Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63.096
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124995, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39208544

RESUMEN

Raman Optical Activity combined with Circularly Polarized Luminescence (ROA-CPL) was used in the spectral recognition of glutathione peptide (GSH) and its model post-translational modifications (PTMs). We demonstrate the potential of ROA spectroscopy and CPL probes (EuCl3, Na3[Eu(DPA)3], NaEuEDTA) in the study of unmodified peptide, i.e. GSH, and its derivatives, i.e. glutathione oxidized (GSSG), S-acetylglutathione (GSAc) and S-nitrosoglutathione (GSNO). ROA spectral features of GSH, GSSG, and GSAc were determined along with thier changes upon the different pH conditions. Apart from the ROA, induced CPL signals of Eu(III) probes also proved to be sensitive to the structural modifications of GSH-based model PTMs, enabling their spectral recognition, especially by the NaEuEDTA probe.


Asunto(s)
Glutatión , Espectrometría Raman , Glutatión/química , Luminiscencia , Mediciones Luminiscentes , Procesamiento Proteico-Postraduccional , Concentración de Iones de Hidrógeno
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125011, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39213831

RESUMEN

Thiols function as antioxidants in food, prolonging shelf life and enhancing flavor. Moreover, thiols are vital biomolecules involved in enzyme activity, cellular signal transduction, and protein folding among critical biological processes. In this paper, the fluorescent probe PYL-NBD was designed and synthesized, which utilized the fluorescent molecule pyrazoline, the lysosome-targeted morpholine moiety, and the sensing moiety NBD. Probe PYL-NBD was tailored for the recognition of biothiols through single-wavelength excitation, yielding distinct fluorescence emission signals: blue for Cys, Hcy, and GSH; green for Cys, Hcy. Probe PYL-NBD exhibited rapid reaction kinetics (<10 min), distinct fluorescence response signals, and low detection limits (15.7 nM for Cys, 14.4 nM for Hcy, and 12.6 nM for GSH). Probe PYL-NBD enabled quantitative determination of Cys content in food samples and L-cysteine capsules. Furthermore, probe PYL-NBD had been successfully applied for confocal imaging with dual-channel detection of biothiols in various biological specimens, including HeLa cells, zebrafish, tumor sections, and Arabidopsis thaliana.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Análisis de los Alimentos , Glutatión , Lisosomas , Espectrometría de Fluorescencia , Pez Cebra , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Lisosomas/química , Lisosomas/metabolismo , Células HeLa , Cisteína/análisis , Animales , Análisis de los Alimentos/métodos , Glutatión/análisis , Espectrometría de Fluorescencia/métodos , Homocisteína/análisis , Arabidopsis/química , Límite de Detección , Microscopía Confocal
3.
Anal Chim Acta ; 1325: 343114, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244302

RESUMEN

BACKGROUND: Temperature sensing is commonly used in point-of-care (POC) detection technologies, yet the portability and convenience of use are frequently compromised by the complexity of thermosensitive processes and signal transduction. Especially, multi-step target recognition reactions and temperature measurement in the reaction vessel present challenges in terms of stability and integration of detection devices. To further combine photothermal reaction and signal readout in one assay, these two processes enable to be integrated into miniaturized microfluidic chips, thereby facilitating photothermal sensing and achieving a simple visual temperature sensing as POC detection. RESULTS: A copper ion (Cu2+)-catalyzed photothermal sensing system integrated onto a microfluidic distance-based analytical device (µDAD), enabling the visual, portable, and sensitive quantitative detection of multiple targets, including ascorbic acid, glutathione, and alkaline phosphatase (ALP). The polydopamine nanoparticles (PDA NPs) were synthesized by the regulation of free Cu2+ through redox or coordination reactions, facilitating the transduction of distinct photothermal response signals and providing the versatile Cu2+-responsive sensing systems. Promoted by integration with a photothermal µDAD, the system combines PDA's photothermal responsiveness and thermosensitive gas production of ammonium bicarbonate for improved sensitivity of ALP detection, reaching the detection limit of 9.1 mU/L. The system has successfully achieved on-chip detection of ALP with superior anti-interference capability and recoveries ranging from 96.8 % to 104.7 %, alongside relative standard deviations below 8.0 %. SIGNIFICANCE AND NOVELTY: The µDAD design accommodated both the photothermal reaction of PDA NPs and thermosensitive gas production reaction, achieving the rapid sensing of visual distance signals. The µDAD-based Cu2+-catalyzed photothermal sensing system holds substantial potential for applications in biochemical analysis and clinical diagnostics, underscored by the versatile Cu2+ regulation mechanism for a broad spectrum of biomarkers.


Asunto(s)
Ácido Ascórbico , Cobre , Indoles , Pruebas en el Punto de Atención , Polímeros , Cobre/química , Indoles/química , Polímeros/química , Catálisis , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Límite de Detección , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/química , Temperatura , Humanos , Glutatión/análisis , Glutatión/química , Nanopartículas/química , Procesos Fotoquímicos , Dispositivos Laboratorio en un Chip , Técnicas Biosensibles
4.
Cell Commun Signal ; 22(1): 431, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243059

RESUMEN

Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.


Asunto(s)
Glutatión , Hepatocitos , Proteína Disulfuro Isomerasas , Especies Reactivas de Oxígeno , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Animales , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Ferroptosis/efectos de los fármacos , Óxido Nítrico/metabolismo , Masculino , Humanos
5.
Int J Nanomedicine ; 19: 8929-8947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246429

RESUMEN

Introduction: Cell death regulation holds a unique value in the field of cancer therapy. Recently, disulfidptosis has garnered substantial scientific attention. Previous studies have reported that sonodynamic therapy (SDT) based on reactive oxygen species (ROS) can regulate cancer cell death, achieving an limited anti-cancer effect. However, the integration of SDT with disulfidptosis as an anti-cancer strategy has not been extensively developed. In this study, we constructed an artificial membrane disulfidptosis sonosensitizer, specifically, a nanoliposome (SC@lip) coated with a combination of the chemotherapy medicine Sorafenib (Sora) and sonosensitizer Chlorin e6 (Ce6), to realize a one-stop enhanced SDT effect that induces disulfidptosis-like cancer cell death. Methods: Sorafenib and Ce6 were co-encapsulated into PEG-modified liposomes, and SC@Lip was constructed using a simple rotary evaporation phacoemulsification method. The cell phagocytosis, ROS generation ability, glutathione (GSH) depletion ability, lipid peroxidation (LPO), and disulfidptosis-like death mediated by SC@Lip under ultrasound (US) irradiation were evaluated. Based on a 4T1 subcutaneous tumor model, both the in vivo biological safety assessment and the efficacy of SDT were assessed. Results: SC@Lip exhibits high efficiency in cellular phagocytosis. After being endocytosed by 4T1 cells, abundant ROS were produced under SDT activation, and the cell survival rates were below 5%. When applied to a 4T1 subcutaneous tumor model, the enhanced SDT mediated by SC@Lip inhibited tumor growth and prolonged the survival time of mice. In vitro and in vivo experiments show that SC@Lip can enhance the SDT effect and trigger disulfidptosis-like cancer cell death, thus achieving anti-tumor efficacy both in vitro and in vivo. Conclusion: SC@Lip is a multifunctional nanoplatform with an artificial membrane, which can integrate the functions of sonosensitization and GSH depletion into a biocompatible nanoplatform, and can be used to enhance the SDT effect and promote disulfidptosis-like cancer cell death.


Asunto(s)
Clorofilidas , Peroxidación de Lípido , Liposomas , Porfirinas , Especies Reactivas de Oxígeno , Sorafenib , Terapia por Ultrasonido , Animales , Liposomas/química , Peroxidación de Lípido/efectos de los fármacos , Sorafenib/farmacología , Sorafenib/química , Terapia por Ultrasonido/métodos , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Femenino , Ratones Endogámicos BALB C , Nanopartículas/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Glutatión/metabolismo , Muerte Celular/efectos de los fármacos
6.
Sci Rep ; 14(1): 20770, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237744

RESUMEN

Glioblastoma (GBM) represents an aggressive brain tumor, characterized by intra- and inter-tumoral heterogeneity and therapy resistance, leading to unfavourable prognosis. An increasing number of studies pays attention on the regulation of ferroptosis, an iron-dependent cell death, as a strategy to reverse drug resistance in cancer. However, the debate on whether this strategy may have important implications for the treatment of GBM is still ongoing. In the present study, we used ferric ammonium citrate and erastin to evaluate ferroptosis induction effects on two human GBM cell lines, U-251 MG, with proneural characteristics, and T98-G, with a mesenchymal profile. The response to ferroptosis induction was markedly different between cell lines, indeed T98-G cells showed an enhanced antioxidant defence, with increased glutathione levels, as compared to U-251 MG cells. Moreover, using bioinformatic approaches and analysing publicly available datasets from patients' biopsies, we found that GBM with a mesenchymal phenotype showed an up-regulation of several genes involved in antioxidant mechanisms as compared to proneural subtype. Thus, our results suggest that GBM subtypes differently respond to ferroptosis induction, emphasizing the significance of further molecular studies on GBM to better discriminate between various tumor subtypes and progressively move towards personalized therapy.


Asunto(s)
Antioxidantes , Ferroptosis , Glioblastoma , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Línea Celular Tumoral , Antioxidantes/farmacología , Antioxidantes/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Compuestos Férricos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Glutatión/metabolismo , Piperazinas
7.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 619-624, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39223027

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by continuous inflammation and ulcer formation in the intestinal mucosa.Its pathogenesis involves immune dysfunction,dysbiosis of gut microbiota,and mucosal damage caused by inflammation.Ferroptosis is an iron-dependent form of cell death regulated by disturbances in iron metabolism,lipid peroxidation,and depletion of glutathione (GSH).Studies have indicated that ferroptosis plays a crucial role in the pathogenesis of UC,particularly in regulating inflammatory responses and damaging intestinal epithelial cells.This article reviews the regulatory mechanisms and roles of ferroptosis in UC and discusses the potential therapeutic strategies to alleviate UC symptoms by modulating iron metabolism,reducing lipid peroxidation,and maintaining GSH levels,providing new targets and directions for the diagnosis and treatment of UC.


Asunto(s)
Colitis Ulcerosa , Ferroptosis , Humanos , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Hierro/metabolismo , Peroxidación de Lípido , Glutatión/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Microbioma Gastrointestinal , Inflamación , Animales
8.
BMC Plant Biol ; 24(1): 853, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261760

RESUMEN

BACKGROUND: Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and ß-glucan affect the ability of green plant regeneration efficiency (GPRE). RESULTS: The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated using the DArTseqMet molecular marker method, which also detects cytosine methylation. Phenotype variability in ß-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effectiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demonstrates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second component GSH, ß-glucans, Cu(II), GPRE). CONCLUSIONS: We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.


Asunto(s)
Metilación de ADN , Glutatión , Hordeum , S-Adenosilmetionina , Técnicas de Cultivo de Tejidos , beta-Glucanos , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Hordeum/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Glutatión/metabolismo , Técnicas de Cultivo de Tejidos/métodos , beta-Glucanos/metabolismo , S-Adenosilmetionina/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regeneración/efectos de los fármacos
9.
Sci Rep ; 14(1): 21462, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271690

RESUMEN

Potency assessment of monoclonal antibodies or corresponding biosimilars in cell-based assays is an essential prerequisite in biopharmaceutical research and development. However, cellular bioassays are still subject to limitations in sample throughput, speed, and often need costly reagents or labels as they are based on an indirect readout by luminescence or fluorescence. In contrast, whole-cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry (MS) has emerged as a direct, fast and label-free technology for functional drug screening being able to unravel the molecular complexity of cellular response to pharmaceutical reagents. However, this approach has not yet been used for cellular testing of biologicals. In this study, we have conceived, developed and benchmarked a label-free MALDI-MS based cell bioassay workflow for the functional assessment of complement-dependent cytotoxicity (CDC) of Rituximab antibody. By computational evaluation of response profiles followed by subsequent m/z feature annotation via fragmentation analysis and trapped ion mobility MS, we identified adenosine triphosphate and glutathione as readily MS-assessable metabolite markers for CDC and demonstrate that robust concentration-response characteristics can be obtained by MALDI-TOF MS. Statistical assay performance indicators suggest that whole-cell MALDI-TOF MS could complement the toolbox for functional cellular testing of biopharmaceuticals.


Asunto(s)
Rituximab , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Rituximab/farmacología , Proteínas del Sistema Complemento/metabolismo , Bioensayo/métodos , Anticuerpos Monoclonales , Glutatión/metabolismo , Adenosina Trifosfato/metabolismo
10.
Mikrochim Acta ; 191(10): 599, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276245

RESUMEN

A colorimetric sensor for the rapid and sensitive detection of GSH was developed. The hydrothermal method was utilized to synthesize chitosan-stabilized gold nanoparticles (CS-AuNPs). The synthesized CS-AuNPs were characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffractograms (XRD), and Fourier transform infrared spectroscopy (FTIR). The CS-AuNPs are well-dispersed and possess a spherical shape with an average particle size of 10.05 ± 2.26 nm in aqueous solution. They show an intrinsic peroxidase-like activity, which could efficiently catalyze the decomposition of H2O2 to produce •OH radicals. These radicals then oxidized 3, 3´, 5, 5´-tetramethylbenzidine (TMB), resulting in the formation of the blue oxidized product oxTMB, observed a visible color change (from colorless to blue), and oxTMB had an obvious absorption peak at 652 nm. The presence of GSH could inhibit the peroxidase-like activity of CS-AuNPs, thereby reducing the formation of oxTMB. The solution's blue hue underwent a reduction in absorption intensity. Based on this fact, a novel and sensitive colorimetric sensor for detection of GSH was constructed. Under optimal conditions, the results of detection had an excellent linear relationship between the concentration of GSH and ∆A within the range 0.5 ~ 50.0 × 10-6 mol/L. The limit of detection (LOD) for GSH was 2.10 × 10-7 mol/L, which was much lower than those in most previous works. Furthermore, for detection in real human serum samples, the recoveries of GSH and the relative standard deviations (RSD) in the serum were in the range 98.40 ~ 103.32% and 1.85 ~ 3.54%, respectively. Thus, this visual colorimetric method has good precision and can be used for GSH detection in practical applications, promising in the fields of bioanalysis and illness diagnostics.


Asunto(s)
Quitosano , Colorimetría , Glutatión , Oro , Límite de Detección , Nanopartículas del Metal , Oro/química , Humanos , Colorimetría/métodos , Quitosano/química , Nanopartículas del Metal/química , Glutatión/sangre , Glutatión/química , Peróxido de Hidrógeno/química , Bencidinas/química , Peroxidasa/química
11.
Stem Cell Res Ther ; 15(1): 303, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278906

RESUMEN

BACKGROUND: Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS: In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS: We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION: The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.


Asunto(s)
Células Madre Hematopoyéticas , Proteómica , Especies Reactivas de Oxígeno , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Feto/metabolismo , Feto/citología , Adulto , Sangre Fetal/citología , Sangre Fetal/metabolismo , Butionina Sulfoximina/farmacología , Glutatión/metabolismo
12.
Wiad Lek ; 77(7): 1311-1317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241127

RESUMEN

OBJECTIVE: Aim: The objective of the research was to conduct a comprehensive longitudinal analysis of the temporal dynamics of glutathione system functionality in individuals diagnosed with paranoid schizophrenia. Specifically, the research was focused on investigating variations in the profiles of glutathione-dependent enzymes, with meticulous consideration given to the duration of the illness. PATIENTS AND METHODS: Materials and Methods: The study group comprised 300 individuals officially diagnosed with 'Paranoid Schizophrenia,' subdivided into five subgroups, each consisting of 60 patients. The subgroups were defined as follows: Subgroup I included 60 patients with a disease duration ranging from 3 to 5 years; Subgroup II comprised 60 patients with a duration of 6 to 10 years; Subgroup III consisted of 60 patients with a duration of 11 to 15 years; Subgroup IV included 60 patients with a duration of 16 to 20 years; and Subgroup V encompassed 60 patients with a duration of 21 years and older. The comparison group comprised 20 patients diagnosed with "Primary psychotic episode". RESULTS: Results: The research demonstrates a consistent and noteworthy reduction in the enzymatic activities of glutathione peroxidase, glutathione reductase, and glutathione-S-transferase in various Subgroups of paranoid schizophrenia patients. The observed declines are particularly prominent within the first 3-5 years of the illness, show casing statistically significant reductions. Patients with prolonged illness durations, especially surpassing 21 years, display substantial reductions in all three enzymes, suggesting a cumulative enzymatic impact associated with prolonged illness. CONCLUSION: Conclusions: The identification of critical periods of inhibition in the glutathione protection chain, provides valuable information about potential therapeutic interventions for individuals with paranoid schizophrenia.


Asunto(s)
Esquizofrenia Paranoide , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Reductasa/sangre , Glutatión Transferasa/metabolismo , Adulto Joven , Estudios Longitudinales , Factores de Tiempo , Glutatión/metabolismo
13.
Microb Ecol ; 87(1): 111, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39231820

RESUMEN

In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Minería , Microbiología del Suelo , Uranio , Uranio/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Acil-Butirolactonas/metabolismo , Glutatión/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo
14.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39275587

RESUMEN

A sequential injection analysis method for the determination of glutathione (GSH) in pharmaceuticals has been developed. It is based on the reduction of the Cu(II)-neocuproine complex by GSH and the formation of an orange-yellow colored Cu(I)-neocuproine complex with maximum absorbance at 458 nm. Under optimal conditions the method is characterized by a linear calibration range of 6.0 × 10-7-8.0 × 10-5 mol L-1 (Amax = 3270 CGSH - 0.0010; R2 = 0.9983), limit of detection of 2.0 × 10-7 mol L-1, limit of quantification of 6.7 × 10-7 mol L-1, repeatability (expressed as relative standard deviation) of 3.8%, and sampling rate of 60 h-1. The newly developed method has been successfully applied to the determination of GSH in pharmaceutical samples with no statistically significant difference between the results obtained and those produced by the standard Pharmacopoeia method.


Asunto(s)
Glutatión , Glutatión/análisis , Glutatión/química , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Análisis de Inyección de Flujo/métodos , Cobre/química , Cobre/análisis , Límite de Detección , Calibración
15.
Anal Chim Acta ; 1328: 343186, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39266201

RESUMEN

BACKGROUND: Biothiols are important for numerous cellular processes, such as resisting oxidative stress and protecting cell health. Their abnormal levels and molecular configurations have been associated with various diseases. So, establishing an effective and reliable method for the specific detection and enantiomeric discrimination of diverse biothiols is highly meaningful. RESULTS: We have developed a new NMR and CD probe using 1,4-dinitroimidazole, specifically targeting the thiol group. This probe allows for the specific detection and enantiomeric recognition of biothiols in complex mixtures. We achieved this by identifying the distinguishable 1H NMR signals of 2nd in imidazole-ring of the resulting 4NI-biothiols in the downfield region at 7-8 ppm and newly discovered induced CD signals within 290-430 nm. Using this probe, the limits of detection of Cys, GSH, and Hcy, the recovery rates, and the concentration of GSH extracted from HEK293T cells were determined by measuring the unique downfield 1H NMR signals. Moreover, Cys, GSH, and Hcy can be discriminated simultaneously in complicated samples at a pH range of 2-3.5. Furthermore, this probe can also be utilized to sense chiral thiol-drugs. SIGNIFICANCE: This method offers a cost-effective and accurate sensing solution for the specific detection of biothiols in complex mixtures, with stereochemical recognition.


Asunto(s)
Imidazoles , Compuestos de Sulfhidrilo , Humanos , Estereoisomerismo , Imidazoles/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Células HEK293 , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Cisteína/análisis , Glutatión/análisis , Glutatión/química , Homocisteína/análisis , Límite de Detección , Estructura Molecular
16.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273244

RESUMEN

Redox homeostasis is the balance between oxidation and reduction reactions. Its maintenance depends on glutathione, including its reduced and oxidized form, GSH/GSSG, which is the main intracellular redox buffer, but also on the nicotinamide adenine dinucleotide phosphate, including its reduced and oxidized form, NADPH/NADP+. Under conditions that enable yeast cells to undergo fermentative metabolism, the main source of NADPH is the pentose phosphate pathway. The lack of enzymes responsible for the production of NADPH has a significant impact on yeast cells. However, cells may compensate in different ways for impairments in NADPH synthesis, and the choice of compensation strategy has several consequences for cell functioning. The present study of this issue was based on isogenic mutants: Δzwf1, Δgnd1, Δald6, and the wild strain, as well as a comprehensive panel of molecular analyses such as the level of gene expression, protein content, and enzyme activity. The obtained results indicate that yeast cells compensate for the lack of enzymes responsible for the production of cytosolic NADPH by changing the content of selected proteins and/or their enzymatic activity. In turn, the cellular strategy used to compensate for them may affect cellular efficiency, and thus, the ability to grow or sensitivity to environmental acidification.


Asunto(s)
Fermentación , Homeostasis , NADP , Oxidación-Reducción , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , NADP/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutatión/metabolismo , Vía de Pentosa Fosfato
17.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273266

RESUMEN

Liver transplantation remains the only definitive treatment for end-stage liver diseases. However, the increasing prevalence of fatty liver disease among potential donors exacerbates the shortage of suitable organs. This study evaluates the efficacy of the preservation solution Institut Georges Lopez-2 (IGL-2) compared to Histidine-Tryptophan-Ketoglutarate (HTK) and University of Wisconsin (UW) preservation solutions in mitigating ischemia-reperfusion injury (IRI) in steatotic livers. Using Zucker Obese rat livers, we assessed the impact of 24-h static cold storage (SCS) with each solution on transaminase release, glutathione redox balance, antioxidant enzyme activity, lipoperoxidation, and inflammation markers. IGL-2 and UW solutions demonstrated reduced transaminase and lactate levels compared to HTK, indicating better preservation of liver integrity. IGL-2 maintained a higher reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, suggesting more effective management of oxidative stress. Antioxidant enzyme activities catalase, superoxide dismutase, and glutathione peroxidase (CAT, SOD, GPX) were higher in IGL-2 preserved livers, contributing to decreased oxidative damage. Lipid peroxidation markers and inflammatory markers were lower in IGL-2 than in HTK, indicating reduced oxidative stress and inflammation. Additionally, improved mitochondrial function was observed in the IGL-2 group, correlating with reduced reactive oxygen species (ROS) production and lipid peroxidation. These findings suggest that IGL-2 offers superior preservation of liver viability, reduces oxidative stress, and minimizes inflammation compared to HTK and UW solutions. By maintaining a higher ratio of reduced glutathione and antioxidant enzyme activity, IGL-2 effectively mitigates the harmful effects of ischemia-reperfusion injury. The reduced lipid peroxidation and inflammation in the IGL-2 group further underscore its potential in improving liver transplant outcomes. These results highlight the importance of optimizing preservation solutions to enhance the viability and functionality of donor organs, potentially expanding the donor pool and improving the success rates of liver transplantation. Future research should focus on refining preservation techniques and exploring additional protective agents to further improve organ preservation and transplant outcomes.


Asunto(s)
Adenosina , Alopurinol , Antioxidantes , Hígado Graso , Insulina , Hígado , Soluciones Preservantes de Órganos , Procaína , Rafinosa , Ratas Zucker , Daño por Reperfusión , Animales , Soluciones Preservantes de Órganos/farmacología , Ratas , Rafinosa/farmacología , Insulina/metabolismo , Adenosina/metabolismo , Adenosina/farmacología , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Alopurinol/farmacología , Masculino , Procaína/farmacología , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Glucosa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Manitol/farmacología , Isquemia Fría/efectos adversos , Cloruro de Potasio/farmacología , Preservación de Órganos/métodos , Trasplante de Hígado/métodos
18.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273700

RESUMEN

Swietenia macrophylla fruit is a valuable and historically significant medicinal plant with anti-hypertension and anti-diabetes. We identified a toxic component, Febrifugin, from the edible part of the nut following zebrafish toxicity-guided isolation. Febrifugin is a mexicanolide-type limonoid compound. The toxic factor induced acute toxicity in zebrafish, including yolk sac edema and pericardial edema, reduced body length, decreased melanin deposition, and presented acute skeletal developmental issues. Further exploration of the acute toxicity mechanism through metabolomics revealed that Febrifugin caused significant changes in 13 metabolites in zebrafish larvae, which are involved in the pentose phosphate, tricarboxylic acid (TCA) cycle, and amino acid biosynthesis. The bioassay of oxidative stress capacity and qRT-PCR measurement showed that the compound significantly affected the h6pd gene in the pentose phosphate pathway and the mRNA expression of cs, idh3a, fh, and shda genes in the TCA cycle, leading to reactive oxygen species (ROS) accumulation and a notable decrease in glutathione (GSH) activity in zebrafish. These findings provide a basis for the rational use of S. macrophylla as a medicinal plant and raise awareness of the safety of medicinal plants.


Asunto(s)
Metabolómica , Pez Cebra , Animales , Pez Cebra/metabolismo , Metabolómica/métodos , Estrés Oxidativo/efectos de los fármacos , Meliaceae/química , Limoninas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nueces/química , Larva/efectos de los fármacos , Larva/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metaboloma , Plantas Medicinales/química , Ciclo del Ácido Cítrico/efectos de los fármacos , Glutatión/metabolismo
19.
FASEB J ; 38(17): e70033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258853

RESUMEN

Glutathione S-transferase-Pi 1 (GSTP1) is an isozyme that plays a key role in detoxification and antioxidative damage. It also confers resistance to tumor therapy. However, the specific role of GSTP1 in radiotherapy resistance in pancreatic cancer (PC) is not known. In this study, we investigated how GSTP1 imparts radioresistance in PC. The findings of previous studies and this study revealed that ionizing radiation (IR) induces ferroptosis in pancreatic cancer cells, primarily by upregulating the expression of ACSL4. Our results showed that after IR, GSTP1 prolonged the survival of pancreatic cancer cells by inhibiting ferroptosis but did not affect apoptosis. The expression of GSTP1 reduced cellular ferroptosis by decreasing the levels of ACSL4 and increasing the GSH content. These changes increase the resistance of pancreatic cancer cells and xenograft tumors to IR. Our findings indicate that ferroptosis participates in irradiation-induced cell death and that GSTP1 prevents IR-induced death of pancreatic cancer cells by inhibiting ferroptosis.


Asunto(s)
Ferroptosis , Gutatión-S-Transferasa pi , Neoplasias Pancreáticas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/radioterapia , Gutatión-S-Transferasa pi/metabolismo , Gutatión-S-Transferasa pi/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Apoptosis/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Radiación Ionizante , Tolerancia a Radiación , Ratones Endogámicos BALB C , Glutatión/metabolismo
20.
Nat Commun ; 15(1): 7923, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256387

RESUMEN

Ferroptosis is a promising strategy for cancer therapy, with numerous inhibitors of its braking axes under investigation as potential drugs. However, few studies have explored the potential of activating the driving axes to induce ferroptosis. Herein, phosphatidylcholine peroxide decorating liposomes (LIPPCPO) are synthesized to induce ferroptosis by targeting divalent metal transporter 1 (DMT1). LIPPCPO is found to boost lysosomal Fe2+ efflux by inducing cysteinylation of lysosomal DMT1, resulting in glutathione peroxidase 4 (GPX4) suppression, glutathione depletion and ferroptosis in breast cancer cells and xenografts. Importantly, LIPPCPO induced ferroptotic cell death is independent of acquired resistance to radiation, chemotherapy, or targeted agents in 11 cancer cell lines. Furthermore, a strong synergistic ferroptosis effect is observed between LIPPCPO and an FDA-approved drug, artesunate, as well as X rays. The formula of LIPPCPO encapsulating artesunate significantly inhibits tumor growth and metastasis and improves the survival rate of breast cancer-bearing female mice. These findings provide a distinct strategy for inducing ferroptosis and highlight the potential of LIPPCPO as a vector to synergize the therapeutic effects of conventional ferroptosis inducers.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Liposomas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/efectos de los fármacos , Animales , Humanos , Femenino , Línea Celular Tumoral , Ratones , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Liposomas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Artesunato/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Hierro/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Ratones Desnudos , Glutatión/metabolismo , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA