Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.118
Filtrar
1.
Cells ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273010

RESUMEN

Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, where it can cause a variety of diseases. H. pylori uses a cluster of sheathed flagella for motility, which is required for host colonization in animal models. The flagellar sheath is continuous with the outer membrane and is found in most Helicobacter species identified to date. HP0018 is a predicted lipoprotein of unknown function that is conserved in Helicobacter species that have flagellar sheaths but is absent in Helicobacter species that have sheath-less flagella. Deletion of hp0018 in H. pylori B128 resulted in the formation of long chains of outer membrane vesicles, which were most evident in an aflagellated variant of the Δhp0018 mutant that had a frameshift mutation in fliP. Flagellated cells of the Δhp0018 mutant possessed what appeared to be a normal flagellar sheath, suggesting that HP0018 is not required for sheath formation. Cells of the Δhp0018 mutant were also less helical in shape compared to wild-type cells. A HP0018-superfolder green fluorescent fusion protein expressed in the H. pylori Δhp0018 mutant formed fluorescent foci at the cell poles and lateral sites. Co-immunoprecipitation assays with HP0018 identified two enzymes involved in the modification of the cell wall peptidoglycan, AmiA and MltD, as potential HP0018 interaction partners. HP0018 may modulate the activity of AmiA or MltD, and in the absence of HP0018, the unregulated activity of these enzymes may alter the peptidoglycan layer in a manner that results in an altered cell shape and hypervesiculation.


Asunto(s)
Flagelos , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiología , Flagelos/metabolismo , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Lipoproteínas/metabolismo , Lipoproteínas/genética
2.
Sheng Li Xue Bao ; 76(4): 547-560, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39192788

RESUMEN

Helicobacter pylori (Hp) is a Gram-negative bacterium that colonizes in the gastric mucosa. Hp induces the production of cancer-associated fibroblasts (CAF) in the stomach. The virulence factors of Hp and CAF trigger epithelial-mesenchymal transition (EMT), leading to local inflammation, damage to the gastric mucosa, and the occurrence of chronic gastritis. Here, we summarize the molecular mechanisms of CAF mediated gastric EMT after Hp infection, providing new insights into potential molecular targets and strategies for the future treatment of Hp infection associated gastric cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/fisiología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/etiología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/fisiología , Animales
3.
Food Funct ; 15(16): 8418-8431, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39042096

RESUMEN

H. pylori is a highly pathogenic and prevalent pathogen that is a class I carcinogen. More than 50% of the world's population is infected with H. pylori. An anti-adhesive strategy is an effective way to antagonize H. pylori infection, which does not cause H. pylori resistance and is safer compared to antibiotic therapy. In the present study, to obtain rice bran protein-derived anti-adhesive activity peptides against H. pylori, an efficient enzymatic hydrolysis system was established, and it was found that rice bran protein hydrolysate prepared under specific conditions possessed anti-adhesive activity against H. pylori. The anti-adhesive activity of rice bran protein hydrolysate (RPH) was 43.74 ± 1.12% (4 mg mL-1), and gastric digestion (RPHA) had no significant effect on its activity. Hydrophobic amino acids and aromatic amino acids were important for its anti-adhesive activity. Further, 284 peptide sequences with potential anti-adhesive activity were isolated and identified from RPHA. Combined with molecular docking results, four novel anti-adhesive activity peptides were finally screened, namely LS5 (LSFRL), SN8 (SNTPGMVY), VV7 (VVNFGNL) and PV9 (PVLWGVPKG). Among them, PV9 showed the highest anti-adhesive activity of 59.64 ± 2.00% (4 mg mL-1). These four peptides could bind H. pylori adhesins BabA and SabA, occupying the binding sites of cell receptors and acting as anti-adhesion agents. In conclusion, four rice bran protein-derived anti-adhesive activity peptides against H. pylori can be used for the development of novel functional foods antagonizing H. pylori infection.


Asunto(s)
Adhesión Bacteriana , Helicobacter pylori , Oryza , Péptidos , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/fisiología , Oryza/microbiología , Oryza/química , Péptidos/farmacología , Péptidos/química , Adhesión Bacteriana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química
4.
Helicobacter ; 29(4): e13108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021274

RESUMEN

BACKGROUND: Helicobacter pylori infection-associated gastric adenocarcinoma is influenced by various factors, including the digestive microbiota. Lactic acid bacteria role in digestive carcinogenesis has been discussed, and some Lactobacillaceae family species have been shown to act against H. pylori-induced inflammation and colonization. However, their effects on H. pylori-related carcinogenesis have not yet been studied. Lactobacillaceae family effects on the epithelial-to-mesenchymal transition (EMT), emergence of cells with cancer stem cell (CSC) properties and the pro-inflammatory response of gastric epithelial cells to H. pylori infection were investigated. MATERIALS AND METHODS: A co-culture model of AGS gastric epithelial cells infected with a carcinogenic strain of H. pylori associated with 18 different probiotic strains candidates were used. Different EMT indicators and CSC properties were studied, including quantification of the mesenchymal phenotype, tumorsphere formation, EMT marker expression, and tight junction evaluation with immunofluorescence microscopy. The effect of the strains on the pro-inflammatory response to H. pylori was also evaluated by quantifying interleukin-8 (IL-8) production using ELISA. RESULTS: Among the strains tested, Lactobacillus gasseri BIO6369 and Lacticaseibacillus rhamnosus BIO5326 induced a 30.6% and 38.4% reduction in the mesenchymal phenotype, respectively, caused a significant decrease in Snail and Zeb1 EMT marker expression and prevented the loss of tight junctions induced by H. pylori infection. A separate co-culture with a Boyden chamber maintained the effects induced by the two strains. H. pylori-induced IL-8 production was also significantly reduced in the presence of L. gasseri BIO6369 and L. rhamnosus BIO5326. CONCLUSION: Lactobacillus gasseri BIO6369 and L. rhamnosus BIO5326 strains decreased epithelial-to-mesenchymal transition and inflammation induced by H. pylori infection, suggesting that these species may have a protective effect against H. pylori-induced gastric carcinogenesis.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Infecciones por Helicobacter , Helicobacter pylori , Lacticaseibacillus rhamnosus , Lactobacillus gasseri , Probióticos , Neoplasias Gástricas , Humanos , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/fisiología , Helicobacter pylori/patogenicidad , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Lacticaseibacillus rhamnosus/fisiología , Células Epiteliales/microbiología , Técnicas de Cocultivo , Carcinogénesis
5.
Sci Rep ; 14(1): 15619, 2024 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972876

RESUMEN

H. pylori infection is gaining increasing attention, but detailed investigations into its impact on gastric microbiota remain limited. We collected gastric mucosa samples from 47 individuals divided into three groups: 1. Group HP: patients with initial positive H. pylori infection (25 cases); 2. Group ck: H. pylori-negative patients (14 cases); 3. Group DiffHP: patients with refractory H. pylori infection (8 cases). The samples were analyzed using 16S rDNA sequencing and functional prediction with PICRUSt. Group HP showed differences in flora distribution and function compared to Group ck, while Group DiffHP overlapped with Group HP. The abundances of Aeromonas piscicola, Shewanella algae, Vibrio plantisponsor, Aeromonas caviae, Serratia marcescens, Vibrio parahaemolyticus, Microbacterium lacticum, and Prevotella nigrescens were significantly reduced in both Group DiffHP and Group HP compared to Group ck. Vibrio shilonii was reduced only in Group DiffHP compared to Group ck, while Clostridium perfringens and Paracoccus marinus were increased only in Group DiffHP. LEfSe analysis revealed that Clostridium perfringens and Paracoccus marinus were enriched, whereas Vibrio shilonii was reduced in Group DiffHP compared to Group ck at the species level. In individuals with refractory H. pylori infection, the gastric microbiota exhibited enrichment in various human diseases, organic systems, and metabolic pathways (amino acid metabolism, carbohydrate metabolism, transcription, replication and repair, cell cycle pathways, and apoptosis). Patients with multiple failed H. pylori eradication exhibited significant changes in the gastric microbiota. An increase in Clostridium perfringens and Paracoccus marinus and a decrease in Vibrio shilonii appears to be characteristic of refractory H. pylori infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Masculino , Persona de Mediana Edad , Femenino , Mucosa Gástrica/microbiología , Adulto , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Anciano
6.
Gut Microbes ; 16(1): 2369336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944840

RESUMEN

The role of the intratumoral microbiome in gastric cancer (GC) has not been comprehensively assessed. Here, we explored the relationship between the microbial community and GC prognosis and therapy efficacy. Several cancer-associated microbial characteristics were identified, including increased α-diversity, differential ß-diversity, and decreased Helicobacter pylori abundance. After adjusting for clinical features, prognostic analysis revealed 2 phyla, 14 genera, and 5 species associated with the overall survival of patients with GC. Additionally, 2 phyla, 14 genera, and 6 species were associated with adjuvant chemotherapy (ACT) efficacy in patients with stage II - III GC. Furthermore, we classified GC microbiome structures into three microbial subtypes (MS1, MS2 and MS3) with distinguishing features. The MS1 subtype exhibited high immune activity and enrichment of microbiota related to immunotherapy and butyric acid-producing, as well as potential benefits in immunotherapy. MS2 featured the highest α-diversity and activation of the TFF pathway, MS3 was characterized by epithelial-mesenchymal transition and was associated with poor prognosis and reduced ACT efficacy. Collectively, the results of this study provide valuable insights into the microbial characteristics associated with GC prognosis and therapy efficacy.


Asunto(s)
Neoplasias Gástricas , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/terapia , Humanos , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Microbioma Gastrointestinal , Anciano , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Quimioterapia Adyuvante , Resultado del Tratamiento
7.
Helicobacter ; 29(3): e13100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873839

RESUMEN

BACKGROUND: The formation of gallstones is often accompanied by chronic inflammation, and the mechanisms underlying inflammation and stone formation are not fully understood. Our aim is to utilize single-cell transcriptomics, bulk transcriptomics, and microbiome data to explore key pathogenic bacteria that may contribute to chronic inflammation and gallstone formation, as well as their associated mechanisms. METHODS: scRNA-seq data from a gallstone mouse model were extracted from the Gene Expression Omnibus (GEO) database and analyzed using the FindCluster() package for cell clustering analysis. Bulk transcriptomics data from patients with gallstone were also extracted from the GEO database, and intergroup functional differences were assessed using GO and KEGG enrichment analysis. Additionally, 16S rRNA sequencing was performed on gallbladder mucosal samples from asymptomatic patients with gallstone (n = 6) and liver transplant donor gallbladder mucosal samples (n = 6) to identify key bacteria associated with stone formation and chronic inflammation. Animal models were constructed to investigate the mechanisms by which these key pathogenic bacterial genera promote gallstone formation. RESULTS: Analysis of scRNA-seq data from the gallstone mouse model (GSE179524) revealed seven distinct cell clusters, with a significant increase in neutrophil numbers in the gallstone group. Analysis of bulk transcriptomics data from patients with gallstone (GSE202479) identified chronic inflammation in the gallbladder, potentially associated with dysbiosis of the gallbladder microbiota. 16S rRNA sequencing identified Helicobacter pylori as a key bacterium associated with gallbladder chronic inflammation and stone formation. CONCLUSIONS: Dysbiosis of the gallbladder mucosal microbiota is implicated in gallstone disease and leads to chronic inflammation. This study identified H. pylori as a potential key mucosal resident bacterium contributing to gallstone formation and discovered its key pathogenic factor CagA, which causes damage to the gallbladder mucosal barrier. These findings provide important clues for the prevention and treatment of gallstones.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Células Epiteliales , Vesícula Biliar , Cálculos Biliares , Helicobacter pylori , Animales , Cálculos Biliares/microbiología , Cálculos Biliares/patología , Células Epiteliales/microbiología , Ratones , Humanos , Vesícula Biliar/microbiología , Vesícula Biliar/patología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Helicobacter pylori/fisiología , ARN Ribosómico 16S/genética , Modelos Animales de Enfermedad , Permeabilidad , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Femenino , Masculino , Ratones Endogámicos C57BL
8.
Helicobacter ; 29(3): e13078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867649

RESUMEN

BACKGROUND: Educational initiatives on Helicobacter pylori (H. pylori) constitute a highly effective approach for preventing its infection and establishing standardized protocols for its eradication. ChatGPT, a large language model, is a potentially patient-friendly online tool capable of providing health-related knowledge. This study aims to assess the accuracy and repeatability of ChatGPT in responding to questions related to H. pylori. MATERIALS AND METHODS: Twenty-one common questions about H. pylori were collected and categorized into four domains: basic knowledge, diagnosis, treatment, and prevention. ChatGPT was utilized to individually answer the aforementioned 21 questions. Its responses were independently assessed by two experts on H. pylori. Questions with divergent ratings were resolved by a third reviewer. Cohen's kappa coefficient was calculated to assess the consistency between the scores of the two reviewers. RESULTS: The responses of ChatGPT on H. pylori-related questions were generally satisfactory, with 61.9% marked as "completely correct" and 33.33% as "correct but inadequate." The repeatability of the responses of ChatGPT to H. pylori-related questions was 95.23%. Among the responses, those related to prevention (comprehensive: 75%) had the best response, followed by those on treatment (comprehensive: 66.7%), basic knowledge (comprehensive: 60%), and diagnosis (comprehensive: 50%). In the "treatment" domain, 16.6% of the ChatGPT responses were categorized as "mixed with correct or incorrect/outdated data." However, ChatGPT still lacks relevant knowledge regarding H. pylori resistance and the use of sensitive antibiotics. CONCLUSIONS: ChatGPT can provide correct answers to the majority of H. pylori-related queries. It exhibited good reproducibility and delivered responses that were easily comprehensible to patients. Further enhancement of real-time information updates and correction of inaccurate information will make ChatGPT an essential auxiliary tool for providing accurate H. pylori-related health information to patients.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/microbiología , Humanos , Helicobacter pylori/fisiología , Reproducibilidad de los Resultados , Internet , Conocimientos, Actitudes y Práctica en Salud , Encuestas y Cuestionarios
9.
Biochem Pharmacol ; 225: 116253, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38701869

RESUMEN

Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.


Asunto(s)
Resistencia a Antineoplásicos , Infecciones por Helicobacter , Helicobacter pylori , Factor 3 de Transcripción de Unión a Octámeros , Osteopontina , Neoplasias Gástricas , Regulación hacia Arriba , Neoplasias Gástricas/metabolismo , Humanos , Animales , Regulación hacia Arriba/efectos de los fármacos , Ratones , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/inmunología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/fisiología , Osteopontina/metabolismo , Osteopontina/genética , Cisplatino/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Masculino , Ratones Desnudos
10.
Cell Commun Signal ; 22(1): 263, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730482

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS: The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS: After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS: In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.


Asunto(s)
Quimiocina CCL3 , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Macrófagos , Helicobacter pylori/fisiología , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Animales , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Mucosa Gástrica/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Homeostasis , Ratones Endogámicos C57BL , Humanos , Apoptosis , Proliferación Celular , Masculino , Células RAW 264.7
11.
mBio ; 15(6): e0044024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38700325

RESUMEN

Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE: Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Quimiotaxis , Flagelos , Helicobacter pylori , Biopelículas/crecimiento & desarrollo , Helicobacter pylori/fisiología , Helicobacter pylori/genética , Flagelos/fisiología , Flagelos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transducción de Señal , Mutación , Rotación
12.
Helicobacter ; 29(2): e13077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682268

RESUMEN

BACKGROUND: A novel regimen with high-dose dual therapy (HDDT) has emerged, but its impact on the gut microbiota is not well understood. This study aimed to evaluate the impact of HDDT on the gut microbiota and compare it with that of bismuth quadruple therapy (BQT). METHODS: We enrolled outpatients (18-70 years) diagnosed with Helicobacter pylori infection by either histology or a positive 13C-urea breath test (13C-UBT) and randomly assigned to either the BQT or HDDT group. Subjects consented to provide fecal samples which were collected at baseline, Week 2, and Week 14. Amplification of the V1 and V9 regions of the 16S rRNA was conducted followed by high-throughput sequencing. RESULTS: Ultimately, 78 patients (41 patients in the HDDT group and 37 in the BQT group) were enrolled in this study. Eradication therapy significantly altered the diversity of the gut microbiota. However, the alpha diversity rebounded only in the HDDT group at 12 weeks post-eradication. Immediately following eradication, the predominance of Proteobacteria, replacing commensal Firmicutes and Bacteroidetes, did not recover after 12 weeks. Species-level analysis showed that the relative abundances of Klebsiella pneumoniae and Escherichia fergusonii significantly increased in both groups at Week 2. Enterococcus faecium and Enterococcus faecalis significantly increased in the BQT group, with no significant difference observed in the HDDT group. After 12 weeks of treatment, the relative abundance of more species in the HDDT group returned to baseline levels. CONCLUSION: Eradication of H. pylori can lead to an imbalance in gut microbiota. Compared to BQT, the HDDT is a regimen with milder impact on gut microbiota.


Asunto(s)
Antibacterianos , Bismuto , Quimioterapia Combinada , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bismuto/uso terapéutico , Bismuto/administración & dosificación , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/fisiología , Inhibidores de la Bomba de Protones/uso terapéutico , Inhibidores de la Bomba de Protones/administración & dosificación , ARN Ribosómico 16S/genética
13.
J Biomed Sci ; 31(1): 44, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685037

RESUMEN

BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.


Asunto(s)
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiología , Ratones , Animales , Humanos , Lípidos de la Membrana/metabolismo , Línea Celular Tumoral , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Ésteres del Colesterol/metabolismo
14.
Helicobacter ; 29(2): e13072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686467

RESUMEN

BACKGROUND: Helicobacter pylori infection is one of the main causes of gastric cancer. thioredoxin-1 (Trx1) and arginase (RocF) expressed by H. pylori were found to be closely related to its pathogenicity. However, whether Trx1 and RocF can be used in clinical screening of highly pathogenic H. pylori and the pathogenesis of trx1 high expressing H. pylori remain still unknown. MATERIALS AND METHODS: We investigated the expression level of H. pylori trx1 and H. pylori rocF in human gastric antrum tissues using reverse transcription and quantitative real-time PCR (RT-qPCR) and clarified the clinical application value of trx1 and rocF for screening highly pathogenic H. pylori. The pathogenic mechanism of Trx1 were further explored by RNA-seq of GES-1 cells co-cultured with trx1 high or low expressing H. pylori. Differentially expressed genes and signaling pathways were validated by RT-qPCR, Enzyme-linked immunosorbent assay (ELISA), western blot, immunohistochemistry and immunofluorescence. We also assessed the adherence of trx1 high and low expressing H. pylori to GES-1 cells. RESULTS: We found that H. pylori trx1 and H. pylori rocF were more significantly expressed in the gastric cancer and peptic ulcer group than that in the gastritis group and the parallel diagnosis of H. pylori trx1 and H. pylori rocF had high sensitivity. The trx1 high expressing H. pylori had stronger adhesion ability to GES-1 cells and upregulated the interleukin (IL) 23A/nuclear factor κappaB (NF-κB)/IL17A, IL6, IL8 pathway. CONCLUSIONS: H. pylori trx1 and H. pylori rocF can be used in clinical screening of highly pathogenic H. pylori and predicting the outcome of H. pylori infection. The trx1 high expressing H. pylori has stronger adhesion capacity and promotes the development of gastric diseases by upregulating the activation of NF-κB signaling pathway.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Interleucina-8 , FN-kappa B , Tiorredoxinas , Humanos , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Helicobacter pylori/patogenicidad , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , FN-kappa B/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Regulación hacia Arriba , Transducción de Señal , Arginasa/metabolismo , Arginasa/genética , Línea Celular , Gastropatías/microbiología , Gastropatías/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
15.
Cancer Med ; 13(7): e7092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581123

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS: Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3ß (GSK-3ß), p-Akt, p-GSK-3ß, ß-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS: H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/ß-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of ß-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3ß, and the expression of ß-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION: RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/ß-catenin signaling pathway.


Asunto(s)
Helicobacter pylori , Neoplasias Gástricas , Animales , Ratones , Helicobacter pylori/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ratones Desnudos , Cromatografía Liquida , Línea Celular Tumoral , Espectrometría de Masas en Tándem , Vía de Señalización Wnt , Neoplasias Gástricas/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular
16.
Helicobacter ; 29(2): e13066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468575

RESUMEN

BACKGROUND: SHP1 has been documented as a tumor suppressor and it was thought to play an antagonistic role in the pathogenesis of Helicobacter pylori infection. In this study, the exact mechanism of this antagonistic action was studied. MATERIALS AND METHODS: AGS, MGC803, and GES-1 cells were infected with H. pylori, intracellular distribution changes of SHP1 were first detected by immunofluorescence. SHP1 overexpression and knockdown were then constructed in these cells to investigate its antagonistic roles in H. pylori infection. Migration and invasion of infected cells were detected by transwell assay, secretion of IL-8 was examined via ELISA, the cells with hummingbird-like alteration were determined by microexamination, and activation of JAK2/STAT3, PI3K/Akt, and ERK pathways were detected by immunoblotting. Mice infection model was established and gastric pathological changes were evaluated. Finally, the SHP1 activator sorafenib was used to analyze the attenuating effect of SHP1 activation on H. pylori pathogenesis in vitro and in vivo. RESULTS: The sub-localization of SHP1 changed after H. pylori infection, specifically that the majority of the cytoplasmic SHP1 was transferred to the cell membrane. SHP1 inhibited H. pylori-induced activation of JAK2/STAT3 pathway, PI3K/Akt pathway, nuclear translocation of NF-κB, and then reduced EMT, migration, invasion, and IL-8 secretion. In addition, SHP1 inhibited the formation of CagA-SHP2 complex by dephosphorylating phosphorylated CagA, reduced ERK phosphorylation and the formation of CagA-dependent hummingbird-like cells. In the mice infection model, gastric pathological changes were observed and increased IL-8 secretion, indicators of cell proliferation and EMT progression were also detected. By activating SHP1 with sorafenib, a significant curative effect against H. pylori infection was obtained in vitro and in vivo. CONCLUSIONS: SHP1 plays an antagonistic role in H. pylori pathogenesis by inhibiting JAK2/STAT3 and PI3K/Akt pathways, NF-κB nuclear translocation, and CagA phosphorylation, thereby reducing cell EMT, migration, invasion, IL-8 secretion, and hummingbird-like changes.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Helicobacter pylori/fisiología , FN-kappa B/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Helicobacter/patología , Sorafenib/metabolismo , Células Epiteliales/metabolismo
17.
Front Cell Infect Microbiol ; 14: 1342913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469348

RESUMEN

Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiología , Inmunidad Adaptativa , Mucosa Gástrica/patología , Evasión Inmune , Linfocitos T , Inmunidad Innata
18.
Front Cell Infect Microbiol ; 14: 1339750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343887

RESUMEN

Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Estómago/microbiología , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología
19.
J Virol ; 98(3): e0192323, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38358289

RESUMEN

Helicobacter pylori is a human pathogen that infects almost half of the population. Antibiotic resistance in H. pylori threatens health and increases the demand for prophylactic and therapeutic vaccines. Traditional oral vaccine research faces considerable challenges because of the epithelial barrier, potential enterotoxicity of adjuvants, and the challenging conditions of the gastric environment. We developed an intranasal influenza A virus (IAV) vector vaccine based on two live attenuated influenza viruses with modified acidic polymerase protein (PA) genes encoding the A subunit of H. pylori neutrophil-activating protein (NapA), named IAV-NapA, including influenza virus A/WSN/33 (WSN)-NapA and A/Puerto Rico/8/34 (PR8)-NapA. These recombinant influenza viruses were highly attenuated and exhibited strong immunogenicity in mice. Vaccination with IAV-NapA induced antigen-specific humoral and mucosal immune responses while stimulating robust Th1 and Th17 cell immune responses in mice. Our findings suggest that prophylactic and therapeutic vaccination with influenza virus vector vaccines significantly reduces colonization of H. pylori and inflammation in the stomach of mice.IMPORTANCEHelicobacter pylori is the most common cause of chronic gastritis and leads to severe gastroduodenal pathology in some patients. Many studies have shown that Th1 and Th17 cellular and gastric mucosal immune responses are critical in reducing H. pylori load. IAV vector vaccines can stimulate these immune responses while overcoming potential adjuvant toxicity and antigen dosing issues. To date, no studies have demonstrated the role of live attenuated IAV vector vaccines in preventing and treating H. pylori infection. Our work indicates that vaccination with IAV-NapA induces antigen-specific humoral, cellular, and mucosal immunity, producing a protective and therapeutic effect against H. pylori infection in BALB/c mice. This undescribed H. pylori vaccination approach may provide valuable information for developing vaccines against H. pylori infection.


Asunto(s)
Helicobacter pylori , Vacunas contra la Influenza , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Vacunas Bacterianas/inmunología , Helicobacter pylori/fisiología , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Ratones Endogámicos BALB C , Infecciones por Helicobacter/prevención & control , Administración Intranasal
20.
Methods Mol Biol ; 2763: 61-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347400

RESUMEN

Mucin, a major component of the mucus, is considered to be one of the principal factors in the physiological defense mechanism of the gastrointestinal mucosa. Measuring the mucin content of human gastric mucus is a useful tool for the assessment of Helicobacter pylori (H. pylori) eradication or the involvement of mucus secretion in various gastroduodenal diseases. Here, we describe a methodology for the isolation of the mucin fraction from human gastric juice and the quantification of mucin.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Mucinas Gástricas , Jugo Gástrico , Mucinas , Helicobacter pylori/fisiología , Mucosa Gástrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA