RESUMEN
Three endophytic fungi isolated from Moquiniastrum polymorphum (Less.) G. Sancho (Asteraceae) were cultivated using the one strain many compounds (OSMAC) strategy to evaluate the production of griseofulvin derivatives. Extracts obtained were analyzed by HPLC-MS/MS and the chromatographic and spectrometric data used to elaborate a feature-based molecular network (FBMN) through the GNPS platform. This approach allowed the observation of differences such as medium-specific and strain-specific production of griseofulvin derivatives and variations of cytotoxic activity in most extracts. To evaluate the efficiency of the OSMAC approach allied with FBMN analysis in the prospection of compounds of biotechnological interest, griseofulvin and 7-dechlorogriseofulvin were isolated, and the relative concentrations were estimated in all culture media using HPLC-UV, allowing for the inference of the best strain-medium combinations to maximize its production. Malt extract-peptone broth and Wickerham broth media produced the highest concentrations of both secondary metabolites.
Asunto(s)
Asteraceae/microbiología , Endófitos/química , Hongos/química , Griseofulvina/análogos & derivados , Cromatografía Líquida de Alta Presión , Griseofulvina/análisis , Espectrometría de Masas en TándemRESUMEN
ABSTRACT Griseofulvin (GF) and terbinafine (TF) are commonly used drugs to treat dermatophytosis, a fungal infection of the skin. Today there is an increase in drug resistance to these antifungals which highlight the need for alternative synergistic therapies. Minimum Inhibitory Concentration (MIC) of GF and TF were determined against fungi clinical isolates from local hospitals with values ranging 0.03-2.0 µg mL-1 and 0.24-4.0 µg mL-1, respectively. A checkboard test was used to determine the combination of GF:TF which could induce an additive effect against the fungi isolates Multidrug-resistant isolates showed susceptibility after treatment with 16:2 µg mL-1 GF:TF. An MTT assay further verified that GF and TF combinations have greater additive effect against pathological and multidrug-resistant isolates than antifungals alone. Herein we disclose GF:TF combinations that could constitute as a possible new anti-dermatophyte therapy.