Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.795
Filtrar
1.
J Environ Sci (China) ; 149: 21-34, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181636

RESUMEN

During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.


Asunto(s)
Halogenación , Pefloxacina , Poliestirenos , Cloruro de Polivinilo , Rayos Ultravioleta , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cloruro de Polivinilo/química , Contaminantes Químicos del Agua/química , Poliestirenos/química , Purificación del Agua/métodos , Pefloxacina/química , Concentración de Iones de Hidrógeno
2.
J Environ Sci (China) ; 149: 288-300, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181643

RESUMEN

Structural regulation of Pd-based electrocatalytic hydrodechlorination (EHDC) catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging. Herein, a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam (NF), which can inductive regulation of Pd for improving the EHDC performance. The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound, respectively. The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface, which optimizied the binding of EHDC intermediates. Additionally, the Mn-doped interlayer acted as a promoter for generating H* and accelerating the EHDC reaction. This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.


Asunto(s)
Manganeso , Níquel , Paladio , Catálisis , Paladio/química , Manganeso/química , Níquel/química , Técnicas Electroquímicas/métodos , Electrodos , Clorofenoles/química , Halogenación
3.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003031

RESUMEN

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Asunto(s)
Carbón Orgánico , Carbón Orgánico/química , Halogenación , Oxidación-Reducción , Dibromuro de Etileno/química , Modelos Químicos
4.
Luminescence ; 39(9): e4875, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228310

RESUMEN

The modern nanomedicine incorporates the multimodal treatments into a single formulation, offering innovative cancer therapy options. Nanosheets function as carriers, altering the solubility, biodistribution, and effectiveness of medicinal compounds, resulting in more efficient cancer treatments and reduced side effects. The non-toxic nature of fluorinated graphene oxide (FGO) nanosheets and their potential applications in medication delivery, medical diagnostics, and biomedicine distinguish them from others. Leveraging the unique properties of Lissachatina fulica snail mucus (LfSM), FGO nanosheets were developed to reveal the novel characteristics. Consequently, LfSM was utilized to create non-toxic, environmentally friendly, and long-lasting FGO nanosheets. Ultraviolet-visible (UV-vis) spectroscopy revealed a prominent absorbance peak at 235 nm. The characterization of the synthesized FGO nanosheets involved X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM) analyses. The antimicrobial activity data demonstrated a broad spectrum of antibacterial effects against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The cytotoxicity efficacy of LfSM-FGO nanosheets against pancreatic cancer cell line (PANC1) showed promising results at low concentrations. The study suggests that FGO nanosheets made from LfSM could serve as alternate factors for in biomedical applications in the future.


Asunto(s)
Grafito , Nanoestructuras , Caracoles , Grafito/química , Grafito/farmacología , Animales , Caracoles/química , Humanos , Nanoestructuras/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana , Moco/química , Moco/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Halogenación , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Línea Celular Tumoral , Tamaño de la Partícula
5.
Waste Manag ; 189: 276-289, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217802

RESUMEN

As one of the most widespread plastics in the world, the recycling of diethylhexyl phthalate-rich polyvinyl chloride (DEHP-rich PVC) faces great challenges because of the high levels of Cl and plasticizers. On the other hand, waste copper catalyst (WCC) discharged from various industrial processes is not effectively recycled. In this study, a significant synergistic effect between the DEHP-rich PVC and WCC was found in a subcritical water (SubCW) medium, and a co-treatment of the DEHP-rich PVC and WCC was developed by the SubCW process. The introduction of WCC significantly improved the dechlorination efficiency of the DEHP-rich PVC to 96.03 % at a low temperature of 250 °C. Under the optimal conditions, the leaching of copper from WCC reached a maximum of 81.08 %. Oil products included DEHP (55.7 %, GC peak area%), 3-methyl-3-heptene (37.3 %, GC peak area%), and 2-ethyl-1-hexanol (7.0 %, GC peak area%). The dechlorination pathways of the DEHP-rich PVC included hydroxyl substitution and direct dechlorination. HCl released from the DEHP-rich PVC led to a decrease in the pH of the system and significant copper leaching from the WCC. DEHP was decomposed by hydrolysis, dehydration, and rearrangement reaction by the SubCW co-treatment process. The enhancement mechanism of the WCC for the dechlorination of the DEHP-rich PVC was based on that the conversion of copper species in the SubCW promoted the formation of hydroxyl radicals and the hydroxyl substitution for chlorine in PVC molecular chain. The proposed SubCW low-temperature co-treatment could be a prospective strategy for the low-energy and synchronous recovery of the two different wastes of the DEHP-rich PVC and WCC.


Asunto(s)
Cobre , Dietilhexil Ftalato , Cloruro de Polivinilo , Cloruro de Polivinilo/química , Cobre/química , Dietilhexil Ftalato/química , Catálisis , Reciclaje/métodos , Temperatura , Agua/química , Halogenación
6.
Pestic Biochem Physiol ; 204: 106071, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277416

RESUMEN

Synthetic plant activators represent a promising novel class of green pesticides that can triggering endogenous plant immunity against pathogen invasion. In our previous study, we developed a series of fluorinated compounds capable of eliciting disease resistance in plants; however, the underlying regulatory mechanisms remained unclear. In this study, we systematically investigated the mechanism of plant immune activation using four synthetic plant activators in Arabidopsis thaliana (A. thaliana), including two fluorine-substituted and two non­fluorine-substituted molecules. Our findings revealed that the fluorinated compounds exhibited superior disease resistance activity compared to the non-fluorinated molecules. Gene expression analysis in systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related pathways demonstrated that fluorine substitution effectively regulated both SAR- and ISR-pathway activation, highlighting the distinct roles of fluorine in modulating the plant immune system. Notably, the prolonged ROS burst was observed in chloroplasts following treatment with all four plant activators, contrasting with the transient ROS burst induced by natural elicitors. These results provide insights into the unique mechanisms underlying synthetic plant activator-induced plant immunity. Furthermore, comprehensive proteomic analysis revealed a robust immune response mediated by fluorine-substituted plant activators. These findings offer novel insights into the role of fluorine substitution in SAR- and ISR-associated immune signaling pathways and their distinct impact on ROS production within chloroplasts.


Asunto(s)
Arabidopsis , Cloroplastos , Especies Reactivas de Oxígeno , Transducción de Señal , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Inmunidad de la Planta/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Halogenación , Enfermedades de las Plantas/inmunología
7.
Nat Commun ; 15(1): 7925, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271664

RESUMEN

Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewisx analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides. Subsequent incorporation of a subset of these glycans into nanoparticles or a microarray revealed a striking spectrum of distinct binding intensities across different proteins that recognise Lewisx. Notably, we show that for two proteins with unique binding sites for Lewisx, glycofluoroforms exhibited enhanced binding to one protein, whilst reduced binding to the other, with selectivity governed by fluorination patterns. We finally showcase the potential diagnostic utility of this approach in glycofluoroform-mediated bacterial toxin detection by lateral flow.


Asunto(s)
Polisacáridos , Polisacáridos/metabolismo , Polisacáridos/química , Unión Proteica , Sitios de Unión , Humanos , Halogenación , Antígeno Lewis X/metabolismo , Antígeno Lewis X/química , Nanopartículas/química
8.
Molecules ; 29(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275006

RESUMEN

The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against ß-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold possess outstanding potency and selectivity for CSNK2, but bioavailability and metabolic stability are often challenging. By strategically installing a fluorine atom on an electron-rich phenyl ring of a previously characterized inhibitor 1, we discovered compound 2 as a promising lead compound with improved in vivo metabolic stability. Compound 2 maintained excellent cellular potency against CSNK2, submicromolar antiviral potency, and favorable solubility, and was remarkably selective for CSNK2 when screened against 192 kinases across the human kinome. We additionally present a co-crystal structure to support its on-target binding mode. In vivo, compound 2 was orally bioavailable, and demonstrated modest and transient inhibition of CSNK2, although antiviral activity was not observed, possibly attributed to its lack of prolonged CSNK2 inhibition.


Asunto(s)
Antivirales , Quinasa de la Caseína II , Halogenación , Inhibidores de Proteínas Quinasas , Humanos , Quinasa de la Caseína II/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Antivirales/química , Antivirales/farmacología , Antivirales/farmacocinética , Animales , Disponibilidad Biológica , Administración Oral , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Relación Estructura-Actividad , SARS-CoV-2/efectos de los fármacos
9.
J Agric Food Chem ; 72(36): 19869-19882, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219104

RESUMEN

Fungal diseases could severely harm agricultural productions. To develop new antifungal agents, based on the Global Natural Products Social Molecular Networking, typical bromine isotope peak ratios, and ultraviolet absorptions, cultivation of the soft coral-derived endophytic fungi Aspergillus terreus EGF7-0-1 with NaBr led to the targeted isolation of 14 new brominated aromatic butenolides (1-14) and six known analogues (15-20). Their structures were elucidated by extensive spectroscopic analysis and quantum chemical calculations. Compounds 1-14 exhibited wildly antifungal activities (against Colletotrichum gloeosporioides, Pestalotiopsis microspora, Fusarium oxysporum f. sp. cubense, Botrytis cinerea, and Diaporthe phoenicicola). The bioassay results showed that compounds 1-14 exhibited excellent antifungal activities against C. gloeosporioides, with concentration for 50% of maximal effect (EC50) values from 2.72 to 130.41 nM. The mechanistic study suggests that compound 1 may disrupt nutrient signaling pathways by reducing the levels of metabolites, such as carbohydrates, lipids, and amino acids, leading to an increase in low-density granules and a decrease in high-density granules in the cytoplasm, accompanied by numerous vacuoles, thereby inhibiting the growth of C. gloeosporioides. Monobrominated γ-butenolide 1 may be expected to exploit a novel agriculturally antifungal leading drug. Meanwhile, compound M1 has conformed antifugual activities against C. gloeosporioides by papayas in vivo.


Asunto(s)
4-Butirolactona , Aspergillus , Fungicidas Industriales , Aspergillus/metabolismo , Aspergillus/efectos de los fármacos , Aspergillus/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Estructura Molecular , Colletotrichum/efectos de los fármacos , Halogenación , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química
10.
Molecules ; 29(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275111

RESUMEN

Boron Neutron Capture Therapy (BNCT) is a cancer treatment which combines tumor-selective boron delivery agents with thermal neutrons in order to selectively eradicate cancer cells. In this work, we focus on the early-stage development of carbohydrate delivery agents for BNCT. In more detail, we expand upon our previous GLUT-targeting approach by synthesizing and evaluating the potential embedded in a representative set of fluorinated carbohydrates bearing a boron cluster. Our findings indicate that these species may have advantages over the boron delivery agents in current clinical use, e.g., significantly improved boron delivery capacity at the cellular level. Simultaneously, the carbohydrate delivery agents were found to bind strongly to plasma proteins, which may be a concern requiring further action before progression to in vivo studies. Altogether, this work brings new insights into factors which need to be accounted for if attempting to develop theranostic agents for BNCT based on carbohydrates in the future.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Carbohidratos , Halogenación , Terapia por Captura de Neutrón de Boro/métodos , Carbohidratos/química , Humanos , Boro/química , Línea Celular Tumoral , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
11.
J Nat Prod ; 87(8): 2034-2044, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39126395

RESUMEN

Ten new drimane meroterpenoids talarines A-J (1-10), along with six known analogues (11-16), were isolated from desert soil-derived fungus Talaromyces pinophilus LD-7. Their 2D structures were elucidated by comprehensive interpretation of NMR and HRESIMS data. Electronic circular dichroism calculation was used to establish their absolute configurations. Compounds 2, 10, and 11 showed antiviral activities toward vesicular stomatitis virus with IC50 values of 18, 15, and 23 nM, respectively. The structure-bioactivity relationship indicated that chlorine substitution at C-5 contributed greatly to their antiviral activities. Finally, we identified a new halogenase outside the biosynthetic gene cluster, which was responsible for C-5 halogenation of the precursor isocoumarin 17 as a tailoring step in chlorinated meroterpenoids assembly.


Asunto(s)
Antivirales , Talaromyces , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Vías Biosintéticas , Halogenación , Estructura Molecular , Sesquiterpenos Policíclicos/farmacología , Relación Estructura-Actividad , Talaromyces/química , Terpenos/farmacología , Terpenos/química , Terpenos/aislamiento & purificación
12.
J Am Chem Soc ; 146(33): 22982-22992, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39132893

RESUMEN

Incorporation of C(sp3)-F bonds in biologically active compounds is a common strategy employed in medicinal and agricultural chemistry to tune pharmacokinetic and pharmacodynamic properties. Due to the limited number of robust strategies for C(sp3)-H fluorination of complex molecules, time-consuming de novo syntheses of such fluorinated analogs are typically required, representing a major bottleneck in the drug discovery process. In this work, we present a general and operationally simple strategy for site-specific ß-C(sp3)-H fluorination of amine derivatives including carbamates, amides, and sulfonamides, which is compatible with a wide range of functional groups including N-heteroarenes. In this approach, an improved electrochemical Shono oxidation is used to set the site of functionalization via net α,ß-desaturation to access enamine derivatives. We further developed a series of new transformations of these enamine intermediates to synthesize a variety of ß-fluoro-α-functionalized structures, allowing efficient access to pertinent targets to accelerate drug discovery campaigns.


Asunto(s)
Aminas , Halogenación , Aminas/química , Estructura Molecular , Técnicas Electroquímicas , Oxidación-Reducción
13.
ACS Appl Mater Interfaces ; 16(35): 46690-46702, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39165173

RESUMEN

The development of nontoxic antifouling coatings in static marine environments is urgent. Herein, the successful synthesis of sulfobetaine borneol fluorinated polymers (PEASBF) by a free radical polymerization method is reported. The PEASBF coatings exhibit outstanding antifouling activity, which effectively resists the adhesion of Bovine serum albumin (FITC-BSA adhesion rate: 0.5%), Pseudomonas sp. (Biofilm: 1.3 absorbance) and Navicula sp. (Diatom attachment rate: 33%). More importantly, the PEASBF coatings display outstanding fouling release properties, achieving a release rate of 98% for Navicula sp., and the absorbance of the Pseudomonas sp. biofilm is only 0.2 under 10 Pa shear stress. XPS and MD studies showed that the fluorinated/isobornyl groups induce more sulfobetaine groups to migrate toward polymer surfaces for intensify antifouling. Additionally, the chiral stereochemical structure of borneol enhances antifouling and fouling release ability of amphiphilic polymers. Therefore, the PEASBF has the potential for static marine antifouling applications.


Asunto(s)
Incrustaciones Biológicas , Canfanos , Polímeros , Incrustaciones Biológicas/prevención & control , Canfanos/química , Canfanos/farmacología , Polímeros/química , Polímeros/farmacología , Biopelículas/efectos de los fármacos , Animales , Pseudomonas/efectos de los fármacos , Betaína/química , Betaína/análogos & derivados , Betaína/farmacología , Albúmina Sérica Bovina/química , Diatomeas/efectos de los fármacos , Diatomeas/química , Tensoactivos/química , Tensoactivos/farmacología , Tensoactivos/síntesis química , Halogenación , Propiedades de Superficie
14.
Biochemistry ; 63(17): 2153-2165, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39152907

RESUMEN

Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes ß-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s-1) compared with the nonfluorinated hexanoic acid (5.39 s-1). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.


Asunto(s)
Caproatos , Coenzima A Ligasas , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/química , Caproatos/metabolismo , Caproatos/química , Bacteria Gordonia/metabolismo , Bacteria Gordonia/enzimología , Bacteria Gordonia/genética , Halogenación , Coenzima A/metabolismo , Coenzima A/química , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Especificidad por Sustrato
15.
Int J Biol Macromol ; 277(Pt 4): 134048, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116983

RESUMEN

4-Fluoro-N-(thiazol-2-yl)benzenesulfonamide (3) is a novel fluorinated compound, containing various biological activities. Therefore, absorption spectroscopy, fluorescence quenching, molecular docking, and molecular simulation were employed to investigate the interaction between 3 and human serum albumin (HSA). Firstly, compound 3 meets all criteria for drug-likeness prediction. UV absorption spectra revealed the interaction of 3 with HSA altered the microenvironment of protein, as well as circular dichroism spectroscopic analysis indicated slightly conformational changes and a reduction in α-helical content. The binding parameters of the HSA-3 complex suggested that fluorescence quenching is driven by combined static and dynamic processes. Additionally, the stability of the complex is attributed to conventional hydrogen and hydrophobic bonding interactions. Furthermore, esterase-like activity indicated that the binding of 3 might disrupt HSA's bond networks, leading to structural alterations. Consequently, the strong binding constant (Ka ≈ 1.204 × 106 M-1) aligns with the predicted unbound fraction (0.28) in serum, indicating that thiazole 3 has good bioavailability in plasma and can be effectively transported to target sites, thereby exerting its pharmaceutical effects. However, careful dosage management is essential to prevent potential adverse effects. Overall, these findings highlight the potential of 3 as a therapeutic agent, emphasizing the need for further research to optimize its uses.


Asunto(s)
Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Humana , Sulfonamidas , Tiazoles , Humanos , Tiazoles/química , Tiazoles/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Halogenación , Simulación de Dinámica Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Análisis Espectral , Enlace de Hidrógeno , Simulación por Computador , Espectrometría de Fluorescencia
16.
Water Res ; 265: 122265, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173357

RESUMEN

Removal of Mn(II) is an essential step for addressing water discoloration in water treatment utilities worldwide. However, conventional chlorination suffers from poor oxidation of Mn(II) due to its low homogeneous oxidation kinetics. This study explored the oxidation capability of a new chemical dosing strategy employing peroxymonosulfate (PMS) to assist the chlorination process (PMS@Cl2) for effective Mn(II) oxidation. The study comprehensively explored both oxidation kinetics and underlying mechanisms associated with homogeneous and heterogeneous oxidation within the PMS@Cl2 system. At an [Mn(II)]0 of 1 mg/L, chlorination demonstrated inability in oxidizing Mn(II), with <10 % oxidation even at an elevated [Cl2] of 150 µM (∼10 mg/L). By contrast, PMS completely oxidized 100 % Mn(II) within a 30-minute reaction at a much lower [PMS] of 60 µM (kobs = 0.07 min-1 and t1/2 = 9 min), demonstrating its superior Mn(II) oxidation kinetics (over one order of magnitude faster than conventional chlorine). PMS@Cl2 exhibited an interesting synergistic benefit when combining a lower dose PMS with a higher routine dose Cl2 (loPMS@hiCl2), e.g. [PMS]:[Cl2] at 15:30 or 30:30 µM. Both conditions achieved 100 % Mn(II) oxidation, with even better values of kobs and t1/2 (0.16-0.17 min-1 and ∼4 min) relative to PMS alone at 60 µM. The synergic benefit of PMS@Cl2 was attributed to distinct functions played by PMS and Cl2 in both homogeneous and heterogeneous oxidation processes. Reactive species identification excluded the possible involvement of SO4•-, OH•, or chlorine radicals in the homogeneous oxidation of the PMS@Cl2 system. Instead, the dominant species was O2•- radical generated during the reaction of Mn(II) and PMS. Furthermore, the heterogeneous oxidation emphasized the important role of combining Cl2 dosing, which demonstrated an increased reactivity and electron transfer with the Mn-O-Mn complex, surpassing PMS. Overall, heterogeneous oxidation accelerated the oxidation kinetics of the PMS@Cl2 system by 1.1-2 orders of magnitude relative to the homogeneous oxidation of Cl2 alone. We here demonstrated that PMS@Cl2 could offer a more efficient mean of soluble Mn(II) mitigation, achieved with a relatively low routine dose of oxidant in a short reaction period. The outcomes of this study would address the existing limitations of traditional chlorine oxidation, minimizing the trade-offs associated with high residual chlorine levels after treatments for soluble manganese-containing water.


Asunto(s)
Halogenación , Manganeso , Oxidación-Reducción , Purificación del Agua , Manganeso/química , Peróxidos/química , Cinética , Contaminantes Químicos del Agua/química , Cloro/química
17.
Water Res ; 265: 122269, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178595

RESUMEN

Parabens are classified as emerging contaminants in global waters, and the ubiquitous emergence of their high-risk chlorinated products generated from chlorine-based wastewater disinfection has attracted increasing attention. However, rather limited information is available on their photofate after discharging into surface waters, and their degradation behavior after solar-based engineering water treatment is unclear. Herein, the reactivity of four chlorinated parabens with different photochemically produced reactive intermediates was measured. Quantitative contribution analysis in abating such compounds showed the dominance of direct photolysis in sunlit natural freshwaters. Introducing a technical solar/peroxymonosulfate (PMS) system could greatly improve the removal of chlorinated parabens. The economic analysis suggested that chlorinated parabens exhibited a minimum value of economic input as 93.41-158.04 kWh m-3 order-1 at 0.543-0.950 mM PMS. The high-resolution mass spectrometry analysis of the degradation products suggested that dechlorination, hydroxylation, and ester chain cleavage were the dominant transformation pathways during photolysis and solar/PMS treatment. Furthermore, the in silico prediction indicated severe aquatic toxicity of certain products but enhanced biodegradability. Overall, this investigation filled a knowledge gap on the reactivity of chlorinated parabens with diverse reactive transients and their quantitative contributions to the photolysis and solar/PMS treatment of emerging micropollutants in water.


Asunto(s)
Parabenos , Fotólisis , Luz Solar , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Parabenos/química , Purificación del Agua , Halogenación , Aguas Residuales/química
18.
Chemosphere ; 363: 142969, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089340

RESUMEN

Dechlorination of waste PVC (WPVC) by hydrothermal treatment (HTT) is a potential technology for upcycling WPVC in order to create non-toxic products. Literature suggests that acids can improve the HTT process, however, acid is expensive and also results in wastewater. Instead, the acidic process fluid (PF) of hydrothermal carbonization (HTC) of orange peel was utilized in this study to enhance the dechlorination of WPVC during HTT. Acidic HTT (AHTT) experiments were carried out utilizing a batch reactor at 300-350 °C, and 0.25-4 h. The finding demonstrated that the dechlorination efficiency (DE) is high, which indicates AHTT can considerably eliminate chlorine from WPVC and relocate to the aqueous phase. The maximum DE of 97.57 wt% was obtained at 350 °C and 1 h. The AHTT temperature had a considerable impact on the WPVC conversion since the solid yield decreases from 56.88 % at 300 °C to 49.85 % at 350 °C. Moreover, AHTT char and crude oil contain low chloride and considerably more C and H, leading to a considerably higher heating value (HHV). The HHV increased from 23.48 to 33.07 MJ/kg when the AHTT time was raised from 0.25 to 4 h at 350 °C, indicating that the AHTT time has a beneficial effect on the HHV. The majority fraction of crude oil evaporated in the boiling range of lighter fuels include gasoline, kerosene, and diesel (57.58-83.09 wt%). Furthermore, when the AHTT temperature was raised from 300 to 350 °C at 1 h, the HHV of crude oils increased from 26.11 to 33.84 MJ/kg. Crude oils derived from AHTT primarily consisted of phenolic (50.47-75.39 wt%), ketone (20.1-36.34 wt%), and hydrocarbon (1.08-7.93 wt%) constituents. In summary, the results indicated that AHTT is a method for upcycling WPVC to clean fuel.


Asunto(s)
Cloro , Cloruro de Polivinilo , Cloro/química , Cloruro de Polivinilo/química , Halogenación , Aguas Residuales/química , Carbono/química , Ácidos/química , Temperatura
19.
Environ Sci Technol ; 58(33): 14843-14854, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106339

RESUMEN

Aquatic ecosystems represent a prominent reservoir of xenobiotic compounds, including triclosan (TCS), a broad-spectrum biocide extensively used in pharmaceuticals and personal care products. As a biogeochemical hotspot, the potential of aquatic sediments for the degradation of TCS remains largely unexplored. Here, we demonstrated anaerobic biotransformation of TCS in a batch microcosm established with freshwater sediment. The initial 43.4 ± 2.2 µM TCS was completely dechlorinated to diclosan, followed by subsequent conversion to 5-chloro-2-phenoxyphenol, a monochlorinated TCS (MCS) congener. Analyses of community profile and population dynamics revealed substrate-specific, temporal-growth of Dehalococcoides and Dehalogenimonas, which are organohalide-respiring bacteria (OHRB) affiliated with class Dehalococcoidia. Dehalococcoides growth was linked to the formation of diclosan but not MCS, yielding 3.6 ± 0.4 × 107 cells per µmol chloride released. A significant increase in Dehalogenimonas cells, from 1.5 ± 0.4 × 104 to 1.5 ± 0.3 × 106 mL-1, only occurred during the reductive dechlorination of diclosan to MCS. Dehalococcoidia OHRB gradually disappeared following consecutive transfers, likely due to the removal of sediment materials with strong adsorption capacity that could alleviate TCS's antimicrobial toxicity. Consequently, a solid-free, functionally stable TCS-dechlorinating consortium was not obtained. Our results provide insights into the microbial determinants controlling the environmental fate of TCS.


Asunto(s)
Sedimentos Geológicos , Microbiota , Triclosán , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Triclosán/metabolismo , Halogenación , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Chloroflexi/metabolismo
20.
J Biol Inorg Chem ; 29(6): 583-599, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39133326

RESUMEN

Iron(III) complexes based on N,N´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (X1), chlorine (X2) and bromine (X3) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Diseño de Fármacos , Halogenación , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad , Etilenodiaminas/química , Etilenodiaminas/farmacología , Etilenodiaminas/síntesis química , Proliferación Celular/efectos de los fármacos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Compuestos Férricos/síntesis química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA