFM), defined as the skeletal muscle mass, and evaluated the expression of muscle atrophy markers and uncoupling protein markers as well as the cross-sectional area (CSA) to investigate whether transcutaneous application of CO2 to skeletal muscle could suppress skeletal muscle atrophy in cancer-bearing mice. Human oral squamous cell carcinoma was transplanted subcutaneously into the upper dorsal region of nude mice, and 1 week later, CO2 gas was applied to the legs twice a week for 4 weeks and FFM was calculated by bioimpedance spectroscopy. After the experiment concluded, the quadriceps were extracted, and muscle atrophy markers (muscle atrophy F-box protein (MAFbx), muscle RING-finger protein 1 (MuRF-1)) and uncoupling protein markers (uncoupling protein 2 (UCP2) and uncoupling protein 3 (UCP3)) were evaluated by real-time polymerase chain reaction and immunohistochemical staining, and CSA by hematoxylin and eosin staining. The CO2-treated group exhibited significant mRNA and protein expression inhibition of the four markers. Furthermore, immunohistochemical staining showed decreased MAFbx, MuRF-1, UCP2, and UCP3 in the CO2-treated group. In fact, the CSA in hematoxylin and eosin staining and the FFM revealed significant suppression of skeletal muscle atrophy in the CO2-treated group. We suggest that transcutaneous application of CO2 to skeletal muscle suppresses skeletal muscle atrophy in a mouse model of oral squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Ratones , Animales , Dióxido de Carbono/metabolismo , Caquexia/etiología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ratones Desnudos , Eosina Amarillenta-(YS) , Hematoxilina , Neoplasias de la Boca/patología , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Neoplasias de Cabeza y Cuello/patología , Proteínas Desacopladoras Mitocondriales/metabolismo
13.
Nat Commun ; 15(1): 2935, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580633

RESUMEN

Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings.


Asunto(s)
Aprendizaje Profundo , Microscopía , Colorantes Fluorescentes , Hematoxilina , Eosina Amarillenta-(YS)
14.
Allergol. immunopatol ; 52(2): 16-22, mar. 2024. graf, ilus
Artículo en Inglés | IBECS | ID: ibc-231084

RESUMEN

Background: Sepsis is a life-threatening condition characterized by acute organ dysfunction, which frequently leads to acute lung injury (ALI) in approximately 40% of cases. Isoegomaketone (IK) is a constituent of essential oil found in P. frutescens, known for its diverse biological properties, including anti-inflammatory and antitumor effects. However, the regulatory impact of IK on ALI in the context of sepsis remains poorly understood. Methods: Pathological alterations in lung tissues were assessed using hematoxylin and eosin staining. Enumeration of total leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF) was performed using a hematocytometer, while the levels of interleukin (IL)-6, IL-1β, IL-10, and IL-17 in BALF were quantified using enzyme-linked immunosorbent serological assay. In addition, the levels of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione (GSH) in lung tissues were assessed using respective commercial kits; cell apoptosis was evaluated using the terminal deoxynucleotide transferase--mediated dUTP nick end-labeling assay, and protein expressions were determined through Western blot analysis. Results: Our findings revealed that cecal ligation and puncture (CLP) treatment in mice induced severe lung injury, characterized by increased lung injury scores, significant bleeding, neutrophil infiltration, and alveolar edema. However, treatment with IK at a dose of 10 mg/kg ameliorated CLP-induced lung injury, while IK dose of 5 mg/kg showed no significant effect. Additionally, IK treatment at 10 mg/kg reduced CLP-induced inflammation by decreasing levels of IL-6, IL-1β, IL-10, and IL-17. Furthermore, IK at 10 mg/kg attenuated CLP-induced oxidative stress by modulating levels of MDA, MPO, SOD, and GSH... (AU)


Asunto(s)
Ratas , Sepsis , Lesión Pulmonar Aguda , Aceites Volátiles , Perilla frutescens , Antiinflamatorios , Ensayos de Selección de Medicamentos Antitumorales , Coloración y Etiquetado , Hematoxilina
15.
Am J Pathol ; 194(6): 1020-1032, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38493926

RESUMEN

Mesenchymal epithelial transition (MET) protein overexpression is a targetable event in non-small cell lung cancer and is the subject of active drug development. Challenges in identifying patients for these therapies include lack of access to validated testing, such as standardized immunohistochemistry assessment, and consumption of valuable tissue for a single gene/protein assay. Development of prescreening algorithms using routinely available digitized hematoxylin and eosin (H&E)-stained slides to predict MET overexpression could promote testing for those who will benefit most. Recent literature reports a positive correlation between MET protein overexpression and RNA expression. In this work, a large database of matched H&E slides and RNA expression data were leveraged to train a weakly supervised model to predict MET RNA overexpression directly from H&E images. This model was evaluated on an independent holdout test set of 300 overexpressed and 289 normal patients, demonstrating a receiver operating characteristic area under curve of 0.70 (95th percentile interval: 0.66 to 0.74) with stable performance characteristics across different patient clinical variables and robust to synthetic noise on the test set. These results suggest that H&E-based predictive models could be useful to prioritize patients for confirmatory testing of MET protein or MET gene expression status.


Asunto(s)
Adenocarcinoma del Pulmón , Eosina Amarillenta-(YS) , Hematoxilina , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-met , Femenino , Humanos , Masculino , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas c-met/genética
16.
Med Image Anal ; 94: 103143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507894

RESUMEN

Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in combination with large scale pre-training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published Segment Anything Model and a ViT-encoder pre-trained on 104 million histological image patches - achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an F1-detection score of 0.83. The code is publicly available at https://github.com/TIO-IKIM/CellViT.


Asunto(s)
Núcleo Celular , Redes Neurales de la Computación , Humanos , Eosina Amarillenta-(YS) , Hematoxilina , Coloración y Etiquetado , Procesamiento de Imagen Asistido por Computador
17.
PLoS One ; 19(3): e0298211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427624

RESUMEN

Cyclophilins are a diverse family of peptidyl-prolyl isomerases (PPIases) of importance in a variety of essential cellular functions. We previously reported that the pan-cyclophilin inhibitor drug reconfilstat (CRV431) decreased disease in mice under the western-diet and carbon tetrachloride (CCl4) non-alcoholic steatohepatitis (NASH) model. CRV431 inhibits several cyclophilin isoforms, among which cyclophilin A (CypA) and B (CypB) are the most abundant. It is not known whether simultaneous inhibition of multiple cyclophilin family members is necessary for the observed therapeutic effects or if loss-of-function of one is sufficient. Identifying the responsible isoform(s) would enable future fine-tuning of drug treatments. Features of human liver fibrosis and complete NASH can be reliably replicated in mice by administration of intraperitoneal CCl4 alone or CCl4 in conjunction with high sugar, high cholesterol western diet, respectively. Here we show that while wild-type (WT) and Ppia-/- CypA KO mice develop severe NASH disease features under these models, Ppib-/- CypB KO mice do not, as measured by analysis of picrosirius red and hematoxylin & eosin-stained liver sections and TNFα immuno-stained liver sections. Cyclophilin inhibition is a promising and novel avenue of treatment for diet-induced NASH. In this study, mice without CypB, but not mice without CypA, were significantly protected from the development of the characteristic features of NASH. These data suggest that CypB is necessary for NASH disease progression. Further investigation is necessary to determine whether the specific role of CypB in the endoplasmic reticulum secretory pathway is of significance to its effect on NASH development.


Asunto(s)
Ciclofilina A , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ciclofilina A/genética , Ciclofilinas/genética , Dieta Occidental , Hematoxilina
18.
Diagn Pathol ; 19(1): 42, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395890

RESUMEN

BACKGROUND: Staining tissue samples to visualise cellular detail and tissue structure is at the core of pathology diagnosis, but variations in staining can result in significantly different appearances of the tissue sample. While the human visual system is adept at compensating for stain variation, with the growth of digital imaging in pathology, the impact of this variation can be more profound. Despite the ubiquity of haematoxylin and eosin staining in clinical practice worldwide, objective quantification is not yet available. We propose a method for quantitative haematoxylin and eosin stain assessment to facilitate quality assurance of histopathology staining, enabling truly quantitative quality control and improved standardisation. METHODS: The stain quantification method comprises conventional microscope slides with a stain-responsive biopolymer film affixed to one side, called stain assessment slides. The stain assessment slides were characterised with haematoxylin and eosin, and implemented in one clinical laboratory to quantify variation levels. RESULTS: Stain assessment slide stain uptake increased linearly with duration of haematoxylin and eosin staining (r = 0.99), and demonstrated linearly comparable staining to samples of human liver tissue (r values 0.98-0.99). Laboratory implementation of this technique quantified intra- and inter-instrument variation of staining instruments at one point in time and across a five-day period. CONCLUSION: The proposed method has been shown to reliably quantify stain uptake, providing an effective laboratory quality control method for stain variation. This is especially important for whole slide imaging and the future development of artificial intelligence in digital pathology.


Asunto(s)
Inteligencia Artificial , Colorantes , Humanos , Eosina Amarillenta-(YS)/química , Coloración y Etiquetado , Colorantes/química , Hematoxilina
19.
Nat Commun ; 15(1): 1684, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396004

RESUMEN

Traditional histochemical staining of post-mortem samples often confronts inferior staining quality due to autolysis caused by delayed fixation of cadaver tissue, and such chemical staining procedures covering large tissue areas demand substantial labor, cost and time. Here, we demonstrate virtual staining of autopsy tissue using a trained neural network to rapidly transform autofluorescence images of label-free autopsy tissue sections into brightfield equivalent images, matching hematoxylin and eosin (H&E) stained versions of the same samples. The trained model can effectively accentuate nuclear, cytoplasmic and extracellular features in new autopsy tissue samples that experienced severe autolysis, such as COVID-19 samples never seen before, where the traditional histochemical staining fails to provide consistent staining quality. This virtual autopsy staining technique provides a rapid and resource-efficient solution to generate artifact-free H&E stains despite severe autolysis and cell death, also reducing labor, cost and infrastructure requirements associated with the standard histochemical staining.


Asunto(s)
Redes Neurales de la Computación , Hematoxilina , Eosina Amarillenta-(YS) , Coloración y Etiquetado
20.
Theranostics ; 14(4): 1361-1370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389847

RESUMEN

Histological examination is crucial for cancer diagnosis, however, the labor-intensive sample preparation involved in the histology impedes the speed of diagnosis. Recently developed two-color stimulated Raman histology could bypass the complex tissue processing to generates result close to hematoxylin and eosin staining, which is one of the golden standards in cancer histology. Yet, the underlying chemical features are not revealed in two-color stimulated Raman histology, compromising the effectiveness of prognostic stratification. Here, we present a high-content stimulated Raman histology (HC-SRH) platform that provides both morphological and chemical information for cancer diagnosis based on un-stained breast tissues. Methods: By utilizing both hyperspectral SRS imaging in the C-H vibration window and sparsity-penalized unmixing of overlapped spectral profiles, HC-SRH enabled high-content chemical mapping of saturated lipids, unsaturated lipids, cellular protein, extracellular matrix (ECM), and water. Spectral selective sampling was further implemented to boost the speed of HC-SRH. To show the potential for clinical use, HC-SRH using a compact fiber laser-based stimulated Raman microscope was demonstrated. Harnessing the wide and rapid tuning capability of the fiber laser, both C-H and fingerprint vibration windows were accessed. Results: HC-SRH successfully mapped unsaturated lipids, cellular protein, extracellular matrix, saturated lipid, and water in breast tissue. With these five chemical maps, HC-SRH provided distinct contrast for tissue components including duct, stroma, fat cell, necrosis, and vessel. With selective spectral sampling, the speed of HC-SRH was improved by one order of magnitude. The fiber-laser-based HC-SRH produced the same image quality in the C-H window as the state-of-the-art solid laser. In the fingerprint window, nucleic acid and solid-state ester contrast was demonstrated. Conclusions: HC-SRH provides both morphological and chemical information of tissue in a label-free manner. The chemical information detected is beyond the reach of traditional hematoxylin and eosin staining and heralds the potential of HC-SRH for biomarker discovery.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Eosina Amarillenta-(YS) , Hematoxilina , Lípidos , Agua , Proteínas de la Matriz Extracelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA