Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.144
Filtrar
1.
Food Chem ; 462: 140950, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213968

RESUMEN

ß-conglycinin (ß-CG) is a prominent storage protein belonging to the globulin family in soybean (Glycine max) seeds. Along with other soybean proteins, it serves as an important source of essential amino acids and high-quality nutrition. However, the digestibility and nutritional value of ß-CG are key factors affecting the nutritional profile of soy-based foods. The heterotrimeric, secondary, and quaternary structures of ß-CG, particularly the spatial arrangement of its α, α', and ß subunits, influence its functional properties. Considering these aspects, ß-CG emerges as a significant protein with diverse applications in the food and health sectors. Therefore, this review explores ß-CG's composition, structure, function, health implications, and industrial uses. Salient discussions are presented on its molecular structure, nutrition, digestibility, allergenicity, and techno-functions including emulsification, solubility, gelling, and structure-function complexities. Overall, the multifaceted potential of ß-CG in the healthcare sector and the food industry is evident.


Asunto(s)
Antígenos de Plantas , Globulinas , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Globulinas/química , Proteínas de Almacenamiento de Semillas/química , Antígenos de Plantas/química , Proteínas de Soja/química , Relación Estructura-Actividad , Humanos , Glycine max/química , Animales , Valor Nutritivo
2.
Langmuir ; 40(37): 19689-19700, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39235286

RESUMEN

Matrine (MT) is a kind of alkaloid extracted from Sophora and is a promising substitute for chemical nematicides and botanical pesticides. The present study utilized sodium alginate (SA), zeolite imidazole salt skeleton (ZIF), and MT as raw materials to prepare a pH-response-release nematicide through the electrostatic spray technique. Zinc metal-organic framework (ZIF-8) was initially synthesized, followed by the successful loading of MT. Subsequently, the electrostatic spray process was employed to encapsulate it in SA, resulting in the formation of MT/ZIF-8@SA microcapsules. The efficiency of encapsulation and drug loadings can reach 79.93 and 26.83%, respectively. Soybean cyst nematode (SCN) is one of the important pests that harm crops; acetic acid produced by plant roots and CO2 produced by root respiration causing a decrease in the pH of the surrounding environment, which is most attractive to the SCN when the pH is between 4.5 and 5.4. MT/ZIF-8@SA releases the loaded MT in response to acetic acid produced by roots and acidic oxides produced by root respiration. The rate of release was 37.67% higher at pH 5.25 compared with pH 8.60. The control efficiency can reach 89.08% under greenhouse conditions. The above results demonstrate that the prepared MT/ZIF-8@SA not only exhibited excellent efficacy but also demonstrated a pH-responsive release of the nematicide.


Asunto(s)
Alginatos , Alcaloides , Cápsulas , Glycine max , Matrinas , Quinolizinas , Electricidad Estática , Alginatos/química , Alcaloides/química , Alcaloides/farmacología , Animales , Concentración de Iones de Hidrógeno , Quinolizinas/química , Glycine max/química , Glycine max/parasitología , Cápsulas/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Antinematodos/química , Antinematodos/farmacología , Nematodos/efectos de los fármacos , Liberación de Fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química
3.
Food Res Int ; 195: 114951, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277229

RESUMEN

Tempe, a fermented soybean food rich in polyphenols including isoflavones, is valued for its health benefits, notably its antioxidants. Concerns about glyphosate residues in crops have led to increased demand for organic soy products, including tempe. The study aimed to investigate the metabolomic profiles of tempe and its bioactive potentials prior to and following in vitro simulated gastrointestinal digestion. Conventional soybean (CS), conventional tempe (CT), conventional tempe digesta (CTD), organic soybean (OS), organic tempe (OT) and organic tempe digesta (OTD) were analysed for various assays. The study observed a significant decrease in the total phenolic and flavonoid levels for conventional and organic samples in tempe extracts (CT, OT) compared to tempe digesta (CTD, OTD). Organic tempe digesta has a higher total phenolic content (CTD = 22.55 µg GAE/g, OTD = 41.36 µg GAE/g) and flavonoid content (CTD = 4.64 µg QE/g, OTD = 10.06 µg QE/g) compared to conventional tempe digesta. However, there is a significant difference in the bioaccessibility of phenolic (CT = 74.77 %, OT = 59.20 %) and flavonoid (CT = 49.4 %, OT = 57.52 %) in both organic and conventional tempe. Tempe consistently surpasses soybean in antioxidant assays such as DPPH, ABTS, and FRAP. Organic tempe digesta exhibits the most elevated levels of antioxidants. Using GNPS and the SIRIUS database, 34 metabolites were annotated according to the criteria of having a VIP score > 1.5, a log2(FC) > 1, and a p-value < 0.05. From the list, 26 metabolites demonstrated a positive correlation with antioxidant activity, DPPH, and FRAP. Molecular networking enables the visualization of 12 prominent isoflavones, namely daidzein, daidzin, genistein, genistin, glycitein, glycitin, 6″-O-malonyldaidzin, 6″-O-acetylgenistin, 6″-O-acetyldaidzin, and 7,8,4'-trihydroxyisoflavone. Interestingly, aglycone isoflavones are abundant in organic tempe digesta while glycoside isoflavones are abundant in organic and conventional soybeans. Overall, the findings indicate that tempe digesta exhibits distinct metabolic patterns and bioactive potentials.


Asunto(s)
Antioxidantes , Digestión , Flavonoides , Metabolómica , Alimentos de Soja , Antioxidantes/farmacología , Humanos , Flavonoides/análisis , Células HCT116 , Alimentos de Soja/análisis , Glycine max/química , Fenoles/análisis , Polifenoles/análisis , Alimentos Fermentados/análisis , Supervivencia Celular/efectos de los fármacos , Fermentación
4.
Food Res Int ; 195: 114981, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277246

RESUMEN

Cultured meat has been proposed as a promising alternative to conventional meat products. Five different plant protein blends made from soy (from two different manufacturers), wheat, mung bean, and faba bean, were extruded to form low-moisture meat analogs (LMMA) and were used to assess LMMA scaffold potential for cultured meat application. Extruded LMMAs were characterized using scanning electron microscopy, water-holding capacity, total soluble matter, and mechanical properties. Two-dimensional LMMA scaffolds were seeded with C2C12 skeletal myoblast cells and cultured for 14 days, and cell attachment and morphology were evaluated. All five extrudates exhibited directionality of their fibrous protein structures but to varying degrees. Soy, wheat, mung bean, and faba bean-based LMMA scaffolds initially supported myoblast cell growth. However, after 14 days of culture, the extruded wheat LMMA exhibited superior myoblast cell growth. This may be attributed to the highly aligned fibrous structure of the extruded wheat LMMA as well as its elastic modulus, which closely approximated that of native skeletal muscle. Overall, two-dimensional structures of the extruded plant proteins support cell growth and advance the development of cultured meat.


Asunto(s)
Proliferación Celular , Mioblastos , Proteínas de Plantas , Triticum , Animales , Triticum/química , Proteínas de Plantas/química , Línea Celular , Ratones , Andamios del Tejido/química , Vigna/química , Vicia faba/química , Productos de la Carne/análisis , Glycine max/química , Carne in Vitro
5.
Compr Rev Food Sci Food Saf ; 23(5): e70001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267191

RESUMEN

Legumes, an essential component of staple diets, hold a prominent place in global cuisines. Soybean stands out as a widely cultivated legume and is valued for its high protein content, dietary fiber, and rich micronutrients. Several varieties of soybean are available, of which black and yellow varieties show dominance in varied countries and cultures. Over time, the cultivation and consumption of black soybeans have markedly reduced compared to the yellow variety. Despite its rich nutritional and therapeutic indices, it has lost its usage over time. Traditionally, it was utilized in oriental medicine for detoxification and anti-inflammatory potential. However, the antinutrients present in black soybean limit its utilization in the food sector due to their interference with overall nutrient absorption. Several studies in the last few decades have focused on reducing the content of antinutritional factors. However, the information on the use of different processing techniques, both singly and in blends, to reduce antinutrients and enhance the bioaccessibility, bioavailability, and bioactivity of bioactive compounds and varied nutrients is limited and fragmented. Furthermore, studies have highlighted black soybeans' protective effects against various degenerative diseases. However, the studies on the effect of processing to enhance its antioxidative properties to make them a sought-after food commodity with nutraceutical potential and therapeutic efficacy are limited and widely scattered. The review aims to consolidate knowledge of diverse processing methods to improve their nutritional and bioactive profile for wider applications in the food and pharmaceutical industries. Further, it has also highlighted its nutraceutical properties for developing varied functional foods against degenerative diseases to have better therapeutic efficacy.


Asunto(s)
Glycine max , Valor Nutritivo , Glycine max/química , Humanos , Antioxidantes/análisis , Antioxidantes/química
6.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273231

RESUMEN

Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the ethyl acetate fraction of Thua Nao (TN-EA) exhibits strong anti-cancer potential against HeLa cells. High-performance liquid chromatography (HPLC) analysis identified genistein and daidzein as the major isoflavones in TN-EA responsible for its anti-cancer activity. TN-EA and genistein reduced cell proliferation and induced G2/M phase arrest, while daidzein induced G1 arrest. These responses were associated with the downregulation of cell cycle regulators, including Cyclin B1, cycle 25C (Cdc25C), and phosphorylated cyclin-dependent kinase 1 (CDK-1), and the upregulation of the cell cycle inhibitor p21. Moreover, TN-EA and its active isoflavones promoted apoptosis in HeLa cells through the intrinsic pathway, evidenced by increased levels of cleaved Poly (ADP-ribose) polymerase (PARP) and caspase-3, loss of mitochondrial membrane potential, and the downregulation of anti-apoptotic proteins B-cell leukemia/lymphoma 2 (Bcl-2), B-cell lymphoma-extra-large (Bcl-xL), cellular inhibitor of apoptosis proteins 1 (cIAP), and survivin. Additionally, TN-EA and its active isoflavones effectively reduced cell invasion and migration by downregulating extracellular matrix degradation enzymes, including Membrane type 1-matrix metalloproteinase (MT1-MMP), urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR), and reduced the levels of the mesenchymal marker N-cadherin. At the molecular level, TN-EA suppressed STAT3 activation via the regulation of JNK and Erk1/2 signaling pathways, leading to reduced proliferation and invasion of HeLa cells.


Asunto(s)
Apoptosis , Proliferación Celular , Glycine max , Isoflavonas , Neoplasias del Cuello Uterino , Humanos , Células HeLa , Isoflavonas/farmacología , Femenino , Neoplasias del Cuello Uterino/metabolismo , Glycine max/química , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Fermentación , Tailandia , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pueblos del Sudeste Asiático
7.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273677

RESUMEN

8-Prenylgenistein (8PG), a genistein derivative, is present in fermented soybeans (Glycine max), including cheonggukjang (CGJ), and exhibits osteoprotective, osteogenic, and antiadipogenic properties. However, the hepatoprotective effects of 8PG and its underlying molecular mechanisms remain largely unexplored. Here, we identified the high binding affinity of 8PG with AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), which acts as a potent AMPK activator that counteracts hepatic steatosis. Notably, 8PG exhibited better pharmacokinetics with greater absorption and higher plasma binding than the positive controls for the target proteins. Moreover, 8PG exerted non-carcinogenic activity in rats and significantly increased AMPK phosphorylation. Compound C, an AMPK inhibitor, did not antagonize 8PG-activated AMPK in HepG2 cells. 8PG significantly attenuated palmitate-induced lipid accumulation and enhanced phosphorylated AMPK and its downstream target, acetyl-CoA carboxylase. Further, 8PG activated nuclear SIRT1 at the protein level, which promoted fatty acid oxidation in palmitate-treated HepG2 cells. Overall, 8PG acts as a potent AMPK activator, further attenuating hepatic steatosis via the SIRT1-mediated pathway and providing new avenues for dietary interventions to treat metabolic dysfunction-associated steatotic liver disease (MASLD).


Asunto(s)
Proteínas Quinasas Activadas por AMP , Isoflavonas , Sirtuina 1 , Sirtuina 1/metabolismo , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Células Hep G2 , Ratas , Masculino , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Transducción de Señal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Glycine max/química , Genisteína/farmacología
8.
Int J Biol Macromol ; 277(Pt 3): 134315, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094886

RESUMEN

With the increasing demand for food foaming, how to enhance the foaming properties of protein has gradually become the research focus. This work studied the effect of synephrine (SY) on foaming properties, structure properties, and physicochemical properties of soybean protein isolate (SPI). When the mass ratio of SY to SPI was 1:2, compared with SPI alone, the foam capacity and foam stability of the SY-SPI complex were significantly enhanced. Optical microscopy and confocal laser scanning microscope showed that the improvement in foaming performance was mainly due to the reduction of bubble size and uniform protein distribution. Circular dichroism spectrum and fluorescence spectra indicated that the hydrogen bond of SPI was destroyed and blue shifted with the addition of SY. What's more, the absolute value of Zeta potential, solubility, and hydrophobicity all increased, while the particle size decreased. As a result of molecular docking, surface hydrogen bonds, Van der Waals forces and hydrophobic interactions are the main driving forces. The addition of SY and SPI improved the specific volume and texture of angel cake. This study shows that SY has the potential to be developed into a new type of blowing agent.


Asunto(s)
Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Polifenoles , Solubilidad , Proteínas de Soja , Proteínas de Soja/química , Polifenoles/química , Simulación del Acoplamiento Molecular , Fenómenos Químicos , Tamaño de la Partícula , Glycine max/química
9.
Int J Biol Macromol ; 277(Pt 3): 134378, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097048

RESUMEN

The soy hull polysaccharide (SHP) exhibits excellent interfacial activity and holds potential as an emulsifier for emulsions. To reveal the behavior of SHP at the water/oil (W/O) interface in situ, molecular dynamics (MD) simulations and particle tracking microrheology were used in this study. The results of MD reveal that SHP molecular spontaneously move toward the interface and rhamnogalacturonan-I initiates this movement, while its galacturonic acids on it act as anchors to immobilize the SHP molecules at the W/O interface. Microrheology results suggest that SHP forms microgels at the W/O interface, with the lattices of the microgels continually undergoing dynamic changes. At low concentrations of SHP and short interfacial formation time, the network of the microgels is weak and dominated by viscous properties. However, when SHP reaches 0.75 % and the interfacial formation time is about 60 min, the microgels show perfect elasticity, which is beneficial for stabilizing emulsions.


Asunto(s)
Emulsiones , Glycine max , Simulación de Dinámica Molecular , Polisacáridos , Reología , Agua , Agua/química , Glycine max/química , Polisacáridos/química , Emulsiones/química , Aceites/química , Viscosidad , Pectinas/química , Microgeles/química
10.
Nutrients ; 16(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39203872

RESUMEN

Soybean alleviates cognitive impairment. In our preparatory experiment, we found that dry-heat (90 °C for 30 min)-processed soybean embryo ethanol extract (hSE) most potently suppressed lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α expression in BV2 cells among dry-heat-, steaming-, and oil exclusion-processed soybean embryo ethanol extracts (SEs). Heat processing increased the absorbable soyasaponin Bb content of SE. Therefore, we investigated whether hSE and its supplement could mitigate LPS-impaired cognitive function in mice. Among dry-heat-, steaming-, and oil exclusion-processed SEs, hSE mitigated LPS-impaired cognitive function more than parental SE. hSE potently upregulated LPS-suppressed brain-derived neurotropic factor (BDNF) expression in the hippocampus, while LPS-induced TNF-α and IL-1ß expression in the hippocampus and colon were downregulated. Lactobacillus gasseri NK109 additively increased the cognitive function-enhancing activity of hSE in mice with LPS-induced cognitive impairment as follows: the hSE and NK109 mix potently increased cognitive function and hippocampal BDNF expression and BDNF-positive neuron cell numbers and decreased TNF-α expression and NF-κB-positive cell numbers in the hippocampus and colon. These findings suggest that hSE and its supplement may decrease colitis and neuroinflammation by suppressing NF-κB activation and inducing BDNF expression, resulting in the attenuation of cognitive impairment.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Colitis , Suplementos Dietéticos , Glycine max , Hipocampo , Lactobacillus gasseri , Lipopolisacáridos , Extractos Vegetales , Animales , Disfunción Cognitiva/inducido químicamente , Glycine max/química , Lipopolisacáridos/efectos adversos , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Extractos Vegetales/farmacología , Colitis/inducido químicamente , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calor , Factor de Necrosis Tumoral alfa/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon/metabolismo , FN-kappa B/metabolismo
11.
J Agric Food Chem ; 72(34): 18942-18956, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145497

RESUMEN

Not only free amino acids and normal short-chain peptides but also modified amino acids, such as N-acetyl- and N-formyl amino acids, monoamines, polyamines, and modified peptides, such as isomerized aspartyl peptides, pyroglutamyl peptides, and diketopiperazines, were identified in Japanese fermented soy paste (miso) prepared using different fungal starters, rice, barley, and soybean-koji. One hour after oral administration of water extract of soybean-koji miso to rats, the modified peptides increased significantly in the lumen upon the ingestion, while the normal peptides did not. In the blood from the portal vein and abdominal vena cava, 17 and 15 diketopiperazines, 16 and 12 isomerized aspartyl peptides, and 2 and 1 pyroglutamyl peptides significantly increased to approximately 10-400 nM, respectively. The modified peptides, which increased in rat blood, showed angiotensin-converting enzyme (ACE) inhibitory activity in a dose-dependent manner, indicating multiple ACE inhibitory peptides with high bioavailability in miso. Among them, l-ß-Asp-Pro showed the highest ACE inhibitory activity (IC50 4.8 µM).


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Disponibilidad Biológica , Fermentación , Péptidos , Alimentos de Soja , Animales , Masculino , Ratas , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Glycine max/química , Japón , Péptidos/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/química , Ratas Sprague-Dawley , Alimentos de Soja/análisis
12.
Mikrochim Acta ; 191(8): 498, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088087

RESUMEN

A novel 3D magnetic nanocomposite material based on covalent organic polymers was successfully synthesized and utilized as an efficient sorbent for magnetic solid-phase extraction. It exhibited a regular core-shell structure, large specific surface area, superior stability, and paramagnetism. To evaluate its extraction efficiency, six flavonoids were tested, demonstrating maximum adsorption capacities ranging from 90 to 218 mg/g. Additionally, the material exhibited remarkable reusability and mechanical stability, maintaining its original state over eight cycles with consistent recovery. An analytical strategy combining magnetic solid-phase extraction with high performance liquid chromatography and tandem mass spectrometry was developed for the determination of flavonoids in orange, honey, soybean, and Dioscorea bulbifera L. samples. The low limits of detection (0.01-0.1 ng/mL) and limits of quantification (0.05-0.5 ng/mL), as well as satisfactory recovery (80.4-114.8%), were obtained. The linear range started from the limits of quantification to 500 ng/mL with R2 ≥ 0.9929. These results suggest that the prepared adsorbent possesses excellent adsorption capabilities for flavonoids, highlighting its significant potential for detecting these compounds in complex sample matrices.


Asunto(s)
Flavonoides , Límite de Detección , Nanocompuestos , Polímeros , Extracción en Fase Sólida , Flavonoides/química , Flavonoides/aislamiento & purificación , Adsorción , Nanocompuestos/química , Extracción en Fase Sólida/métodos , Polímeros/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Glycine max/química , Miel/análisis , Citrus sinensis/química , Nanopartículas de Magnetita/química
13.
Food Chem ; 460(Pt 3): 140734, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106751

RESUMEN

Angiotensin I-converting enzyme (ACE) regulates blood pressure through the renin-angiotensin system. Douchi, a traditional fermented soybean condiment, may have antihypertensive effects, but research on ACE inhibitory peptides from Douchi hydrolysates is limited. We hypothesized that enzymatic treatment could enhance ACE inhibitory peptide diversity and efficacy. We tested ten single enzymes and four combinations, finding pepsin-trypsin-chymotrypsin most effective. Hydrolysates were purified using Sephadex G-15 and reversed-phase HPLC, and peptides were identified via LC-MS/MS. Five peptides (LF, VVF, VGAW, GLFG, NGK) were identified, with VGAW as the most potent ACE inhibitor (IC50 46.6 ± 5.2 µM) showing excellent thermal and pH stability. Lineweaver-Burk plots confirmed competitive inhibition, and molecular docking revealed eight hydrogen bonds between VGAW and ACE. In hypertensive rats, VGAW significantly reduced blood pressure at 12.5, 25, and 50 mg/kg. These findings highlight Douchi as a source of ACE inhibitory peptides and suggest VGAW as a promising functional food ingredient.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Presión Sanguínea , Hipertensión , Péptidos , Peptidil-Dipeptidasa A , Ratas Endogámicas SHR , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Antihipertensivos/química , Antihipertensivos/farmacología , Ratas , Péptidos/química , Péptidos/farmacología , Péptidos/aislamiento & purificación , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Hipertensión/metabolismo , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Masculino , Presión Sanguínea/efectos de los fármacos , Simulación del Acoplamiento Molecular , Humanos , Glycine max/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Hidrólisis
14.
Food Chem ; 460(Pt 3): 140672, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106749

RESUMEN

Post-harvest loss of fruits and vegetables, and health risks and environmental impact of current plastic packaging warrant new biodegradable packaging. To this end, cellulosic residue from agricultural processing byproducts is suitable due to its renewability and sustainability. Herein, soyhulls cellulosic residue was extracted, solubilized in ZnCl2 solution, and crosslinked with calcium ions and glycerol to prepare biodegradable films. The film combination was optimized using Box Behnken Design and film properties were characterized. The optimized film is translucent and exhibits tensile strength, elongation at break, water vapor permeability, hydrophobicity, and IC50 of 6.3 ± 0.6 MPa, 30.2 ± 0.9%, 0.9 ± 0.3 × 10-10 gm-1 s-1 Pa-1, 72.6°, and 0.11 ± 0.1 g/mL, respectively. The water absorption kinetics follow the Peleg model and biodegrade within 25 days at 24% soil moisture. The film extends the shelf life of raspberries by 6 more days compared to polystyrene film. Overall, the value-added soyhull cellulosic films are advantageous in minimizing post-harvest loss and plastic-related issues, emphasizing the principles of the circular bioeconomy.


Asunto(s)
Antioxidantes , Celulosa , Embalaje de Alimentos , Embalaje de Alimentos/instrumentación , Celulosa/química , Antioxidantes/química , Rubus/química , Resistencia a la Tracción , Glycine max/química , Permeabilidad , Frutas/química , Almacenamiento de Alimentos , Rayos Ultravioleta , Interacciones Hidrofóbicas e Hidrofílicas
15.
J Agric Food Chem ; 72(33): 18573-18584, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105709

RESUMEN

Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Glycine max , Isoflavonas , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Semillas , Glycine max/genética , Glycine max/metabolismo , Glycine max/química , Isoflavonas/metabolismo , Isoflavonas/análisis , Semillas/genética , Semillas/química , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes
16.
Int J Biol Macromol ; 278(Pt 1): 134617, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127293

RESUMEN

This study aimed to prepare soybean dregs dietary fibre (DF) using physically assisted chemical (KHMSO) modification and study its structure, function and vitro simulation experiments. The soluble dietary fibre (SDF) content in KHMSO increased and insoluble dietary fibre (IDF) content decreased. The modified DF surface becomes irregular and rough, and the results of XPS fitting indicated that the DF structure had different peak-splitting groups. The KHMSO-treated group had the lowest digestion rate in gastric fluid and the highest digestibility in intestine fluid. The OD600 of fecal cultures was increased to 0.915, and the increased abundance of microbiota was associated with the metabolism of SCFAs, such as Lachnospiraceae, as well as the higher n-butyric acid in the KHMSO-treated group compared to the other groups and lower than the inulin, suggesting KHMSO might enhance the production of functional foods aimed at promoting intestinal health.


Asunto(s)
Fibras de la Dieta , Digestión , Fermentación , Glycine max , Prebióticos , Fibras de la Dieta/metabolismo , Fibras de la Dieta/farmacología , Glycine max/química , Digestión/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Heces/química , Humanos , Animales
17.
Food Chem ; 461: 140859, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39163723

RESUMEN

Seasonings such as naturally fermented soy sauce without added monosodium glutamate (MSG), are currently a growth market in China. However, fraudulent and mislabeled zero-added MSG soy sauce may cause a risk of excessive MSG intake, increasing food safety issues for consumers. This study investigates stable carbon and nitrogen isotopes and 16 amino acids in typical Chinese in-market soy sauces and uses a similarity method to establish criteria to authenticate MSG addition claims. Results reveal most zero-added MSG soy sauces had lower δ13C values (-25.2 ‰ to -17.7 ‰) and glutamic acid concentrations (8.97 mg mL-1 to 34.76 mg mL-1), and higher δ15N values (-0.27 ‰ +0.95 ‰) and other amino acid concentrations than added-MSG labeled samples. A combined approach, using isotopes, amino acids, similarity coefficients and uncertainty values, was evaluated to rapidly and accurately identify zero-added MSG soy sauces from MSG containing counterparts.


Asunto(s)
Aminoácidos , Isótopos de Carbono , Glutamato de Sodio , Alimentos de Soja , Alimentos de Soja/análisis , Aminoácidos/análisis , Aminoácidos/química , Glutamato de Sodio/química , Glutamato de Sodio/análisis , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , China , Glycine max/química , Aditivos Alimentarios/análisis
18.
Food Chem ; 461: 140941, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181058

RESUMEN

Phytic acid (IP6) and its degradation products lower myo-inositol phosphates exert different impacts on nutrient bioavailability and product quality characteristics. However, information regarding the occurrence of IP6 and its degradation products is scarce. In this work, simultaneous determination of IP6 and its degradation products in soybeans was developed, with emphasis on analysis by UPLC-MS/MS and a BEH Amide column both with hybrid surface technology. The retention and analyte/metal surface interactions issues were effectively addressed without ion-pairing reagents addition or derivatization. This method was applied to analyze soybeans from China. Total contents were 0.44-13.2 mg/g, and IP6 and its degradation product myo-inositol pentakisphosphate (IP5) were the predominant analytes, accounting for over 99%. Accession type significantly affected IP5 content, and landraces had significantly higher IP5 than cultivars. Geographically, the lowest IP6 was concentrated in the Huanghuaihai region. Significant correlations existed between IP6 and longitude, altitude, and annual cumulative sunshine hours. This study provides comprehensive insights into the IP6 and its degradation product profile in soybeans, which will benefit breeding soybeans based on specific requirements.


Asunto(s)
Glycine max , Ácido Fítico , Espectrometría de Masas en Tándem , Ácido Fítico/análisis , Ácido Fítico/química , Glycine max/química , Glycine max/metabolismo , China , Cromatografía Líquida de Alta Presión
19.
Fish Shellfish Immunol ; 153: 109846, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168291

RESUMEN

Probiotic Bacillus pumilus SE5, heat-inactivated (HSE5) or active (ASE5), were supplemented to high soybean meal (HSM) (36 %) diet at whole term (0-56 days) and middle term (29-56 days) to investigate the preventing and repairing effects of B. pumilus SE5 in ameliorating the adverse effects of HSM in Epinephelus coioides. The results suggested that the HSM significantly decreased the weight gain rate (WGR), specific growth rate (SGR), and increased the feed conversion rate (FCR) at day 56 (P < 0.05), while HSE5 and ASE5 promoted the growth performance. The HSE5 and ASE5 showed preventive and reparative functions on the antioxidant capacity and serum immunity, with significantly increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) activities, and reduced malondialdehyde (MDA) level, and increased acid phosphatase (ACP), alkaline phosphatase (AKP), immunoglobulin M (IgM) and complement 3 (C3). The HSM impaired the intestinal health (destroyed the intestinal structure, significantly increased the contents of serum D-lactic acid and diamine oxidase, and reduced the expressions of claudin-3 and occludin), while HSE5 and ASE5 improved them at whole term and middle term. The HSM impaired the intestinal microbiota and reduced its diversity, and the HSE5 or ASE5 improved the intestinal microbiota (especially at whole term). HSE5 and ASE5 improved the intestinal mRNA expressions of anti-inflammatory genes (il-10 and tgf-ß1) and reduced the expressions of pro-inflammatory genes (il-1ß, il-8, il-12), and promoted the expressions of humoral immune factor-related genes (cd4, igm, mhcII-α) and antimicrobial peptide genes (ß-defensin, epinecidin-1 and hepcidin-1), and decreased the expressions of NF-κB/MAPK signaling pathway-related genes (ikk-α, nf-κb, erk-1), and improved the expressions of MAPK signaling pathway-related gene p38-α (P < 0.05). In conclusion, the heat-inactivated and active B. pumilus SE5 effectively prevented and repaired the suppressive effects of soybean meal in E. coioides, which underscored the potential of B. pumilus SE5 as a nutritional intervention agent in HSM diet in aquaculture.


Asunto(s)
Alimentación Animal , Bacillus pumilus , Lubina , Dieta , Glycine max , Probióticos , Animales , Lubina/inmunología , Alimentación Animal/análisis , Dieta/veterinaria , Probióticos/administración & dosificación , Probióticos/farmacología , Bacillus pumilus/inmunología , Bacillus pumilus/química , Glycine max/química , Calor/efectos adversos , Inmunidad Innata , Distribución Aleatoria , Microbioma Gastrointestinal/efectos de los fármacos
20.
J Agric Food Chem ; 72(36): 19957-19965, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213533

RESUMEN

Achieving consensus about the rhizosphere effect on soil antibiotic resistomes is challenging due to the variability in antibiotic concentrations, sources, and the elusory underlying mechanisms. Here, we characterized the antibiotic resistomes in both the rhizosphere and bulk soils of soybean plants grown in environments with varying levels of antibiotic contamination, using sulfamethoxazole (SMX) as a model compound. We also investigated the factors influencing resistome profiles. Soybean cultivation altered the structure of antibiotic-resistant genes (ARGs) and increased their absolute abundance. However, the rhizosphere effect on the relative abundance of ARGs was dependent on SMX concentrations. At low SMX levels, the rhizosphere effect was characterized by the inhibition of antibiotic-resistant bacteria (ARBs) and the promotion of sensitive bacteria. In contrast, at high SMX levels, the rhizosphere promoted the growth of ARBs and facilitated horizontal gene transfer of ARGs. This novel mechanism provides new insights into accurately assessing the rhizosphere effect on soil antibiotic resistomes.


Asunto(s)
Antibacterianos , Bacterias , Glycine max , Rizosfera , Microbiología del Suelo , Sulfametoxazol , Sulfametoxazol/farmacología , Sulfametoxazol/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/química , Glycine max/microbiología , Antibacterianos/farmacología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Suelo/química , Farmacorresistencia Bacteriana/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA