Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
1.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39235046

RESUMEN

The South American archaeological record has ample evidence of the socio-cultural dynamism of human populations in the past. This has also been supported through the analysis of ancient genomes, by showing evidence of gene flow across the region. While the extent of these signals is yet to be tested, the growing number of ancient genomes allows for more fine-scaled hypotheses to be evaluated. In this study, we assessed the genetic diversity of individuals associated with the Inka ritual, Qhapaq hucha. As part of this ceremony, one or more individuals were buried with Inka and local-style offerings on mountain summits along the Andes, leaving a very distinctive record. Using paleogenomic tools, we analyzed three individuals: two newly generated genomes from El Plomo Mountain (Chile) and El Toro Mountain (Argentina), and a previously published genome from Argentina (Aconcagua Mountain). Our results reveal a complex demographic scenario with each of the individuals showing different genetic affinities. Furthermore, while two individuals showed genetic similarities with present-day and ancient populations from the southern region of the Inka empire, the third individual may have undertaken long-distance movement. The genetic diversity we observed between individuals from similar cultural contexts supports the highly diverse strategies Inka implemented while incorporating new territories. More broadly, this research contributes to our growing understanding of the population dynamics in the Andes by discussing the implications and temporality of population movements in the region.


Asunto(s)
Genoma Humano , Humanos , Argentina , Chile , Variación Genética , Diversidad Cultural , Conducta Ceremonial , Indígenas Sudamericanos/genética , Genómica
2.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173139

RESUMEN

Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.


Asunto(s)
Altitud , Selección Genética , Humanos , Papúa Nueva Guinea , Adaptación Fisiológica/genética , Genoma Humano , Mal de Altura/genética
3.
Cell ; 187(18): 4819-4823, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121858

RESUMEN

More globally diverse perspectives are needed in genomic studies and precision medicine practices on non-Europeans. Here, we illustrate this by discussing the distribution of clinically actionable genetic variants involved in drug response in Andean highlanders and Amazonians, considering their environment, history, genetic structure, and historical biases in the perception of biological diversity of Native Americans.


Asunto(s)
Genómica , Humanos , Variación Genética , Indígenas Sudamericanos/genética , Genoma Humano , América del Sur , Medicina de Precisión
4.
J Assist Reprod Genet ; 41(9): 2257-2269, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951360

RESUMEN

PURPOSE: Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS: Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS: Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION: Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.


Asunto(s)
Blastocisto , Elementos de Nucleótido Esparcido Largo , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Blastocisto/metabolismo , Femenino , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutagénesis Insercional/genética , Aneuploidia , Genoma Humano/genética , Fertilización In Vitro , Masculino , Variación Genética/genética , Ratones , Mapeo Cromosómico/métodos
5.
Methods Mol Biol ; 2825: 247-262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913314

RESUMEN

Hodgkin lymphoma (HL) is one of the most common lymphomas, with an incidence of 3 per 100,000 persons. Current treatment uses a cocktail of genotoxic agents, including adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD), along with or without radiotherapy. This treatment regimen has proved to be efficient in killing cancer cells, resulting in HL patients having a survival rate of >90% cancer-free survival at five years. However, this therapy does not have a specific cell target, and it can induce damage in the genome of non-cancerous cells. Previous studies have shown that HL survivors often exhibit karyotypes characterized by complex chromosomal abnormalities that are difficult to analyze by conventional banding. Multicolor fluorescence in situ hybridization (M-FISH) is a powerful tool to analyze complex karyotypes; we used M-FISH to investigate the presence of chromosomal damage in peripheral blood lymphocytes from five healthy individuals and five HL patients before, during, and one year after anti-cancer treatment. Our results show that this anti-cancer treatment-induced genomic chaos that persists in the hematopoietic stem cells from HL patients one year after finishing therapy. This chromosomal instability may play a role in the occurrence of second primary cancers that are observed in 10% of HL survivors. This chapter will describe a protocol for utilizing M-FISH to study treatment-induced genome chaos in Hodgkin's lymphoma (HL) patients, following a brief discussion.


Asunto(s)
Enfermedad de Hodgkin , Hibridación Fluorescente in Situ , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/terapia , Humanos , Hibridación Fluorescente in Situ/métodos , Aberraciones Cromosómicas/efectos de la radiación , Doxorrubicina/uso terapéutico , Genoma Humano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Inestabilidad Cromosómica , Linfocitos/efectos de la radiación , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Bleomicina/uso terapéutico
6.
Nature ; 630(8018): 912-919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867041

RESUMEN

The ancient city of Chichén Itzá in Yucatán, Mexico, was one of the largest and most influential Maya settlements during the Late and Terminal Classic periods (AD 600-1000) and it remains one of the most intensively studied archaeological sites in Mesoamerica1-4. However, many questions about the social and cultural use of its ceremonial spaces, as well as its population's genetic ties to other Mesoamerican groups, remain unanswered2. Here we present genome-wide data obtained from 64 subadult individuals dating to around AD 500-900 that were found in a subterranean mass burial near the Sacred Cenote (sinkhole) in the ceremonial centre of Chichén Itzá. Genetic analyses showed that all analysed individuals were male and several individuals were closely related, including two pairs of monozygotic twins. Twins feature prominently in Mayan and broader Mesoamerican mythology, where they embody qualities of duality among deities and heroes5, but until now they had not been identified in ancient Mayan mortuary contexts. Genetic comparison to present-day people in the region shows genetic continuity with the ancient inhabitants of Chichén Itzá, except at certain genetic loci related to human immunity, including the human leukocyte antigen complex, suggesting signals of adaptation due to infectious diseases introduced to the region during the colonial period.


Asunto(s)
Conducta Ceremonial , ADN Antiguo , Genoma Humano , Humanos , México , Genoma Humano/genética , Masculino , ADN Antiguo/análisis , Historia Antigua , Femenino , Entierro/historia , Arqueología , Gemelos/genética , Historia Medieval
7.
Trends Biotechnol ; 42(6): 665-670, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38129214

RESUMEN

Mexico has the in-house technical and regulatory capacity to undertake human genome editing (HGE) governance. However, its regulatory framework must be reformed to be more targeted and govern the application of any emerging HGE technologies, leaving no room for unethical or unsafe practices for reproductive purposes.


Asunto(s)
Edición Génica , Genoma Humano , Humanos , México , Edición Génica/legislación & jurisprudencia , Edición Génica/ética , Edición Génica/métodos , Genoma Humano/genética
8.
Hum Genomics ; 17(1): 102, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968704

RESUMEN

BACKGROUND: Next-generation sequencing has had a significant impact on genetic disease diagnosis, but the interpretation of the vast amount of genomic data it generates can be challenging. To address this, the American College of Medical Genetics and Genomics and the Association for Molecular Pathology have established guidelines for standardized variant interpretation. In this manuscript, we present the updated Hospital Israelita Albert Einstein Standards for Constitutional Sequence Variants Classification, incorporating modifications from leading genetics societies and the ClinGen initiative. RESULTS: First, we standardized the scientific publications, documents, and other reliable sources for this document to ensure an evidence-based approach. Next, we defined the databases that would provide variant information for the classification process, established the terminology for molecular findings, set standards for disease-gene associations, and determined the nomenclature for classification criteria. Subsequently, we defined the general rules for variant classification and the Bayesian statistical reasoning principles to enhance this process. We also defined bioinformatics standards for automated classification. Our workgroup adhered to gene-specific rules and workflows curated by the ClinGen Variant Curation Expert Panels whenever available. Additionally, a distinct set of specifications for criteria modulation was created for cancer genes, recognizing their unique characteristics. CONCLUSIONS: The development of an internal consensus and standards for constitutional sequence variant classification, specifically adapted to the Brazilian population, further contributes to the continuous refinement of variant classification practices. The aim of these efforts from the workgroup is to enhance the reliability and uniformity of variant classification.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Estados Unidos , Mutación , Reproducibilidad de los Resultados , Teorema de Bayes , Genoma Humano
9.
Nature ; 624(7990): 122-129, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993721

RESUMEN

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Asunto(s)
Variación Genética , Pueblos Indígenas , Humanos , Agricultura/historia , California/etnología , Región del Caribe/etnología , Etnicidad/genética , Etnicidad/historia , Europa (Continente)/etnología , Variación Genética/genética , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia Antigua , Historia Medieval , Migración Humana/historia , Pueblos Indígenas/genética , Pueblos Indígenas/historia , Islas , Lenguaje/historia , México/etnología , Zea mays , Genoma Humano/genética , Genómica , Alelos
10.
Nature ; 622(7984): 775-783, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821706

RESUMEN

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Asunto(s)
Bancos de Muestras Biológicas , Genética Médica , Genoma Humano , Genómica , Hispánicos o Latinos , Humanos , Glucemia/genética , Glucemia/metabolismo , Estatura/genética , Índice de Masa Corporal , Interacción Gen-Ambiente , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/clasificación , Hispánicos o Latinos/genética , Homocigoto , México , Fenotipo , Triglicéridos/sangre , Triglicéridos/genética , Reino Unido , Genoma Humano/genética
11.
Nature ; 622(7984): 784-793, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821707

RESUMEN

The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.


Asunto(s)
Secuenciación del Exoma , Genoma Humano , Genotipo , Hispánicos o Latinos , Adulto , Humanos , África/etnología , Américas/etnología , Europa (Continente)/etnología , Frecuencia de los Genes/genética , Genética de Población , Genoma Humano/genética , Técnicas de Genotipaje , Hispánicos o Latinos/genética , Homocigoto , Mutación con Pérdida de Función/genética , México , Estudios Prospectivos
13.
Nature ; 622(7981): 41-47, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794265

RESUMEN

Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.


Asunto(s)
Genes , Genoma Humano , Anotación de Secuencia Molecular , Isoformas de Proteínas , Humanos , Genoma Humano/genética , Anotación de Secuencia Molecular/normas , Anotación de Secuencia Molecular/tendencias , Isoformas de Proteínas/genética , Proyecto Genoma Humano , Seudogenes , ARN/genética
14.
Am J Hum Genet ; 110(10): 1804-1816, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37725976

RESUMEN

Demographic models of Latin American populations often fail to fully capture their complex evolutionary history, which has been shaped by both recent admixture and deeper-in-time demographic events. To address this gap, we used high-coverage whole-genome data from Indigenous American ancestries in present-day Mexico and existing genomes from across Latin America to infer multiple demographic models that capture the impact of different timescales on genetic diversity. Our approach, which combines analyses of allele frequencies and ancestry tract length distributions, represents a significant improvement over current models in predicting patterns of genetic variation in admixed Latin American populations. We jointly modeled the contribution of European, African, East Asian, and Indigenous American ancestries into present-day Latin American populations. We infer that the ancestors of Indigenous Americans and East Asians diverged ∼30 thousand years ago, and we characterize genetic contributions of recent migrations from East and Southeast Asia to Peru and Mexico. Our inferred demographic histories are consistent across different genomic regions and annotations, suggesting that our inferences are robust to the potential effects of linked selection. In conjunction with published distributions of fitness effects for new nonsynonymous mutations in humans, we show in large-scale simulations that our models recover important features of both neutral and deleterious variation. By providing a more realistic framework for understanding the evolutionary history of Latin American populations, our models can help address the historical under-representation of admixed groups in genomics research and can be a valuable resource for future studies of populations with complex admixture and demographic histories.


Asunto(s)
Genética de Población , Genoma Humano , Humanos , América Latina , Genoma Humano/genética , Demografía , Blanco
15.
J Clin Endocrinol Metab ; 109(1): 68-79, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37572362

RESUMEN

CONTEXT: Despite high abundance of small indels in human genomes, their precise roles and underlying mechanisms of mutagenesis in Mendelian disorders require further investigation. OBJECTIVE: To profile the distribution, functional implications, and mechanisms of small indels in the androgen receptor (AR) gene in individuals with androgen insensitivity syndrome (AIS). METHODS: We conducted a systematic review of previously reported indels within the coding region of the AR gene, including 3 novel indels. Distribution throughout the AR coding region was examined and compared with genomic population data. Additionally, we assessed their impact on the AIS phenotype and investigated potential mechanisms driving their occurrence. RESULTS: A total of 82 indels in AIS were included. Notably, all frameshift indels exhibited complete AIS. The distribution of indels across the AR gene showed a predominance in the N-terminal domain, most leading to frameshift mutations. Small deletions accounted for 59.7%. Most indels occurred in nonrepetitive sequences, with 15.8% situated within triplet regions. Gene burden analysis demonstrated significant enrichment of frameshift indels in AIS compared with controls (P < .00001), and deletions were overrepresented in AIS (P < .00001). CONCLUSION: Our findings underscore a robust genotype-phenotype relationship regarding small indels in the AR gene in AIS, with a vast majority presenting complete AIS. Triplet regions and homopolymeric runs emerged as prone loci for small indels within the AR. Most were frameshift indels, with polymerase slippage potentially explaining half of AR indel occurrences. Complex frameshift indels exhibited association with palindromic runs. These discoveries advance understanding of the genetic basis of AIS and shed light on potential mechanisms underlying pathogenic small indel events.


Asunto(s)
Síndrome de Resistencia Androgénica , Receptores Androgénicos , Humanos , Masculino , Síndrome de Resistencia Androgénica/genética , Genoma Humano , Mutagénesis , Mutación , Fenotipo , Receptores Androgénicos/genética
16.
Biol Res ; 56(1): 42, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37468985

RESUMEN

The human genome contains regions that cannot be adequately assembled or aligned using next generation short-read sequencing technologies. More than 2500 genes are known contain such 'dark' regions. In this study, we investigate the negative consequences of dark regions on gene discovery across a range of disease and study types, showing that dark regions are likely preventing researchers from identifying genetic variants relevant to human disease.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Genoma Humano/genética , Análisis de Secuencia de ADN
17.
Med. infant ; 30(2): 168-171, Junio 2023.
Artículo en Español | LILACS, UNISALUD, BINACIS | ID: biblio-1443722

RESUMEN

Las técnicas de Biología Molecular de última generación, como es la secuenciación masiva en paralelo o NGS (Next Generation Sequencing), permite obtener gran cantidad de información genómica, la cual muchas veces va más allá de la detección de una variante patogénica en un gen que explique la patología (hallazgo primario). Es así como surgió desde hace años la discusión internacional respecto a la decisión a tomar frente a los hallazgos secundarios accionables, es decir, aquellos hallazgos de variantes clasificadas como patogénicas o probablemente patogénicas que no están relacionadas con el fenotipo del paciente, pero que tiene alguna medida preventiva o tratamiento posible y, por lo tanto, podría ser de utilidad para la salud del paciente. Luego de revisar la bibliografía internacional y debatir entre los expertos del Hospital de Pediatría Garrahan, se logró establecer una política institucional y reforzar el hecho de que se trata de una disciplina multidisciplinaria. Así, fue posible definir que solo se atenderá las cuestiones relacionadas con la edad pediátrica, dejando para un tratamiento posterior aquellas variantes detectadas en genes que sean accionables en edad adulta. En el Hospital Garrahan, ha sido posible definir claramente cómo proceder frente a los hallazgos secundarios, al adaptar el consentimiento informado a esta necesidad, definiendo cuándo serán informados, y sabiendo que serán buscados intencionalmente en los genes clínicamente accionables enlistados en la última publicación del American College of Medical Genetics and Genomics, siempre y cuando el paciente/padre/tutor lo consienta (AU)


The latest generation of molecular biology techniques, including massive parallel sequencing or NGS (Next Generation Sequencing), allows us to obtain a whealth of genomic information, which often goes beyond the detection of a pathogenic variant in a gene that explains the pathology (primary finding). As a result, an international discussion has arisen over the years regarding the decision-making concerning actionable secondary findings, it means, those findings of variants classified as pathogenic or probably pathogenic that are not related to the patient's phenotype, but which have some possible preventive measure or treatment and, therefore, could be useful for the patient's health. After reviewing the international literature and discussing among the experts of the Hospital de Pediatría Garrahan, an institutional policy was established and the concept that this is a multidisciplinary discipline was reinforced. Consequently, it has been defined that only issues related to children will be addressed, reserving those variants detected in genes that are actionable in adulthood for later treatment. At Garrahan Hospital, we were able to clearly define how to proceed with secondary findings by adapting the informed consent to this need, defining when they will be reported, and knowing that they will be intentionally searched for in the clinically actionable genes listed in the latest publication of the American College of Medical Genetics and Genomics, as long as the patient/parent/guardian consents (AU)


Asunto(s)
Humanos , Genoma Humano/genética , Hallazgos Incidentales , Secuenciación de Nucleótidos de Alto Rendimiento , Medicina Genómica/tendencias , Hospitales Pediátricos , Biología Molecular/tendencias , Consentimiento Informado
18.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992353

RESUMEN

We present a genome polymorphisms/machine learning approach for severe COVID-19 prognosis. Ninety-six Brazilian severe COVID-19 patients and controls were genotyped for 296 innate immunity loci. Our model used a feature selection algorithm, namely recursive feature elimination coupled with a support vector machine, to find the optimal loci classification subset, followed by a support vector machine with the linear kernel (SVM-LK) to classify patients into the severe COVID-19 group. The best features that were selected by the SVM-RFE method included 12 SNPs in 12 genes: PD-L1, PD-L2, IL10RA, JAK2, STAT1, IFIT1, IFIH1, DC-SIGNR, IFNB1, IRAK4, IRF1, and IL10. During the COVID-19 prognosis step by SVM-LK, the metrics were: 85% accuracy, 80% sensitivity, and 90% specificity. In comparison, univariate analysis under the 12 selected SNPs showed some highlights for individual variant alleles that represented risk (PD-L1 and IFIT1) or protection (JAK2 and IFIH1). Variant genotypes carrying risk effects were represented by PD-L2 and IFIT1 genes. The proposed complex classification method can be used to identify individuals who are at a high risk of developing severe COVID-19 outcomes even in uninfected conditions, which is a disruptive concept in COVID-19 prognosis. Our results suggest that the genetic context is an important factor in the development of severe COVID-19.


Asunto(s)
COVID-19 , Genoma Humano , Humanos , Antígeno B7-H1 , Helicasa Inducida por Interferón IFIH1 , Brasil/epidemiología , COVID-19/diagnóstico , COVID-19/genética , Inteligencia Artificial , Algoritmos , Genómica
19.
Arch Virol ; 168(4): 125, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988711

RESUMEN

Human endogenous retroviruses (HERVs) are LTR retrotransposons that are present in the human genome. Among them, members of the HERV-K (HML-2) group are suspected to play a role in the development of different types of cancer, including lung, ovarian, and prostate cancer, as well as leukemia. Acute myeloid leukemia (AML) is an important disease that causes 1% of cancer deaths in the United States and has a survival rate of 28.7%. Here, we describe a method for assessing the statistical association between HERV-K (HML-2) transposable element insertion polymorphisms (or TIPs) and AML, using whole-genome sequencing and read mapping using TIP_finder software. Our results suggest that 101 polymorphisms involving HERV-K (HML-2) elements were correlated with AML, with a percentage between 44.4 to 56.6%, most of which (70) were located in the region from 8q24.13 to 8q24.21. Moreover, it was found that the TRIB1, LRATD2, POU5F1B, MYC, PCAT1, PVT1, and CCDC26 genes could be displaced or fragmented by TIPs. Furthermore, a general method was devised to facilitate analysis of the correlation between transposable element insertions and specific diseases. Finally, although the relationship between HERV-K (HML-2) TIPs and AML remains unclear, the data reported in this study indicate a statistical correlation, as supported by the χ2 test with p-values < 0.05.


Asunto(s)
Retrovirus Endógenos , Leucemia Mieloide Aguda , Masculino , Humanos , Retrovirus Endógenos/genética , Elementos Transponibles de ADN , Polimorfismo Genético , Genoma Humano , Leucemia Mieloide Aguda/genética , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/genética
20.
Rev Invest Clin ; 75(1): 13-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36854069

RESUMEN

Abstract: CRISPR/Cas genes evolved in prokaryotic organisms as a mechanism of defense designed to identify and destroy genetic material from threatening viruses. A breakthrough discovery is that CRISPR/Cas system can be used in eukaryotic cells to edit almost any desired gene. This comprehensive review addresses the most relevant work in the CRISPR/Cas field, including its history, molecular biology, gene editing capability, ongoing clinical trials, and bioethics. Although the science involved is complex, we intended to describe it in a concise manner that could be of interest to diverse readers, including anyone dedicated to the treatment of patients who could potentially benefit from gene editing, molecular biologists, and bioethicists. CRISPR/Cas has the potential to correct inherited diseases caused by single point mutations, to knock-in the promoter of a gene whose expression is highly desirable or knockout the gene coding for a deleterious protein. CRISPR/Cas technique can also be used to edit ex vivo immune cells and reinsert them in patients, improving their efficiency in attacking malignant cells, limiting the infectious potential of viruses or modulating xenotransplant rejection. Very important bioethical considerations on this topic include the need to internationally regulate its use by ad hoc expert committees and to limit its use until safety and bioethical issues are satisfactorily resolved.


Asunto(s)
Sistemas CRISPR-Cas , Genoma Humano , Humanos , Edición Génica , Biología Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA