Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
1.
J Cell Mol Med ; 28(17): e18512, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39248454

RESUMEN

Acute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato-protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato-protective effect better than each drug alone. Thus, the current study examines the pancreato-protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild-type (WT) and Hpa over-expressing (Hpa-Tg) mice. Cerulein-induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa-Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti-Hpa drug combinations constitute a novel therapy for this common orphan disease.


Asunto(s)
Glucuronidasa , Pancreatitis , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Ratones , Glucuronidasa/metabolismo , Glucuronidasa/antagonistas & inhibidores , Trehalosa/farmacología , Trehalosa/uso terapéutico , Ceruletida , Aspirina/farmacología , Aspirina/uso terapéutico , Modelos Animales de Enfermedad , Enfermedad Aguda , Autofagia/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/enzimología , Masculino , Ratones Transgénicos , Lipasa/metabolismo , Lipasa/antagonistas & inhibidores , Amilasas/sangre , Ratones Endogámicos C57BL , Saponinas
2.
Comput Biol Med ; 180: 108969, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089106

RESUMEN

ß-Glucuronidase, a crucial enzyme in drug metabolism and detoxification, represents a promising target for therapeutic intervention due to its potential to modulate drug pharmacokinetics and enhance therapeutic efficacy. Herein, we assessed the inhibitory potential of phytochemicals from Hibiscus trionum against ß-glucuronidase. Grossamide and grossamide K emerged as the most potent ß-glucuronidase inhibitors with IC50 values of 0.73 ± 0.03 and 1.24 ± 0.03 µM, respectively. The investigated alkaloids effectively inhibited ß-glucuronidase-catalyzed PNPG hydrolysis through a noncompetitive inhibition mode, whereas steppogenin displayed a mixed inhibition mechanism. Molecular docking analyses highlighted grossamide and grossamide K as inhibitors with the lowest binding free energy, all compounds successfully docked into the same main binding site occupied by the reference drug Epigallocatechin gallate (EGCG). We explored the interaction dynamics of isolated compounds with ß-glucuronidase through a 200 ns molecular dynamics (MD) simulation. Analysis of various MD parameters revealed that grossamide and grossamide K maintained stable trajectories and demonstrated significant energy stabilization upon binding to ß-glucuronidase. Additionally, these compounds exhibited the lowest average interaction energies with the target enzyme. The MM/PBSA calculations further supported these findings, showing the lowest binding free energies for grossamide and grossamide K. These computational results are consistent with experimental data, suggesting that grossamide and grossamide K could be potent inhibitors of ß-glucuronidase.


Asunto(s)
Alcaloides , Glucuronidasa , Hibiscus , Simulación del Acoplamiento Molecular , Alcaloides/química , Alcaloides/farmacología , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/química , Glucuronidasa/metabolismo , Hibiscus/química , Simulación de Dinámica Molecular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos
3.
J Enzyme Inhib Med Chem ; 39(1): 2387415, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39140677

RESUMEN

EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that E-9 (IC50 = 2.68 µM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC50 = 45.8 µM). Additionally, the inhibitory kinetic study indicated that E-9 (Ki = 1.64 µM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the para-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that E-9 has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that E-9 could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.


Asunto(s)
Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos , Escherichia coli , Glucuronidasa , Relación Estructura-Actividad , Estructura Molecular , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Simulación del Acoplamiento Molecular , Tiourea/farmacología , Tiourea/química , Tiourea/síntesis química , Glicoproteínas
4.
Biophys Chem ; 313: 107304, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079275

RESUMEN

Unraveling the intricacies of ß-glucuronidase inhibition is pivotal for developing effective strategies in applications specific to gastrointestinal health and drug metabolism. Our study investigated the efficacy of some Hibiscus trionum phytochemicals as ß-glucuronidase inhibitors. The results showed that cleomiscosin A and mansonone H emerged as the most potent inhibitors, with IC50 values of 3.97 ± 0.35 µM and 10.32 ± 1.85 µM, respectively. Mechanistic analysis of ß-glucuronidase inhibition indicated that cleomiscosin A and the reference drug EGCG displayed a mixed inhibition mode against ß-glucuronidase, while mansonone H exhibited noncompetitive inhibition against ß-glucuronidase. Docking studies revealed that cleomiscosin A and mansonone H exhibited the lowest binding affinities, occupying the same site as EGCG, and engaged significant key residues in their binding mechanisms. Using a 30 ns molecular dynamics (MD) simulation, we explored the interaction dynamics of isolated compounds with ß-glucuronidase. Analysis of various MD parameters showed that cleomiscosin A and mansonone H exhibited consistent trajectories and significant energy stabilization with ß-glucuronidase. These computational insights complemented experimental findings, underscoring the potential of cleomiscosin A and mansonone H as ß-glucuronidase inhibitors.


Asunto(s)
Cumarinas , Glucuronidasa , Hibiscus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Hibiscus/química , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Glucuronidasa/química , Cumarinas/química , Cumarinas/farmacología , Cumarinas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Glicoproteínas
5.
Bioorg Chem ; 150: 107609, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964145

RESUMEN

Herein, we scrutinized the inhibitory potential of five xanthones and a flavonoid, sourced from Centaurium spicatum, against ß-glucuronidase activity. The results showed that gentisin and azaleatin emerged as the most potent inhibitors, with significantly lower IC50 values of 0.96 ± 0.10 and 0.57 ± 0.04 µM, respectively. The evaluation of enzyme kinetics unveiled that the isolated xanthones manifested inhibition of ß-glucuronidase through a mixed inhibition mode, whereas azaleatin exhibited a noncompetitive inhibition mechanism. The findings from molecular docking analysis unveiled that the compounds under investigation, particularly azaleatin, displayed comparatively diminished binding affinities towards ß-glucuronidase. Furthermore, the tested drugs were shown to occupy a common binding site as the employed reference drug. Our comprehensive Molecular Dynamics (MD) simulations analysis revealed consistent trajectories for the investigated drugs, wherein azaleatin and gentisin demonstrated notable stabilization of energy levels. Analysis of various MD parameters revealed that drugs with the lowest IC50 values maintained relatively stable interactions with ß-glucuronidase. These drugs were shown to exert notable alterations in their conformation or flexibility upon complexation with the target enzyme. Conversely, the flexibility and accessibility of ß-glucuronidase was reduced upon drug binding, particularly with azaleatin and gentisin, underscoring the stability of the drug-enzyme complexes. Analysis of Coul-SR and LJ-SR interaction energies unveiled consistent and stable interactions between certain isolated drugs and ß-glucuronidase. Azaleatin notably displayed the lowest average Coul-SR interaction energy, suggesting strong electrostatic interactions with the enzyme's active site and significant conformational variability during simulation. Remarkably, LJ-SR interaction energies across different xanthones complexes were more negative than their Coul-SR counterparts, emphasizing the predominant role of van der Waals interactions, encompassing attractive dispersion and repulsive forces, in stabilizing the drug-enzyme complexes rather than electrostatic interactions.


Asunto(s)
Inhibidores Enzimáticos , Glucuronidasa , Simulación del Acoplamiento Molecular , Xantonas , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Xantonas/química , Xantonas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Relación Dosis-Respuesta a Droga , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad , Humanos , Glicoproteínas
6.
Life Sci ; 351: 122792, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857657

RESUMEN

AIMS: Drug-induced enteropathy is often associated with the therapeutic use of certain glucuronidated drugs. One such drug is mycophenolic acid (MPA), a well-established immunosuppressant of which gastrointestinal adverse effects are a major concern. The role of bacterial ß-glucuronidase (ß-G) from the gut microbiota in MPA-induced enteropathy has recently been discovered. Bacterial ß-G hydrolyzes MPAG, the glucuronide metabolite of MPA excreted in the bile, leading to the digestive accumulation of MPA that would favor in turn these adverse events. We therefore hypothesized that taming bacterial ß-G activity might reduce MPA digestive exposure and prevent its toxicity. MAIN METHODS: By using a multiscale approach, we evaluated the effect of increasing concentrations of MPA on intestinal epithelial cells (Caco-2 cell line) viability, proliferation, and migration. Then, we investigated the inhibitory properties of amoxapine, a previously described bacterial ß-G inhibitor, by using molecular dynamics simulations, and evaluated its efficiency in blocking MPAG hydrolysis in an Escherichia coli-based ß-G activity assay. The pharmacological effect of amoxapine was evaluated in a mouse model. KEY FINDINGS: We observed that MPA impairs intestinal epithelial cell homeostasis. Amoxapine efficiently blocks the hydrolysis of MPAG to MPA and significantly reduces digestive exposure to MPA in mice. As a result, administration of amoxapine in MPA-treated mice significantly attenuated gastrointestinal lesions. SIGNIFICANCE: Collectively, these results suggest that the digestive accumulation of MPA is involved in the pathophysiology of MPA-gastrointestinal adverse effects. This study provides a proof-of-concept of the therapeutic potential of bacterial ß-G inhibitors in glucuronidated drug-induced enteropathy.


Asunto(s)
Biotransformación , Microbioma Gastrointestinal , Glucuronidasa , Glucurónidos , Ácido Micofenólico , Ácido Micofenólico/metabolismo , Ácido Micofenólico/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Glucuronidasa/metabolismo , Glucuronidasa/antagonistas & inhibidores , Humanos , Animales , Ratones , Glucurónidos/metabolismo , Células CACO-2 , Masculino , Inmunosupresores/farmacología , Inmunosupresores/toxicidad , Inmunosupresores/metabolismo , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/microbiología , Proliferación Celular/efectos de los fármacos , Glicoproteínas
7.
Adv Sci (Weinh) ; 11(29): e2403337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810101

RESUMEN

Sepsis is an infection-triggered, rapidly progressive systemic inflammatory syndrome with a high mortality rate. Currently, there are no promising therapeutic strategies for managing this disease in the clinic. Heparanase plays a crucial role in the pathology of sepsis, and its inhibition can significantly relieve related symptoms. Here, a novel heparanase inhibitor CV122 is rationally designed and synthesized, and its therapeutic potential for sepsis with Lipopolysaccharide (LPS) and Cecal Ligation and Puncture (CLP)-induced sepsis mouse models are evaluated. It is found that CV122 potently inhibits heparanase activity in vitro, protects cell surface glycocalyx structure, and reduces the expression of adhesion molecules. In vivo, CV122 significantly reduces the systemic levels of proinflammatory cytokines, prevents organ damage, improves vitality, and efficiently protects mice from sepsis-induced death. Mechanistically, CV122 inhibits the activity of heparanase, reduces its expression in the lungs, and protects glycocalyx structure of lung tissue. It is also found that CV122 provides effective protection from organ damage and death caused by Crimean-Congo hemorrhagic fever virus (CCHFV) infection. These results suggest that CV122 is a potential drug candidate for sepsis therapy targeting heparanase by inhibiting cytokine storm.


Asunto(s)
Síndrome de Liberación de Citoquinas , Modelos Animales de Enfermedad , Glucuronidasa , Sepsis , Animales , Sepsis/tratamiento farmacológico , Ratones , Glucuronidasa/metabolismo , Glucuronidasa/antagonistas & inhibidores , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Ratones Endogámicos C57BL , Masculino , Citocinas/metabolismo
8.
Bioorg Med Chem Lett ; 97: 129543, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939863

RESUMEN

Heparanase-1 (HPSE1) is an endo-ß-d-glucuronidase that catalyzes degradation of heparan sulfate proteoglycans. Inhibition of HPSE1 appears to be a useful therapeutic target against cancer and proteinuric kidney diseases. We previously reported tetrahydroimidazo[1,2-a]pyridine 2 as a potent HPSE1 inhibitor after optimization of the synthetic reaction. However, synthesis of 2 involves a total of 19 steps, including a cyclization process that accompanies a strong odor due to the use of Lawesson's reagent and an epimerization reaction; furthermore, 2 exhibited insufficient selectivity for HPSE1 over exo-ß-d-glucuronidase (GUSß) and glucocerebrosidase (GBA), which also needed to be addressed. First, the cyclization reaction was optimized to synthesize tetrahydroimidazo[1,2-a]pyridine without using Lawesson's reagent or epimerization, with reference to previous reports. Next, 16 and 17 containing a bulkier substituent at position 6 than the 6-methoxyl group in 2 were designed and synthesized using the improved cyclization conditions, so that the synthetic route of 16 and 17 was shortened by five steps as compared with that of 2. The inhibitory activities of 16 and 17 against GUSß and GBA were reduced as compared with those of 2, that is, the compounds showed improved selectivity for HPSE1 over GUSß and GBA. In addition, 16 showed enhanced inhibitory activity against HPSE1 as compared with that of 2. Compound 16 appears promising as an HPSE1 inhibitor with therapeutic potential due to its highly potent inhibitory activity against HPSE1 with high selectivity for HPSE1.


Asunto(s)
Glucuronidasa , Piridinas , Glucuronidasa/antagonistas & inhibidores , Compuestos Organotiofosforados , Piridinas/química , Piridinas/farmacología
9.
Angew Chem Int Ed Engl ; 62(41): e202309838, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555536

RESUMEN

Herpes simplex virus (HSV-1) employs heparan sulfate (HS) as receptor for cell attachment and entry. During late-stage infection, the virus induces the upregulation of human heparanase (Hpse) to remove cell surface HS allowing viral spread. We hypothesized that inhibition of Hpse will prevent viral release thereby representing a new therapeutic strategy for HSV-1. A range of HS-oligosaccharides was prepared to examine the importance of chain length and 2-O-sulfation of iduronic moieties for Hpse inhibition. It was found that hexa- and octasaccharides potently inhibited the enzyme and that 2-O-sulfation of iduronic acid is tolerated. Computational studies provided a rationale for the observed structure-activity relationship. Treatment of human corneal epithelial cells (HCEs) infected with HSV-1 with the hexa- and octasaccharide blocked viral induced shedding of HS which significantly reduced spread of virions. The compounds also inhibited migration and proliferation of immortalized HCEs thereby providing additional therapeutic properties.


Asunto(s)
Glucuronidasa , Herpes Simple , Herpesvirus Humano 1 , Humanos , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Heparitina Sulfato/farmacología , Herpes Simple/enzimología , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo
10.
Cells ; 12(14)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37508554

RESUMEN

BACKGROUND: Heparanase (HPSE) is an endo-ß-glucuronidase that cleaves heparan sulfate side chains, leading to the disassembly of the extracellular matrix, facilitating cell invasion and metastasis dissemination. In this research, we investigated the role of a new HPSE inhibitor, RDS 3337, in the regulation of the autophagic process and the balance between apoptosis and autophagy in U87 glioblastoma cells. METHODS: After treatment with RDS 3337, cell lysates were analyzed for autophagy and apoptosis-related proteins by Western blot. RESULTS: We observed, firstly, that LC3II expression increased in U87 cells incubated with RDS 3337, together with a significant increase of p62/SQSTM1 levels, indicating that RDS 3337 could act through the inhibition of autophagic-lysosomal flux of LC3-II, thereby leading to accumulation of lipidated LC3-II form. Conversely, the suppression of autophagic flux could activate apoptosis mechanisms, as revealed by the activation of caspase 3, the increased level of cleaved Parp1, and DNA fragmentation. CONCLUSIONS: These findings support the notion that HPSE promotes autophagy, providing evidence that RDS 3337 blocks autophagic flux. It indicates a role for HPSE inhibitors in the balance between apoptosis and autophagy in U87 human glioblastoma cells, suggesting a potential role for this new class of compounds in the control of tumor growth progression.


Asunto(s)
Glioblastoma , Humanos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Línea Celular Tumoral , Glioblastoma/metabolismo , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo
11.
Pharmacol Res Perspect ; 10(5): e00998, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36082825

RESUMEN

Advances in pharmacomicrobiomics have shed light on the pathophysiology of drug-induced enteropathy associated with the therapeutic use of certain non-steroidal anti-inflammatory drugs, anticancer chemotherapies and immunosuppressants. The toxicity pathway results from the post-glucuronidation release and digestive accumulation of an aglycone generated in the context of intestinal dysbiosis characterized by the expansion of ß-glucuronidase-expressing bacteria. The active aglycone could trigger direct or indirect inflammatory signaling on the gut epithelium. Therefore, taming bacterial ß-glucuronidase (GUS) activity is a druggable target for preventing drug-induced enteropathy. In face of the limitations of antibiotic strategies that can worsen intestinal dysbiosis and impair immune functions, we hereby propose the use of a recombinant probiotic capable of mimicking repressive conditions of GUS through an inducible plasmid vector.


Asunto(s)
Glucuronidasa , Enfermedades Intestinales , Probióticos , Bacterias/metabolismo , Disbiosis/inducido químicamente , Disbiosis/complicaciones , Disbiosis/microbiología , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Humanos , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/complicaciones , Enfermedades Intestinales/prevención & control , Probióticos/uso terapéutico
12.
Proc Natl Acad Sci U S A ; 119(31): e2203167119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881786

RESUMEN

Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.


Asunto(s)
Glucuronidasa , Inhibidores de Glicósido Hidrolasas , Metástasis de la Neoplasia , Animales , Proliferación Celular/efectos de los fármacos , Glucuronidasa/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico
13.
Nat Commun ; 13(1): 136, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013263

RESUMEN

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Carcinógenos/antagonistas & inhibidores , Colitis/prevención & control , Neoplasias Colorrectales/prevención & control , Glucuronidasa/antagonistas & inhibidores , Inhibidores de Glicósido Hidrolasas/farmacología , Triclosán/antagonistas & inhibidores , Animales , Antiinfecciosos Locales/química , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/toxicidad , Anticarcinógenos/química , Anticarcinógenos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biotransformación , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Colitis/inducido químicamente , Colitis/enzimología , Colitis/microbiología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica , Glucuronidasa/química , Glucuronidasa/genética , Glucuronidasa/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triclosán/química , Triclosán/metabolismo , Triclosán/toxicidad
14.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681753

RESUMEN

The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/fisiología , Citocinas/metabolismo , Inhibidores Enzimáticos/metabolismo , Regulación Enzimológica de la Expresión Génica , Hormonas/metabolismo , Humanos , Inflamación/enzimología , MicroARNs , Neoplasias/enzimología , Fosforilación , Virosis/enzimología
15.
Food Funct ; 12(22): 11190-11201, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34668903

RESUMEN

Gut bacterial ß-glucuronidases (GUS) play an important role in deconjugation of various O-glucuronides, which are tightly linked with the drug-induced intestinal toxicity. Increasing evidence has indicated that inhibition of bacterial GUS could alleviate GUS-associated intestinal toxicity, but the potent and broad-spectrum inhibitors against multiple bacterial GUS have been rarely reported. This study aimed to find potent and broad-spectrum GUS inhibitors from Ginkgo biloba. It was found that amentoflavone displayed relatively strong inhibition on three GUS including CpGUS, SpasGUS and EcGUS. Further investigations demonstrated that amentoflavone could inhibit GUS-mediated PNPG hydrolysis in a dose-dependent manner with IC50 values of 2.36 µM, 2.88 µM and 3.43 µM for CpGUS, SpasGUS and EcGUS, respectively. Inhibition kinetic studies showed that amentoflavone functioned as a non-competitive inhibitor against all tested GUS with Ki values of less than 2 µM. Docking simulations indicated that amentoflavone could tightly bind on allosteric sites of three GUS mainly via hydrogen bonding interactions, and the number of hydroxyl groups of amentoflavone played crucial roles in these interactions. Collectively, our findings suggested that amentoflavone was a potent broad-spectrum inhibitor against bacterial GUS, which can be used as a promising lead compound for developing novel agents to alleviate GUS-associated intestinal toxicity.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Microbioma Gastrointestinal/efectos de los fármacos , Ginkgo biloba/química , Glucuronidasa/antagonistas & inhibidores , Glicoproteínas , Glicoproteínas/análisis , Glicoproteínas/química , Glicoproteínas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
16.
J Microbiol Biotechnol ; 31(11): 1576-1582, 2021 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-34528918

RESUMEN

Bacterial ß-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10- hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of ß-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 µM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new ß- glucuronidase inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Glucuronidasa/antagonistas & inhibidores , Polygala/química , Sacarosa/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Irinotecán , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína
17.
Bioorg Chem ; 116: 105306, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34521047

RESUMEN

Gut microbial ß-glucuronidases have drawn much attention due to their role as a potential therapeutic target to alleviate some drugs or their metabolites-induced gastrointestinal toxicity. In this study, fifteen 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety (1-15) were synthesized and evaluated for their inhibitory effects against Escherichia coli ß-glucuronidase (EcGUS). Twelve of them showed satisfactory inhibition against EcGUS with IC50 values ranging from 0.25 µM to 2.13 µM with compound 12 exhibited the best inhibition. Inhibition kinetics studies indicated that compound 12 (Ki = 0.14 ± 0.01 µM) was an uncompetitive inhibitor for EcGUS and molecular docking simulation further predicted the binding model and capability of compound 12 with EcGUS. A preliminary structure-inhibitory activity relationship study revealed that the heterocyclic backbone and bromine substitution of benzene may be essential for inhibition against EcGUS. The compounds have the potential to be applied in drug-induced gastrointestinal toxicity and the findings would help researchers to design and develop more effective 5-phenyl-2-furan type EcGUS inhibitors.


Asunto(s)
Descubrimiento de Drogas , Escherichia coli/enzimología , Furanos/farmacología , Glucuronidasa/antagonistas & inhibidores , Glicoproteínas/farmacología , Tiazoles/farmacología , Relación Dosis-Respuesta a Droga , Furanos/síntesis química , Furanos/química , Glucuronidasa/metabolismo , Glicoproteínas/síntesis química , Glicoproteínas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
18.
Sci Rep ; 11(1): 12265, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112915

RESUMEN

The endothelial glycocalyx (eGC) is considered a key regulator of several mechanisms that prevent vascular injury and disease. Degradation of this macromolecular layer may be associated with post-transplant graft dysfunction. In this study, we aimed to demonstrate the benefits of eGC protection via heparanase inhibition on graft quality. We established rat models of lung grafts with damaged or preserved eGC using ischemic insult and transplanted the grafts into recipients. Lung grafts were also subjected to normothermic ex vivo lung perfusion for detailed assessment under isolated conditions. Physiologic parameters and eGC-associated cellular events were assessed in grafts before and after reperfusion. Structurally degraded eGC and highly activated heparanase were confirmed in lungs with ischemic insult. After transplant, lungs with damaged eGC exhibited impaired graft function, inflammation, edema, and inflammatory cell migration. Increased eGC shedding was evident in the lungs after reperfusion both in vivo and ex vivo. These reperfusion-related deficiencies were significantly attenuated in lungs with preserved eGC following heparanase inhibition. Our studies demonstrated that eGC plays a key role in maintaining lung graft quality and function. Heparanase inhibition may serve as a potential therapeutic to preserve eGC integrity, leading to improved post-transplant outcomes.


Asunto(s)
Endotelio/efectos de los fármacos , Endotelio/metabolismo , Inhibidores Enzimáticos/farmacología , Glucuronidasa/antagonistas & inhibidores , Glicocálix/metabolismo , Supervivencia de Injerto , Trasplante de Pulmón , Preservación de Órganos , Animales , Biomarcadores , Endotelio/patología , Inmunohistoquímica , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratas
19.
ScientificWorldJournal ; 2021: 6622318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935597

RESUMEN

Bulbine asphodeloides (L.) Spreng (Xanthorrhoeaceae family), popularly known in South Africa as "ibhucu" or "Balsamkopieva," is a perennial plant traditionally used to treat skin diseases, including sunburns, rough skin, dressing burns, itches, and aging. The present study reports the cytotoxic, cellular antioxidant, and antiglucuronidase properties of the ethanol leaf extract from B. asphodeloides. The cytotoxic effect of the plant extract on human dermal fibroblast (MRHF) cells was evaluated by the bis-Benzamide H 33342 trihydrochloride/propidium iodide (Hoechst 33342/PI) dual-staining method. A validated biological cell-based assay was used to determine the cellular antioxidant activity of the extract. The antiglucuronidase and metal chelating activities were evaluated using standard in vitro methods. Lipopolysaccharide- (LPS-) induced RAW 264.7 cell model was used to determine the anti-inflammatory effect of the plant extract, and the immune-modulatory activity was performed using RAW 264.7 cells. The extract demonstrated no cytotoxic effect towards the MRHF cells at all the tested concentrations. Furthermore, the extract also possessed significant cellular antioxidant and antiglucuronidase activities, but a weak effect of metal chelating activity in a dose-dependent manner. However, the extract showed no significant anti-inflammatory and immune-stimulatory activities. Overall, the results showed that B. asphodeloides may be a useful therapeutic agent for the treatment of skin diseases, therefore supporting its ethnomedicinal usage.


Asunto(s)
Antioxidantes/farmacología , Asphodelaceae/química , Citotoxinas/farmacología , Glucuronidasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plantas Medicinales/química , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antioxidantes/aislamiento & purificación , Bioensayo , Quelantes/aislamiento & purificación , Quelantes/farmacología , Citotoxinas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Etanol , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7/efectos de los fármacos
20.
Biochem Pharmacol ; 190: 114566, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33865833

RESUMEN

Bacterial ß-glucuronidase enzymes (BGUSs) are at the interface of host-microbial metabolic symbiosis, playing an important role in health and disease as well as medication outcomes (efficacy or toxicity) by deconjugating a large number of endogenous and exogenous glucuronides. In recent years, BGUSs inhibition has emerged as a new approach to manage diseases and medication therapy and attracted an increasing research interest. However, a growing body of evidence underlines great genetic diversity, functional promiscuity and varied inhibition propensity of BGUSs, which have posed big challenges to identifying BGUSs involved in a specific pathophysiological or pharmacological process and developing effective inhibition. In this article, we offered a general introduction of the function, in particular the physiological, pathological and pharmacological roles, of BGUSs and their taxonomic distribution in human gut microbiota, highlighting the structural features (active sites and adjacent loop structures) that affecting the protein-substrate (inhibitor) interactions. Recent advances in BGUSs-mediated deconjugation of drugs and carcinogens and the discovery and applications of BGUS inhibitors in management of medication therapy, typically, irinotecan-induced diarrhea and non-steroidal anti-inflammatory drugs (NSAIDs)-induced enteropathy, were also reviewed. At the end, we discussed the perspectives and the challenges of tailoring BGUS inhibition towards precision medicine.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Glucuronidasa/antagonistas & inhibidores , Glicoproteínas/farmacología , Medicina de Precisión/métodos , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/farmacología , Diarrea/inducido químicamente , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/efectos de los fármacos , Glucuronidasa/metabolismo , Glicoproteínas/efectos adversos , Humanos , Irinotecán/efectos adversos , Irinotecán/farmacología , Medicina de Precisión/tendencias , Estructura Secundaria de Proteína , Inhibidores de Topoisomerasa I/efectos adversos , Inhibidores de Topoisomerasa I/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA