Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063171

RESUMEN

Lipases are enzymes that hydrolyze long-chain carboxylic esters, and in the presence of organic solvents, they catalyze organic synthesis reactions. However, the use of solvents in these processes often results in enzyme denaturation, leading to a reduction in enzymatic activity. Consequently, there is significant interest in identifying new lipases that are resistant to denaturing conditions, with extremozymes emerging as promising candidates for this purpose. Lip7, a lipase from Geobacillus sp. ID17, a thermophilic microorganism isolated from Deception Island, Antarctica, was recombinantly expressed in E. coli C41 (DE3) in functional soluble form. Its purification was achieved with 96% purity and 23% yield. Enzymatic characterization revealed Lip7 to be a thermo-alkaline enzyme, reaching a maximum rate of 3350 U mg-1 at 50 °C and pH 11.0, using p-nitrophenyl laurate substrate. Notably, its kinetics displayed a sigmoidal behavior, with a higher kinetic efficiency (kcat/Km) for substrates of 12-carbon atom chain. In terms of thermal stability, Lip7 demonstrates stability up to 60 °C at pH 8.0 and up to 50 °C at pH 11.0. Remarkably, it showed high stability in the presence of organic solvents, and under certain conditions even exhibited enzymatic activation, reaching up to 2.5-fold and 1.35-fold after incubation in 50% v/v ethanol and 70% v/v isopropanol, respectively. Lip7 represents one of the first lipases from the bacterial subfamily I.5 and genus Geobacillus with activity and stability at pH 11.0. Its compatibility with organic solvents makes it a compelling candidate for future research in biocatalysis and various biotechnological applications.


Asunto(s)
Estabilidad de Enzimas , Geobacillus , Lipasa , Proteínas Recombinantes , Solventes , Geobacillus/enzimología , Geobacillus/genética , Lipasa/genética , Lipasa/química , Lipasa/metabolismo , Lipasa/aislamiento & purificación , Solventes/química , Regiones Antárticas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Especificidad por Sustrato , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Rev Argent Microbiol ; 56(1): 102-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37704517

RESUMEN

The genus Geobacillus is composed of thermophilic bacteria that exhibit diverse biotechnological potentialities. Specifically, Geobacillus stearothermophilus is included as a test bacterium in commercial microbiological inhibition methods, although it exhibits limited sensitivity to aminoglycosides, macrolides, and quinolones. Therefore, this article evaluates the antibiotic susceptibility profiles of five test bacteria (G. stearothermophilus subsp. calidolactis C953, Geobacillus thermocatenulatus LMG 19007, Geobacillus thermoleovorans LMG 9823, Geobacillus kaustophilus DSM 7263 and Geobacillus vulcani 13174). For that purpose, the minimum inhibitory concentrations (MICs) of 21 antibiotics were determined in milk samples for five test bacteria using the radial diffusion microbiological inhibition method. Subsequently, the similarities between bacteria and antibiotics were analyzed using cluster analysis. The dendrogram of this multivariate analysis shows an association between a group formed by G. thermocatenulatus and G. stearothermophilus and another by G. thermoleovorans, G. kaustophilus and G. vulcani. Finally, future microbiological methods could be developed in microtiter plates using G. thermocatenulatus as test bacterium, as it exhibits similar sensitivities to G. stearothermophilus. Conversely, G. vulcani, G. thermoleovorans and G. kaustophilus show higher MICs than G. thermocatenulatus.


Asunto(s)
Antiinfecciosos , Geobacillus , Animales , ADN Ribosómico/análisis , Leche/química , ARN Ribosómico 16S , Geobacillus/genética , Antibacterianos/farmacología , Antibacterianos/análisis
3.
Extremophiles ; 27(2): 18, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428266

RESUMEN

Geobacillus sp. ID17 is a gram-positive thermophilic bacterium isolated from Deception Island, Antarctica, which has shown to exhibit remarkable laccase activity in crude extract at high temperatures. A bioinformatic search using local databases led to the identification of three putative multicopper oxidase sequences in the genome of this microorganism. Sequence analysis revealed that one of those sequences contains the four-essential copper-binding sites present in other well characterized laccases. The gene encoding this sequence was cloned and overexpressed in Escherichia coli, partially purified and preliminary biochemically characterized. The resulting recombinant enzyme was recovered in active and soluble form, exhibiting optimum copper-dependent laccase activity at 55 °C, pH 6.5 with syringaldazine substrate, retaining over 60% of its activity after 1 h at 55 and 60 °C. In addition, this thermophilic enzyme is not affected by common inhibitors SDS, NaCl and L-cysteine. Furthermore, biodecolorization assays revealed that this laccase is capable of degrading 60% of malachite green, 54% of Congo red, and 52% of Remazol Brilliant Blue R, after 6 h at 55 °C with aid of ABTS as redox mediator. The observed properties of this enzyme and the relatively straightforward overexpression and partial purification of it could be of great interest for future biotechnology applications.


Asunto(s)
Geobacillus , Lacasa , Lacasa/química , Regiones Antárticas , Cobre/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Rojo Congo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Temperatura
4.
Braz. J. Biol. ; 82: 1-10, 2022. ilus, tab, graf
Artículo en Inglés | VETINDEX | ID: vti-32515

RESUMEN

Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM-465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% α-helices, 15% β-sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (∆G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.(AU)


A alfa-amilase, que catalisa a hidrólise do amido, é uma enzima ubíqua com imensas aplicações industriais. Um gene de 1698 pb que codifica a amilase de 565 aminoácidos foi amplificado por PCR, a partir de Geobacillus thermodenitrificans DSM-465, clonado no plasmídeo pET21a (+), expresso na cepa BL21 (DE3) de E. coli e caracterizado. A enzima recombinante exibiu peso molecular de 63 kDa, pH ótimo igual a 8, temperatura ótima de 70° C e valor KM de 157,7 µM. Em escala piloto, a enzima purificada removeu com eficiência até 95% de amido do tecido de algodão, indicando sua capacidade de desengomagem em alta temperatura. O modelo 3D da enzima construída por Raptor-X e validada por Ramachandran plot apareceu como um monômero com 31% de hélices alfa, 15% de folhas beta e 52% de loops. Os estudos de docking mostraram melhor afinidade de ligação da enzima com amilopectina (∆G: - 10,59). De acordo com nossos resultados, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276 e Arg175 constituem o sítio ativo potencial da enzima.(AU)


Asunto(s)
alfa-Amilasas/genética , Geobacillus , Escherichia coli/genética , Vectores Genéticos
5.
Braz. j. biol ; 82: e239449, 2022. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1249271

RESUMEN

Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% α-helices, 15% ß-sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (∆G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.


A alfa-amilase, que catalisa a hidrólise do amido, é uma enzima ubíqua com imensas aplicações industriais. Um gene de 1698 pb que codifica a amilase de 565 aminoácidos foi amplificado por PCR, a partir de Geobacillus thermodenitrificans DSM-465, clonado no plasmídeo pET21a (+), expresso na cepa BL21 (DE3) de E. coli e caracterizado. A enzima recombinante exibiu peso molecular de 63 kDa, pH ótimo igual a 8, temperatura ótima de 70° C e valor KM de 157,7 µM. Em escala piloto, a enzima purificada removeu com eficiência até 95% de amido do tecido de algodão, indicando sua capacidade de desengomagem em alta temperatura. O modelo 3D da enzima construída por Raptor-X e validada por Ramachandran plot apareceu como um monômero com 31% de hélices alfa, 15% de folhas beta e 52% de loops. Os estudos de docking mostraram melhor afinidade de ligação da enzima com amilopectina (∆G: - 10,59). De acordo com nossos resultados, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276 e Arg175 constituem o sítio ativo potencial da enzima.


Asunto(s)
Escherichia coli/genética , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Temperatura , Estabilidad de Enzimas , Clonación Molecular , Geobacillus , Concentración de Iones de Hidrógeno
6.
Braz. j. biol ; 82: 1-10, 2022. ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468498

RESUMEN

Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM-465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% α-helices, 15% β-sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (∆G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.


A alfa-amilase, que catalisa a hidrólise do amido, é uma enzima ubíqua com imensas aplicações industriais. Um gene de 1698 pb que codifica a amilase de 565 aminoácidos foi amplificado por PCR, a partir de Geobacillus thermodenitrificans DSM-465, clonado no plasmídeo pET21a (+), expresso na cepa BL21 (DE3) de E. coli e caracterizado. A enzima recombinante exibiu peso molecular de 63 kDa, pH ótimo igual a 8, temperatura ótima de 70° C e valor KM de 157,7 µM. Em escala piloto, a enzima purificada removeu com eficiência até 95% de amido do tecido de algodão, indicando sua capacidade de desengomagem em alta temperatura. O modelo 3D da enzima construída por Raptor-X e validada por Ramachandran plot apareceu como um monômero com 31% de hélices alfa, 15% de folhas beta e 52% de loops. Os estudos de docking mostraram melhor afinidade de ligação da enzima com amilopectina (∆G: - 10,59). De acordo com nossos resultados, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276 e Arg175 constituem o sítio ativo potencial da enzima.


Asunto(s)
Escherichia coli/genética , Geobacillus , Vectores Genéticos , alfa-Amilasas/genética
7.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946651

RESUMEN

Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus/enzimología , Lipasa/química , Agregado de Proteínas , Proteínas Bacterianas/genética , Reactivos de Enlaces Cruzados/química , Estabilidad de Enzimas , Geobacillus/genética , Lipasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Braz J Biol ; 82: e239449, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34105678

RESUMEN

Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM-465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% α-helices, 15% ß-sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (∆G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.


Asunto(s)
Escherichia coli , alfa-Amilasas , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Geobacillus , Concentración de Iones de Hidrógeno , Temperatura , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
9.
J Biotechnol ; 323: 166-173, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32841608

RESUMEN

Cladribine (2-chloro-2'-deoxy-ß-d-adenosine) is a 2'-deoxyadenosine analogue, approved by the FDA for the treatment of hairy cell leukemia and more recently has been proved for therapeutic against many autoimmune diseases as multiple sclerosis. The biosynthesis of this compound using Thermomonospora alba CECT 3324 as biocatalyst is herein reported. This thermophilic microorganism was successfully entrapped in polyacrylamide gel supplemented with nanoclays such as bentonite. The immobilized biocatalyst (T. alba-Ac-Bent 1.00 %), was able to biosynthesize cladribine with a conversion of 89 % in 1 h of reaction and retains its activity for more than 270 reuses without significantly activity loss, showing better operational stability and mechanical properties than the natural matrix. A microscale assay using the developed system, could allow the production of at least 181 mg of cladribine in successive bioprocesses.


Asunto(s)
Biotransformación , Cladribina/metabolismo , Extremófilos/fisiología , Resinas Acrílicas , Antineoplásicos/uso terapéutico , Vías Biosintéticas , Cladribina/uso terapéutico , Desoxiadenosinas , Geobacillus , Leucemia de Células Pilosas/tratamiento farmacológico , Nanocompuestos , Temperatura , Thermobifida/crecimiento & desarrollo , Thermobifida/metabolismo
10.
Int J Biol Macromol ; 146: 716-724, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31843618

RESUMEN

The enzyme Urocanate Hydratase (UH) participates in the catabolic pathway of L-histidine. Trypanosoma cruzi Urocanate Hydratase (TcUH) is identified as a therapeutic molecular target in the WHO/TDR Targets Database. We report the 3D structure determination and number of features of TcUH, and compared it to other few available bacterial UH structures. Each monomer presents two domains and one NAD+ molecule. Superpositions revealed differences in the relative orientation of domains within monomers, such that TcUH monomer A resembles Urocanate Hydratase from Geobacillus kaustophilus (GkUH) (open conformation), while monomer C resembles Urocanate Hydratase from Pseudomonas putida (PpUH) and Urocanate Hydratase from Bacillus subtilis (BsUH) (closed conformations). We use the structure of TcUH to make considerations about 3 non-deleterious and 2 deleterious mutations found in human UHs: non-deleterious mutations could be accommodated without large displacements or interaction interruptions, whereas deleterious mutations in one case might disrupt an α-helix (as previously suggested) and in the other case, besides disrupting the enzyme interaction with the substrate, might interfere with interdomain movement.


Asunto(s)
Trypanosoma cruzi/enzimología , Urocanato Hidratasa/ultraestructura , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Clonación Molecular , Cristalización , Geobacillus/enzimología , Histidina , NAD/ultraestructura , Conformación Proteica en Hélice alfa , Pseudomonas putida/enzimología , Reproducibilidad de los Resultados , Alineación de Secuencia
11.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652673

RESUMEN

Enhancement, control, and tuning of hydrolytic activity and specificity of lipases are major goals for the industry. Thermoalkaliphilic lipases from the I.5 family, with their native advantages such as high thermostability and tolerance to alkaline pHs, are a target for biotechnological applications. Although several strategies have been applied to increase lipases activity, the enhancement through protein engineering without compromising other capabilities is still elusive. Lipases from the I.5 family suffer a unique and delicate double lid restructuration to transition from a closed and inactive state to their open and enzymatically active conformation. In order to increase the activity of the wild type Geobacillus thermocatenulatus lipase 2 (BTL2) we rationally designed, based on its tridimensional structure, a mutant (ccBTL2) capable of forming a disulfide bond to lock the open state. ccBTL2 was generated replacing A191 and F206 to cysteine residues while both wild type C64 and C295 were mutated to serine. A covalently immobilized ccBTL2 showed a 3.5-fold increment in esterase activity with 0.1% Triton X-100 (2336 IU mg-1) and up to 6.0-fold higher with 0.01% CTAB (778 IU mg-1), both in the presence of oxidizing sulfhydryl agents, when compared to BTL2. The remarkable and industrially desired features of BTL2 such as optimal alkaliphilic pH and high thermal stability were not affected. The designed disulfide bond also conferred reversibility to the enhancement, as the increment on activity observed for ccBTL2 was controlled by redox pretreatments. MD simulations suggested that the most stable conformation for ccBTL2 (with the disulfide bond formed) was, as we predicted, similar to the open and active conformation of this lipase.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Cisteína/genética , Geobacillus/enzimología , Lipasa/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína/química , Disulfuros/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Geobacillus/genética , Lipasa/genética , Lipasa/metabolismo , Simulación de Dinámica Molecular
12.
Electron. j. biotechnol ; Electron. j. biotechnol;35: 18-24, sept. 2018. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1047727

RESUMEN

Background: Lactate dehydrogenase (LDH) is an enzyme of glycolytic pathway, ubiquitously found in living organisms. Increased glycolysis and LDH activity are associated with many pathologic conditions including inflammation and cancer, thereby making the enzyme a suitable drug target. Studies on conserved structural and functional domains of LDH from various species reveal novel inhibitory molecules. Our study describes Escherichia coli production and characterization of a moderately thermostable LDH (LDH-GT) from Geobacillus thermodenitrificans DSM-465. An in silico 3D model of recombinant enzyme and molecular docking with a set of potential inhibitors are also described. Results: The recombinant enzyme was overexpressed in E. coli and purified to electrophoretic homogeneity. The molecular weight of the enzyme determined by MALDI-TOF was 34,798.96 Da. It exhibited maximum activity at 65°C and pH 7.5 with a KM value for pyruvate as 45 µM. LDH-GT and human LDH-A have only 35.6% identity in the amino acid sequence. On the contrary, comparison by in silico structural alignment reveals that LDH-GT monomer has approximately 80% identity to that of truncated LDH-A. The amino acids "GEHGD" as well as His179 and His193 in the active site are conserved. Docking studies have shown the binding free energy changes of potential inhibitors with LDH-A and LDH-GT ranging from −407.11 to −127.31 kJ mol−1 . Conclusions: By highlighting the conserved structural and functional domains of LDH from two entirely different species, this study has graded potential inhibitory molecules on the basis of their binding affinities so that they can be applied for in vivo anticancer studies


Asunto(s)
Geobacillus/enzimología , L-Lactato Deshidrogenasa/metabolismo , Simulación por Computador , Estabilidad de Enzimas , Reacción en Cadena de la Polimerasa , Clonación Molecular , Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Glucólisis , L-Lactato Deshidrogenasa/genética
13.
Electron. j. biotechnol ; Electron. j. biotechnol;29: 78-85, sept. 2017. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1017382

RESUMEN

Background: Biohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated. Results: The methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15­20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P b 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P b 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield. Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.


Asunto(s)
Propionatos/metabolismo , Butiratos/metabolismo , Aguas Residuales/microbiología , Metano/biosíntesis , Propionatos/análisis , Butiratos/análisis , Aceite de Palma , Methanobacteriaceae , Archaea , Methanomicrobiaceae , Geobacillus , Fermentación , Aguas Residuales/análisis , Hidrógeno , Anaerobiosis
14.
Methods Mol Biol ; 1626: 295-300, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28608222

RESUMEN

Lipases are esterases that occur widely in nature, yet those with commercial relevance are exclusively from microbial origin. Glycerol and long-chain fatty acids are the products after hydrolysis of esters bonds in saponifiable lipids catalyzed by lipases. In this work, we describe lipase/esterase activity contained in cell-free fractions from thermophilic bacteria, cultured in medium containing olive oil. Analysis of the cell-free fractions by electrotransference zymography, using tributyrin as substrate, revealed bands corresponding to lipase activity. The method is simple, fast, and inexpensive.


Asunto(s)
Electroforesis en Gel de Poliacrilamida/métodos , Pruebas de Enzimas/métodos , Esterasas/metabolismo , Geobacillus/enzimología , Lipasa/metabolismo , Técnicas de Cultivo de Célula/métodos , Geobacillus/metabolismo , Hidrólisis , Especificidad por Sustrato , Triglicéridos/metabolismo
15.
Braz. J. Microbiol. ; 48(1): 7-8, jan.-mar. 2017. tab
Artículo en Inglés | VETINDEX | ID: vti-18055

RESUMEN

Geobacillus thermodenitrificans DSM 101594 was isolated as a producer of extracellular thermostable pectic polysaccharide degrading enzymes. The completely sequenced genome was 3.6 Mb in length with GC content of 48.86%. A number of genes encoding enzymatic active against the high molecular weight polysaccharides of potential biotechnological importance were identified in the genome.(AU)


Asunto(s)
Geobacillus/genética , Secuenciación Completa del Genoma , Bacterias Termodúricas/genética
16.
Braz. j. microbiol ; Braz. j. microbiol;48(1): 7-8, Jan.-Mar. 2017. tab
Artículo en Inglés | LILACS | ID: biblio-839336

RESUMEN

Abstract Geobacillus thermodenitrificans DSM 101594 was isolated as a producer of extracellular thermostable pectic polysaccharide degrading enzymes. The completely sequenced genome was 3.6 Mb in length with GC content of 48.86%. A number of genes encoding enzymatic active against the high molecular weight polysaccharides of potential biotechnological importance were identified in the genome.


Asunto(s)
Genoma Bacteriano , Genómica , Geobacillus/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Pectinas/metabolismo , Biología Computacional/métodos , Genómica/métodos , Geobacillus/metabolismo , Anotación de Secuencia Molecular
17.
Can J Microbiol ; 63(1): 74-82, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27905820

RESUMEN

Many studies on quorum quenching focus on the discovery and characterization of novel acyl-homoserine lactonases (AHL-lactonases) because these enzymes could be used in the control of diseases caused by Gram-negative bacteria. The effects of quorum quenching are also remarkable in the performance of bacterial consortia in applications such as bioremediation. In the current work, we demonstrated the presence of a potential novel AHL-lactonase-encoding locus (Bsph_3377) from Lysinibacillus sphaericus and Geobacillus sp. The deduced amino acid sequences for this enzyme possess the characteristic domains and motifs involved in Zn-binding from AHL lactonases and were grouped into 1 clade within the phylogeny of the lactonases from firmicutes, showing 70% of identity with the lactonase AhlS from Solibacillus silvestris. We demonstrated the locus transcription by RT-qPCR and its relationship with the suppression of the pathogenicity of Pectobacterium carotovorum. Additionally, we analyzed the interaction of these bacilli with a commercial consortium in the bioremediation of a hydrocarbon-contaminated soil, showing inhibitory effects on its establishment. These results represent a new contribution in the understanding of the potential biotechnological applications of L. sphaericus and Geobacillus sp. as well as in the research on antibacterial techniques based on quorum-sensing disruption.


Asunto(s)
Bacillus/metabolismo , Geobacillus/fisiología , Percepción de Quorum , Aguas del Alcantarillado/microbiología , Bacillus/enzimología , Bacillus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Geobacillus/enzimología , Geobacillus/genética
18.
Braz J Microbiol ; 48(1): 7-8, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27818089

RESUMEN

Geobacillus thermodenitrificans DSM 101594 was isolated as a producer of extracellular thermostable pectic polysaccharide degrading enzymes. The completely sequenced genome was 3.6Mb in length with GC content of 48.86%. A number of genes encoding enzymatic active against the high molecular weight polysaccharides of potential biotechnological importance were identified in the genome.


Asunto(s)
Genoma Bacteriano , Genómica , Geobacillus/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Biología Computacional/métodos , Genómica/métodos , Geobacillus/metabolismo , Anotación de Secuencia Molecular , Pectinas/metabolismo
19.
Mol Biotechnol ; 58(1): 37-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26603441

RESUMEN

A gene encoding a carboxylesterase produced by Geobacillus thermoleovoras CCR11 was cloned in the pET-3b cloning vector, sequenced and expressed in Escherichia coli BL21(DE3). Gene sequence analysis revealed an open reading frame of 750 bp that encodes a polypeptide of 250 amino acid residues (27.3 kDa) named CaesCCR11. The enzyme showed its maximum activity at 50 °C and pH 5-8, with preference for C4 substrates, confirming its esterase nature. It displayed good resistance to temperature, pH, and the presence of organic solvents and detergents, that makes this enzyme biotechnologically applicable in the industries such as fine and oleo-chemicals, cosmetics, pharmaceuticals, organic synthesis, biodiesel production, detergents, and food industries. A 3D model of CaesCCR11 was predicted using the Bacillus sp. monoacyl glycerol lipase bMGL H-257 structure as template (PBD code 3RM3, 99 % residue identity with CaesCCR11). Based on its canonical α/ß hydrolase fold composed of 7 ß-strands and 6 α-helices, the α/ß architecture of the cap domain, the GLSTG pentapeptide, and the formation of distinctive salt bridges, we are proposing CaesCCR11 as a new member of family XV of lipolytic enzymes.


Asunto(s)
Secuencia de Aminoácidos/genética , Geobacillus/enzimología , Estructura Secundaria de Proteína , Receptores CCR/química , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Geobacillus/química , Modelos Moleculares , Receptores CCR/biosíntesis , Receptores CCR/genética , Análisis de Secuencia de ADN , Especificidad por Sustrato , Temperatura
20.
Lipids ; 48(5): 527-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23436021

RESUMEN

Four lipases were purified from ID17, a thermophilic bacterium belonging to Geobacillus genus isolated from Deception Island, Antarctica. Lipase activity was detected by opacity test and p-nitrophenyl laurate methods. Lipase production was better in a medium containing tryptone as the carbon and nitrogen source, without non-ionic detergents and pH 7.5. Proteins were ultrafiltered from supernatant and separated using anion exchange and size exclusion chromatography resulting in four distinct fractions with lipase activity (called Lip1-4). Purified lipases showed an optimal pH at 9.0, 9.5, 10.0 and 8.0 and temperature at 65, 70, 75 and 80 °C for Lip1-4, respectively. Lip1 and Lip2 showed higher activity using p-nitrophenol decanoate as substrate, whereas Lip3 and Lip4 prefer p-nitrophenol laurate. Based on their molecular weight Lip1 and Lip2 are trimeric and pentameric proteins, respectively, whereas Lip3 and Lip4 are monomeric proteins. Lip1 was exceptionally thermostable maintaining 70 % of its activity after incubating it at 70 °C for 8 h. Based on their characteristics, the four lipases obtained from ID17 are good candidates to understand the mechanisms of lipase stability and to be used in different types of industrial applications.


Asunto(s)
Geobacillus/enzimología , Lipasa/aislamiento & purificación , Lipasa/metabolismo , Regiones Antárticas , Geobacillus/química , Concentración de Iones de Hidrógeno , Lauratos/metabolismo , Lipasa/química , Nitrofenoles/metabolismo , Multimerización de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA