Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
1.
Biomolecules ; 14(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39199385

RESUMEN

Clinically, prostate cancer is infamous for its histological and molecular heterogeneity, which causes great challenges to pinpoint therapy and pharmaceutical development. To overcome these difficulties, researchers are focusing on modulating tumor microenvironment and immune responses in addition to genetic alteration and epigenetic regulation. Here, we aimed to identify potential biomarkers or modulators of prostate cancer by investigating genes specifically altered in prostate cancer cells treated with established anti-cancer agents. Glycerol kinase 1 (GK1) is phosphotransferase encoded on the X chromosome, is associated with the synthesis of triglycerides and glycerophospholipids, and has been mainly studied for X-linked metabolic disorder GK deficiency (GKD). Interestingly, our DNA microarray analysis showed that several anti-cancer agents highly induced the expression of GK1, especially GK1a and GK1b isoforms, in human prostate cancer PC-3 cells. To elucidate the relationship between GK1 and cancer cell death, a human GK1b-specific expression vector was constructed and transfected into the PC-3 cells. Surprisingly, GK1b overexpression dramatically reduced cell viability and significantly accelerated apoptotic cell death. These findings suggest that GK1b may serve as a promising modulator and biomarker of cell death in prostate cancer, offering potential avenues for therapeutic intervention.


Asunto(s)
Glicerol Quinasa , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Células PC-3 , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Supervivencia Celular , Antineoplásicos/farmacología , Línea Celular Tumoral
2.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 629-638, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39052317

RESUMEN

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It bears a significant global health burden with limited treatment options, thus calling for the development of new and effective drugs. Certain trypanosomal metabolic enzymes have been suggested to be druggable and valid for subsequent inhibition. In this study, the crystal structure of glycerol kinase from T. cruzi, a key enzyme in glycerol metabolism in this parasite, is presented. Structural analysis allowed a detailed description of the glycerol binding pocket, while comparative assessment pinpointed a potential regulatory site which may serve as a target for selective inhibition. These findings advance the understanding of glycerol metabolism in eukaryotes and provide a solid basis for the future treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Glicerol Quinasa , Trypanosoma cruzi , Trypanosoma cruzi/enzimología , Glicerol Quinasa/química , Glicerol Quinasa/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Cristalografía por Rayos X , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Modelos Moleculares , Humanos , Sitios de Unión , Glicerol/química , Conformación Proteica
6.
Int J Biol Macromol ; 270(Pt 1): 132296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740159

RESUMEN

Glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (GPDH) are critical in glucose homeostasis. The role of genistein and metformin on these enzymes and glucose production was investigated in C2C12, HepG2, and 3T3-L1 cells. Enzyme kinetics, Real-Time PCR and western blots were performed to determine enzyme activities and expressions of mRNAs and proteins. Glucose production and uptake were also measured in these cells. siRNAs were used to assess their impact on the enzymes and glucose production. Ki values for the compounds were determined using purified GK and GPDH. Genistein decreased GK activity by ∼45 %, while metformin reduced cGPDH and mGPDH activities by ∼32 % and âˆ¼43 %, respectively. Insignificant changes in expressions (mRNAs and proteins) of the enzymes were observed. The compounds showed dose-dependent alterations in glucose production and uptake in these cells. Genistein non-competitively inhibited His-GK activity (Ki 19.12 µM), while metformin non-competitively inhibited His-cGPDH (Ki 75.52 µM) and mGPDH (Ki 54.70 µM) activities. siRNAs transfection showed ∼50 % and âˆ¼35 % decrease in activities of GK and mGPDH and a decrease in glucose production (0.38-fold and 0.42-fold) in 3T3-L1 cells. Considering the differential effects of the compounds, this study may provide insights into the potential therapeutic strategies for type II diabetes mellitus.


Asunto(s)
Adipocitos , Genisteína , Glucosa , Glicerol Quinasa , Glicerolfosfato Deshidrogenasa , Hepatocitos , Metformina , Genisteína/farmacología , Metformina/farmacología , Ratones , Animales , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glucosa/metabolismo , Células 3T3-L1 , Células Hep G2 , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacología , Cinética
7.
ACS Synth Biol ; 13(5): 1549-1561, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632869

RESUMEN

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Asunto(s)
Adenosina Trifosfato , Arginina , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Células Artificiales/metabolismo , Glicerofosfatos/metabolismo , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Lípidos/biosíntesis , Fosfolípidos/metabolismo , Redes y Vías Metabólicas
8.
Sci Rep ; 14(1): 3922, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365953

RESUMEN

The influence of lipid metabolism on tumorigenesis and progression has garnered significant attention. However, the role of Glycerol Kinase (GK), a key enzyme in glycerol metabolism, in Esophageal Carcinoma (ESCA) remains unclear. To further elucidate the relationship between GK and ESCA, we investigated GK expression levels using database information. Controlled studies employing immunohistochemistry were conducted on clinical ESCA tumor samples and normal specimens, confirming GK's elevated expression in ESCA. Analysis of The Cancer Genome Atlas (TCGA) data via Kaplan-Meier (KM) survival plots revealed that increased GK expression correlates with poorer ESCA patient outcomes, particularly in overall survival (OS) and disease-specific survival (DSS). Multiple regression analysis indicated that elevated GK expression is an independent risk factor affecting ESCA prognosis. Statistical analysis of prognostic data from clinical samples further corroborated this finding. Moreover, there appears to be a significant correlation between GK expression and immune infiltration, specifically involving certain T and B lymphocytes. In conclusion, elevated GK expression in ESCA is strongly linked to poor prognosis and increased immune cell infiltration, highlighting its potential as an independent prognostic biomarker and a viable therapeutic target.


Asunto(s)
Neoplasias Esofágicas , Glicerol Quinasa , Humanos , Linfocitos B , Carcinoma , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Glicerol Quinasa/química , Pronóstico , Linfocitos Infiltrantes de Tumor/metabolismo
9.
Sci Rep ; 13(1): 14596, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669981

RESUMEN

Amebiasis is caused by the protozoan parasite Entamoeba histolytica. Treatment options other than metronidazole and its derivatives are few, and their low efficacy against asymptomatic cyst carriers, and experimental evidence of resistance in vitro justify the discovery/repurposing campaign for new drugs against amebiasis. Global metabolic responses to oxidative stress and cysteine deprivation by E. histolytica revealed glycerol metabolism may represent a rational target for drug development. In this study using 14C-labelled glucose, only 11% of the total glucose taken up by E. histolytica trophozoites is incorporated to lipids. To better understand the role of glycerol metabolism in this parasite, we focused on characterizing two important enzymes, glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (G3PDH). Recombinant GK was biochemically characterized in detail, while G3PDH was not due to failure of protein expression and purification. GK revealed novel characteristics and unprecedented kinetic properties in reverse reaction. Gene silencing revealed that GK is essential for optimum growth, whereas G3PDH is not. Gene silencing of G3PDH caused upregulated GK expression, while that of GK resulted in upregulation of antioxidant enzymes as shown by RNA-seq analysis. Although the precise molecular link between GK and the upregulation of antioxidant enzymes was not demonstrated, the observed increase in antioxidant enzyme expression upon GK gene silencing suggests a potential connection between GK and the cellular response to oxidative stress. Together, these results provide the first direct evidence of the biological importance and coordinated regulation of the glycerol metabolic pathways for proliferation and antioxidative defense in E. histolytica, justifying the exploitation of these enzymes as future drug targets.


Asunto(s)
Amebiasis , Entamoeba histolytica , Parásitos , Humanos , Animales , Antioxidantes , Vías Biosintéticas , Glicerol , Glicerol Quinasa , Proliferación Celular
10.
Sci Rep ; 13(1): 10573, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386124

RESUMEN

Pulsed electric field (PEF) treatment is known to cause plasma membrane permeabilization of microorganisms, an effect known as electroporation. PEF treatment is very attractive since it can achieve permeabilization with or without lethal damage in accordance with desired results. This study aimed to expand the accomplishment of electroporation outcomes by applying sudden post-PEF osmotic composition change of the media. Changes in yeast cells' viability, size and plasma membrane regeneration rate were evaluated. However, we still have questions about the intracellular biochemical processes responsible for plasma membrane recovery after electroporation. Our suggested candidate is the high osmolarity glycerol (HOG) kinase pathway. The HOG pathway in Saccharomyces cerevisiae yeasts is responsible for volume recovery after dangerous shape modifications and intracellular water disbalance caused by environmental osmotic pressure changes. Thus, we evaluated the HOG pathway inactivation effect on S. cerevisiae's reaction to PEF treatment. Results showed that Hog1 deficient S. cerevisiae cells were considerably more sensitive to electric field treatment, confirming a link between the HOG pathway and S. cerevisiae recovery process after electroporation. By suddenly changing the osmolarity of the media after PEF we influenced the cells' plasma membrane recovery rate, severity of permeabilization and survivability of yeast cells. Studies of electroporation in combination with various treatments might improve electric field application range, efficiency, and optimization of the process.


Asunto(s)
Saccharomyces cerevisiae , Levadura Seca , Presión Osmótica , Concentración Osmolar , Membrana Celular , Glicerol Quinasa
11.
Food Chem ; 426: 136507, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352712

RESUMEN

This work investigated microplastic (MP) pollution in a commercially-important tuna species Katsuwonus pelamis (K. pelamis) from the Eastern Pacific and health implications. 125 MPs were extracted from gills, esophagus, stomachs, intestinal tracts, and muscle of K. pelamis. MPs in the esophagus was the highest, ∼7.6 times higher than that in the gill. Polyester and polyethylene terephthalate (PET) were dominant. Molecular docking implied that PET stabilized the complex via forming 4 new hydrogen bonds that interacted with Arg83, Gln246, Thr267, and Gly268, given that PET can enter glycerol kinase protein active pocket. Metabonomic results suggested that Glycerol 3-phosphate up expressed 1.66 more times that of control groups with no MPs in the muscle. This confirmed that MPs would lie in the glycerol kinase protein active pocket, which triggered menace to K. pelamis. The results provided insights into suggested the potential influence of MPs on the sustainability of fisheries and seafood safety.


Asunto(s)
Contaminación de Alimentos , Plásticos , Atún , Análisis de los Alimentos , Medición de Riesgo , Glicerol Quinasa/química , Modelos Moleculares , Estructura Terciaria de Proteína
12.
PLoS One ; 18(5): e0286051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216344

RESUMEN

Triglyceride (TG) metabolism is a key factor that affects residual feed intake (RFI); however, few studies have been conducted on the related gene expression in poultry. The aim of the present study was to investigate the expression of genes and their associations with RFI in meat-type ducks. Weight gain and feed intake (FI) at an age 21-42 days were measured and the RFI was calculated. Quantitative PCR was used to test the expression of the six identified genes, namely peroxisome proliferator activated receptor γ (PPARγ), glycerol kinase 2 (GK2), glycerol-3-phosphate dehydrogenase 1 (GPD1), glycerol kinase (GYK), lipase E (LIPE), and lipoprotein lipase (LPL) in the duodenum in the high RFI (HRFI) and low RFI (LRFI) groups. The results demonstrated that daily feed intake, feed conversion ratio (FCR), and RFI were markedly higher in HRFI ducks than those in LRFI ducks. Moreover, the levels of expression of PPARγ, GK2, and LIPE were significantly higher in the LRFI group than those in the HRFI group. Correlation analysis showed that PPARγ, GK2, and LIPE were significantly negatively associated with FCR and RFI. Furthermore, gene expression levels were negatively associated with the measured phenotype. The association of GK2 with PPARγ, GPD1, LPL, and LIPE was positive. The relationship between the TG related gene and RFI was further verified to potentially develop pedigree poultry breeding programs. The results of this study suggested that the expression of genes correlated with TG metabolism and transport is up-regulated in the duodenum of ducks with high feed efficiency. PPARγ, GK2, and LIPE are important genes that affect RFI. The results of the present study provide information that could facilitate further explorations of the mechanism of RFI and potential markers at the molecular and cellular levels.


Asunto(s)
Patos , Glicerol Quinasa , Animales , Patos/genética , Glicerol Quinasa/genética , PPAR gamma/genética , Alimentación Animal/análisis , Ingestión de Alimentos/genética , Carne/análisis , Expresión Génica , Triglicéridos
13.
Acta Myol ; 42(1): 24-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091526

RESUMEN

The contiguous gene deletion syndromes (CGDS) are rare genomic disorders resulting from the deletion of large segments of DNA, manifested as the concurrence of apparently unrelated clinical features. A typical example of CGDS is Xp21 contiguous gene deletion syndrome that involves GK and its neigh-boring genes (usually DMD and NR0B1) and results in a complex phenotype, which is related to the size of deletion and involved genes. Development delay and intellectual disability are almost a constant feature of patients with CGDS. We report the case of a boy with Duchenne muscular dystrophy (DMD) and glycerol kinase deficiency (GKD) as part of the contiguous gene deletion syndrome Xp2.1, in association with intellectual disability (ID) in whom multiplex ligation-dependent probe amplification (MLPA) test first identified a hemizygous deletion involving the entire dystrophin gene. Subsequently, the array CGH study identified a maternally inherited hemizygous deletion of the Xp21.2-Xp21.1 region of approximately 3.7Mb that included both DMD and GK genes confirming the diagnosis of Xp21 CGDS. Moreover, we report a review of the cases published in the literature over the last 20 years, for which a better description of the genes involved in the syndrome was available. Intellectual disability does not appear as a constant feature of the syndrome, reiterating the concept that complex GKD syndrome results from small deletions that affect closely related but separate loci for DMD, GK and adrenal hypoplasia, rather than a single large deletion including all genes. This case highlights the importance of more in-depth genetic investigations in presence of apparently unrelated clinical findings, allowing an accurate diagnosis of contiguous gene deletion syndromes.


Asunto(s)
Discapacidad Intelectual , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Insuficiencia Corticosuprarrenal Familiar/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Glicerol Quinasa/genética , Eliminación de Gen
14.
Biosci Rep ; 43(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37021775

RESUMEN

BACKGROUND: Glycerol kinase (GK; EC 2.7.1.30) facilitates the entry of glycerol into pathways of glucose and triglyceride metabolism and may play a potential role in Type 2 diabetes mellitus (T2DM). However, the detailed regulatory mechanisms and structure of the human GK are unknown. METHODS: The human GK gene was cloned into the pET-24a(+) vector and over-expressed in Escherichia coli BL21 (DE3). Since the protein was expressed as inclusion bodies (IBs), various culture parameters and solubilising agents were used but they did not produce bioactive His-GK; however, co-expression of His-GK with molecular chaperones, specifically pKJE7, achieved expression of bioactive His-GK. The overexpressed bioactive His-GK was purified using coloumn chromatography and characterised using enzyme kinetics. RESULTS: The overexpressed bioactive His-GK was purified apparently to homogeneity (∼295-fold) and characterised. The native His-GK was a dimer with a monomeric molecular weight of ∼55 kDa. Optimal enzyme activity was observed in TEA buffer (50 mM) at 7.5 pH. K+ (40 mM) and Mg2+ (2.0 mM) emerged as prefered metal ions for His-GK activity with specific activity 0.780 U/mg protein. The purified His-GK obeyed standard Michaelis-Menten kinetics with Km value of 5.022 µM (R2=0.927) for its substrate glycerol; whereas, that for ATP and PEP was 0.767 mM (R2=0.928) and 0.223 mM (R2=0.967), respectively. Other optimal parameters for the substrate and co-factors were also determined. CONCLUSION: The present study demonstrates that co-expression of molecular chaperones assists with the expression of bioactive human GK for its characterisation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glicerol Quinasa , Humanos , Glicerol Quinasa/genética , Glicerol Quinasa/química , Glicerol Quinasa/metabolismo , Glicerol , Chaperonas Moleculares/genética , Escherichia coli
15.
Biochem Biophys Res Commun ; 645: 30-39, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36680934

RESUMEN

Pseudomonas aeruginosa is a Gram-negative bacterium capable of widespread niches, which is also one of the main bacteria that cause patient infection. The metabolic diversity of Pseudomonas aeruginosa is an essential factor in adapting to a variety of environments. Based on the previous studies, adaptive genetic variation in the glycerol kinase GlpK, the glycerol 3-phosphotransferase, contributes to the fitness of bacteria in human bodies, such as Mycobacterium tuberculosis and Escherichia coli. Thus, this study aimed to explore the molecular evolution and function of glpK in P. aeruginosa. Using extensive population genomic data, we have identified the prevalence of two glpK copies in P. aeruginosa that clustered into distinct branches, which were later known as Clade 1 and 2. The evolution analysis revealed that glpK in Clade 1 derived from an ancestral P. aeruginosa species and the other from an ancient horizontal gene transfer event. In addition, we confirmed that the GlpK in Clade 2 still retained glycerol kinase activity but was much weaker than that of GlpK in Clade 1. We demonstrated the importance of the critical amino acid Q70 in GlpK glycerol kinase activity by point mutation. Furthermore, Co-expression network analysis implied that the two glpK copies of P. aeruginosa regulate separate networks and may be a strategy to improve fitness in P. aeruginosa.


Asunto(s)
Glicerol Quinasa , Pseudomonas aeruginosa , Humanos , Glicerol/metabolismo , Glicerol Quinasa/genética , Glicerol Quinasa/metabolismo , Fosforilación , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
J Physiol ; 601(1): 69-82, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36419345

RESUMEN

Brown adipose tissue (BAT) is rich in mitochondria containing uncoupling protein 1 (UCP1), and dissipates energy through thermogenesis. However, even though BAT mass and its UCP1 content increase in rodents chronically fed a high-fat sucrose-enriched (HFS) diet, marked expansion of adiposity still occurs in these animals, suggesting insufficient BAT-mediated HFS diet-induced thermogenesis. Thus, the objective of this study was to investigate the metabolic and molecular mechanisms that regulate BAT thermogenesis in HFS-induced obesity. To accomplish this, rats were fed either a standard chow or HFS diet for 8 weeks. Subsequently, glucose and fatty acid metabolism and the molecular mechanisms underlying these processes were assessed in freshly isolated primary BAT adipocytes. Despite increasing BAT mass and its UCP1 content, the HFS diet reduced uncoupled glucose and palmitate oxidation in BAT adipocytes. It also markedly diminished tyrosine hydroxylase content and lipolysis in these cells. Conversely, glucose uptake, lactate production, glycerol incorporation into lipids, palmitate incorporation into triacylglycerol (TAG), phosphoenolpyruvate carboxykinase and glycerol kinase levels, and lipoprotein lipase and cluster of differentiation 36 gene expression were increased. In summary, a HFS diet enhanced glyceroneogenesis and shifted BAT metabolism toward TAG synthesis by impairing UCP1-mediated substrate oxidation and by enhancing fatty acid esterification in intact brown adipocytes. These adaptive metabolic responses to chronic HFS feeding attenuated BAT thermogenic capacity and favoured the development of obesity. KEY POINTS: Despite increasing brown adipose tissue (BAT) mass and levels of thermogenic proteins such as peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1B and uncoupling protein 1 (UCP1), an obesogenic high-fat sucrose-enriched (HFS) diet attenuated uncoupled glucose and fatty acid oxidation in brown adipocytes. Brown adipocytes diverted glycerol and fatty acids toward triacylglycerol (TAG) synthesis by elevating the cellular machinery that promotes fatty acid uptake along with phosphoenolpyruvate carboxykinase and glycerol kinase levels. The HFS diet increased glucose uptake that supported lactate production and provided substrate for glyceroneogenesis and TAG synthesis in brown adipocytes. Impaired UCP-1-mediated thermogenic capacity and enhanced TAG storage in BAT adipocytes were consistent with reduced adipose triglyceride lipase and tyrosine hydroxylase levels in HFS diet-fed animals.


Asunto(s)
Tejido Adiposo Pardo , Glicerol , Ratas , Animales , Tejido Adiposo Pardo/metabolismo , Proteína Desacopladora 1/genética , Glicerol/metabolismo , Glicerol Quinasa/metabolismo , Fosfoenolpiruvato/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dieta , Obesidad/etiología , Obesidad/metabolismo , Triglicéridos/metabolismo , Adipocitos Marrones/metabolismo , Glucosa/metabolismo , Ácidos Grasos/metabolismo , Termogénesis/fisiología
17.
BMC Pediatr ; 22(1): 517, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050749

RESUMEN

BACKGROUND: Xp21 contiguous gene deletion syndrome is a rare genetic metabolic disorder with poor prognosis in infants, involving deletions of one or more genes in Xp21. When deletions of adrenal hypoplasia (AHC), Duchenne muscular dystrophy (DMD), and chronic granulomatosis (CGD) loci are included, complex glycerol kinase deficiency (CGKD) can be diagnosed. We present a case of CGKD that was initially misdiagnosed and died during treatment in our hospital in terms of improving our understanding of the clinical features and diagnosis of this disease, as well as highlighting the need for more precise dosing of corticosteroid replacement therapy. CASE PRESENTATION: A 48-day-old full-term male infant was transferred to our medical center with global growth delay and persistent vomiting. Routine laboratory tests revealed hyperkalemia, hyponatremia, and a high level of creatine kinase. The initial diagnosis was adrenal cortical hyperplasia (ACH), then revised to adrenocortical insufficiency with a normal level of ACTH detected. After supplementing the routine lipid test and urinary glycerol test, CGKD was diagnosed clinically due to positive triglyceridemia and urinary glycerol, and the follow-up gene screening further confirmed the diagnosis. The boy kept thriving after corticosteroid replacement and salt supplementation. While levels of serum ACTH and cortisol decreased and remained low after corticosteroid replacement was administered. The patient died of acute type 2 respiratory failure and hypoglycemia after an acute upper respiratory tract infection, which may be the result of adrenal crisis after infection. Infants with CGKD have a poor prognosis, so physicians should administer regular follow-ups, and parents counseling during treatment to improve the survival of patients. CONCLUSIONS: Overall, CGKD, although rare, cannot be easily excluded in children with persistent vomiting. Extensive blood tests can help to detect abnormal indicators. Adrenal crisis needs to be avoided as much as possible during corticosteroid replacement therapy.


Asunto(s)
Insuficiencia Suprarrenal , Glicerol Quinasa , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/genética , Hormona Adrenocorticotrópica , Niño , China , Diagnóstico Tardío , Glicerol , Glicerol Quinasa/genética , Humanos , Insuficiencia Corticosuprarrenal Familiar , Lactante , Masculino , Vómitos
18.
Lipids ; 57(6): 313-325, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36098349

RESUMEN

Although it is well established that glucocorticoids inactivate thermogenesis and promote lipid accumulation in interscapular brown adipose tissue (IBAT), the underlying mechanisms remain unknown. We found that dexamethasone treatment (1 mg/kg) for 7 days in rats decreased the IBAT thermogenic activity, evidenced by its lower responsiveness to noradrenaline injection associated with reduced content of mitochondrial proteins, respiratory chain protein complexes, noradrenaline, and the ß3 -adrenergic receptor. In parallel, to understand better how dexamethasone increases IBAT lipid content, we also investigated the activity of the ATP citrate lyase (ACL), a key enzyme of de novo fatty acid synthesis, glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, and the three glycerol-3-P generating pathways: (1) glycolysis, estimated by 2-deoxyglucose uptake, (2) glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase activity and pyruvate incorporation into triacylglycerol-glycerol, and (3) direct phosphorylation of glycerol, investigated by the content and activity of glycerokinase. Dexamethasone increased the mass and the lipid content of IBAT as well as plasma levels of glucose, insulin, non-esterified fatty acid, and glycerol. Furthermore, dexamethasone increased ACL and G6PD activities (79% and 48%, respectively). Despite promoting a decrease in the incorporation of U-[14 C]-glycerol into triacylglycerol (~54%), dexamethasone increased the content (~55%) and activity (~41%) of glycerokinase without affecting glucose uptake or glyceroneogenesis. Our data suggest that glucocorticoid administration reduces IBAT thermogenesis through sympathetic inactivation and stimulates glycerokinase activity and content, contributing to increased generation of glycerol-3-P, which is mostly used to esterify fatty acid and increase triacylglycerol content promoting IBAT whitening.


Asunto(s)
Tejido Adiposo Pardo , Glicerol Quinasa , Animales , Ratas , Tejido Adiposo Pardo/metabolismo , Glicerol Quinasa/metabolismo , Glucocorticoides , Glicerol , Ratas Wistar , Termogénesis , Triglicéridos/metabolismo , Ácidos Grasos/metabolismo , Dexametasona/metabolismo , Norepinefrina , Tejido Adiposo/metabolismo
19.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142650

RESUMEN

Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes. In Yarrowia lipolytica, PLs are synthesized through a similar pathway like in higher eukaryotes. However, PL biosynthesis in this yeast is still poorly understood. The key intermediate in this pathway is phosphatidic acid, which in Y. lipolytica is mostly directed to the production of triacylglycerols and, in a lower amount, to PL. This study aimed to deliver a strain with improved PL production, with a particular emphasis on increased biosynthesis of phosphatidylcholine (PC). Several genetic modifications were performed: overexpression of genes from PL biosynthesis pathways as well as the deletion of genes responsible for PL degradation. The best performing strain (overexpressing CDP-diacylglycerol synthase (CDS) and phospholipid methyltransferase (OPI3)) reached 360% of PL improvement compared to the wild-type strain in glucose-based medium. With the substitution of glucose by glycerol, a preferred carbon source by Y. lipolytica, an almost 280% improvement of PL was obtained by transformant overexpressing CDS, OPI3, diacylglycerol kinase (DGK1), and glycerol kinase (GUT1) in comparison to the wild-type strain. To further increase the amount of PL, the optimization of culture conditions, followed by the upscaling to a 2 L bioreactor, were performed. Crude glycerol, being a cheap and renewable substrate, was used to reduce the costs of PL production. In this process 653.7 mg/L of PL, including 352.6 mg/L of PC, was obtained. This study proved that Y. lipolytica is an excellent potential producer of phospholipids, especially from waste substrates.


Asunto(s)
Yarrowia , Carbono/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Diacilglicerol Quinasa/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Glicerol Quinasa/metabolismo , Liposomas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidil-N-Metiletanolamina N-Metiltransferasa/metabolismo , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
20.
Biotechnol Lett ; 44(9): 1051-1061, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35922648

RESUMEN

Glycerol kinase is the key enzyme in glycerol metabolism, and its catalytic efficiency has an important effect on glycerol utilization. Based on an analysis of the glycerol utilization pathway and regulation mechanism in B. subtilis, we conducted site-directed mutagenesis of the key glycerol kinase gene (glpK) on the chromosome to improve the glycerol utilization efficiency of Bacillus subtilis. Recombinant wild-type Bacillus subtilis glycerol kinase (BsuGlpKWT) and two mutants (BsuGlpKM270I and BsuGlpKS71V) were successfully overexpressed in Escherichia coli BL21(DE3) and purified by Ni-IDA metal chelate chromatography. The specific activity of the BsuGlpKM270I mutant (62.6 U/mg) was significantly higher (296.2%) than that of wild-type BsuGlpKWT (15.8 U/mg). By contrast, the mutant BsuGlpKS71V (4.89 U/mg) exhibited lower (69.1%) activity than BsuGlpKWT, which suggested that variant S71V exhibited reduced catalytic efficiency for the substrate. Furthermore, the mutant strain B. subtilis M270I was constructed using a markerless delivery system, and exhibited a higher specific growth rate (improved by 11.3%, from 0.453 ± 0.012 to 0.511 ± 0.017 h-1) and higher maximal biomass (cell dry weight increased by 16%, from 0.577 ± 0.033 to 0.721 ± 0.015 g/L) than the parental strain with a shortened lag phase (2 ~ 4 h shorter) in M9 minimal medium with glycerol. These results indicate that the mutated glpK resulted in improved glycerol utilization, which has broad application prospects.


Asunto(s)
Bacillus subtilis , Glicerol Quinasa , Cromosomas/metabolismo , Escherichia coli/metabolismo , Glicerol/metabolismo , Glicerol Quinasa/química , Glicerol Quinasa/genética , Glicerol Quinasa/metabolismo , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA