Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 854
Filtrar
1.
J Med Virol ; 96(8): e29821, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175267

RESUMEN

Herpes zoster (HZ), resulting from the reactivation of the varicella-zoster virus, is a significant disease. This study aimed to explore the factors influencing sensory neuron involvement in HZ at different locations and its association with postherpetic neuralgia (PHN). A total of 3143 cases were retrieved from an electronic medical record system, including 2676 cases of HZ and 467 cases of PHN. Gender, age, site of onset, past surgical history, and comorbidities were analyzed using a multifactorial logistic regression model. The results revealed correlations between age, gender, comorbidities (diabetes, coronary heart disease, percutaneous coronary intervention [PCI]), and sensory neuron involvement in HZ. Specifically, older age, female gender, and comorbid conditions such as diabetes/coronary heart disease were associated with sacral dorsal root ganglion (DRG) involvement, while PCI history was associated with lumbar DRG involvement. Additionally, sensory neuron involvement at different locations by HZ was linked to PHN. Furthermore, independent risk factors for PHN included thoracic DRG involvement, older age, and comorbidities (diabetes, surgical history, malignancy). It is crucial to prevent damage to the DRG, especially in individuals with comorbidities, through activities avoidance and active treatment, to minimize the occurrence of PHN.


Asunto(s)
Herpes Zóster , Neuralgia Posherpética , Humanos , Herpes Zóster/epidemiología , Herpes Zóster/complicaciones , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Neuralgia Posherpética/epidemiología , Factores de Riesgo , Anciano de 80 o más Años , Adulto , Comorbilidad , Ganglios Sensoriales/virología , Herpesvirus Humano 3 , Factores de Edad , Ganglios Espinales/virología , Adulto Joven , Factores Sexuales
2.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38445887

RESUMEN

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Asunto(s)
Artefactos , Ganglios Sensoriales , Herpesvirus Humano 1 , Células Receptoras Sensoriales , Análisis de Secuencia de ARN , Análisis de Expresión Génica de una Sola Célula , Latencia del Virus , Animales , Ratones , Muerte Celular , Conjuntos de Datos como Asunto , Ganglios Sensoriales/inmunología , Ganglios Sensoriales/patología , Ganglios Sensoriales/virología , Herpes Simple/inmunología , Herpes Simple/patología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/aislamiento & purificación , MicroARNs/análisis , MicroARNs/genética , Reproducibilidad de los Resultados , ARN Viral/análisis , ARN Viral/genética , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/virología
3.
Glia ; 72(6): 1054-1066, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38450799

RESUMEN

Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.


Asunto(s)
Neuroglía , Neuronas , Animales , Ratones , Neuroglía/metabolismo , Ganglios Sensoriales , Ganglios Espinales , Glutamatos/metabolismo , Adenosina Trifosfato/metabolismo , Células Satélites Perineuronales/metabolismo
4.
Biomed Res ; 45(2): 77-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556265

RESUMEN

Distribution of endomorphin-1 (EM-1) was immunohistochemically investigated in the rat cranial sensory ganglia. Small to medium-sized neurons in the trigeminal (TG), petrosal (PG), and jugular ganglia (JG) expressed EM-1-immunoreactivity. However, EM-1-immunoreactive (-ir) neurons were infrequent in the nodose ganglion. In the brainstem, EM-1-ir varicose fibers were detected in the superficial layer of the medullary dorsal horn and the caudal part of the nucleus tractus solitarius. By trichrome immunofluorescence analysis, approximately 70% of EM-1-ir neurons were also immunoreactive for transient receptor potential vanilloid 1 (TRPV1) in all the examined ganglia. Additionally, 56.8% of EM1-ir TG neurons and approximately 30% of EM-1-ir PG and JG neurons showed calcitonin gene-related peptide (CGRP)-immunoreactivity. By a retrograde tracing method, several TG, PG, and JG neurons innervating the facial and external ear canal skin expressed EM-1-immunoreactivity. However, EM-1-ir neurons innervating the tooth pulp, circumvallate papilla, and pharynx were relatively rare. Thus, EM-1 expression and its coexistence with TRPV1 and CGRP in the cranial sensory neurons may depend on their various peripheral targets. EM1-ir neurons probably project to the superficial layer of the medullary dorsal horn and caudal part of the nucleus tractus solitarius. EM-1 may be involved in nociceptive transmission from the skin.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Ganglios Sensoriales , Ratas , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglios Sensoriales/metabolismo , Células Receptoras Sensoriales/metabolismo , Oligopéptidos
5.
Elife ; 122023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254842

RESUMEN

Resident macrophages are distributed across all tissues and are highly heterogeneous due to adaptation to different tissue-specific environments. The resident macrophages of the sensory ganglia (sensory neuron-associated macrophages, sNAMs) are in close contact with the cell body of primary sensory neurons and might play physiological and pathophysiological roles. After peripheral nerve injury, there is an increase in the population of macrophages in the sensory ganglia, which have been implicated in different conditions, including neuropathic pain development. However, it is still under debate whether macrophage accumulation in the sensory ganglia after peripheral nerve injury is due to the local proliferation of resident macrophages or a result of blood monocyte infiltration. Here, we confirmed that the number of macrophages increased in the sensory ganglia after the spared nerve injury (SNI) model in mice. Using different approaches, we found that the increase in the number of macrophages in the sensory ganglia after SNI is a consequence of the proliferation of resident CX3CR1+ macrophages, which participate in the development of neuropathic pain, but not due to infiltration of peripheral blood monocytes. These proliferating macrophages are the source of pro-inflammatory cytokines such as TNF and IL-1b. In addition, we found that CX3CR1 signaling is involved in the sNAMs proliferation and neuropathic pain development after peripheral nerve injury. In summary, these results indicated that peripheral nerve injury leads to sNAMs proliferation in the sensory ganglia in a CX3CR1-dependent manner accounting for neuropathic pain development. In conclusion, sNAMs proliferation could be modulated to change pathophysiological conditions such as chronic neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Traumatismos de los Nervios Periféricos/complicaciones , Ganglios Espinales , Macrófagos , Ganglios Sensoriales , Células Receptoras Sensoriales , Proliferación Celular , Hiperalgesia
6.
Proc Natl Acad Sci U S A ; 120(17): e2211631120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37071676

RESUMEN

Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.


Asunto(s)
Dolor Crónico , Fibromialgia , Humanos , Neutrófilos , Hiperalgesia , Ganglios Sensoriales
7.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36040061

RESUMEN

Placodes are embryonic structures originating from the rostral ectoderm that give rise to highly diverse organs and tissues, comprising the anterior pituitary gland, paired sense organs and cranial sensory ganglia. Their development, including the underlying gene regulatory networks and signalling pathways, have been for the most part characterised in animal models. In this Review, we describe how placode development can be recapitulated by the differentiation of human pluripotent stem cells towards placode progenitors and their derivatives, highlighting the value of this highly scalable platform as an optimal in vitro tool to study the development of human placodes, and identify human-specific mechanisms in their development, function and pathology.


Asunto(s)
Ectodermo , Células Madre Pluripotentes , Animales , Diferenciación Celular , Ectodermo/metabolismo , Ganglios Sensoriales , Regulación del Desarrollo de la Expresión Génica , Humanos , Órganos de los Sentidos
8.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35610024

RESUMEN

Because of their ease of use, adeno-associated viruses (AAVs) are indispensable tools for much of neuroscience. Yet AAVs have been used relatively little to study the identities and connectivity of peripheral sensory neurons, principally because methods to selectively target peripheral neurons have been limited. The introduction of the AAV-PHP.S capsid with enhanced tropism for peripheral neurons (Chan et al., 2017) offered a solution, which we further elaborate here. Using AAV-PHP.S with GFP or mScarlet fluorescent proteins, we show that the mouse sensory ganglia for cranial nerves V, VII, IX, and X are targeted. Pseudounipolar neurons of both somatic and visceral origin, but not satellite glia, express the reporters. One week after virus injection, ≈66% of geniculate ganglion neurons were transduced. Fluorescent reporters were transported along the central and peripheral axons of these sensory neurons, permitting visualization of terminals at high resolution, and in intact, cleared brain using light sheet microscopy. Further, using a Cre-dependent reporter, we demonstrate by anatomic and functional criteria, that expression is in a cell type-selective manner. Finally, we integrate earlier neuroanatomical and molecular data with in vivo Ca2+ imaging to demonstrate the sensory characteristics of geniculate ganglion auricular neurons, which were previously undocumented. Our analyses suggest that the AAV-PHP.S serotype will be a powerful tool for anatomically and functionally mapping the receptive fields and circuits of the expanding numbers of molecular subtypes of many somatosensory and viscerosensory neurons that continue to be defined via single-cell RNA sequencing.


Asunto(s)
Dependovirus , Ganglios Espinales , Animales , Dependovirus/genética , Ganglios Sensoriales , Ganglios Espinales/metabolismo , Vectores Genéticos , Ratones , Regiones Promotoras Genéticas , Células Receptoras Sensoriales
9.
Cell Rep ; 38(5): 110328, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108545

RESUMEN

Satellite glia are the major glial type found in sympathetic and sensory ganglia in the peripheral nervous system, and specifically, contact neuronal cell bodies. Sympathetic and sensory neurons differ in morphological, molecular, and electrophysiological properties. However, the molecular diversity of the associated satellite glial cells remains unclear. Here, using single-cell RNA sequencing analysis, we identify five different populations of satellite glia from sympathetic and sensory ganglia. We define three shared populations of satellite glia enriched in immune-response genes, immediate-early genes, and ion channels/ECM-interactors, respectively. Sensory- and sympathetic-specific satellite glia are differentially enriched for modulators of lipid synthesis and metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Furthermore, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals the remarkable heterogeneity of satellite glia in the peripheral nervous system.


Asunto(s)
Ganglios Sensoriales/metabolismo , Ganglios Espinales/metabolismo , Neuroglía/metabolismo , Células de Schwann/metabolismo , Animales , Ganglios Simpáticos/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Neuronas Aferentes , Sistema Nervioso Periférico/metabolismo
10.
Cells ; 11(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159321

RESUMEN

Injury or inflammation in the peripheral branches of neurons of sensory ganglia causes changes in neuronal properties, including excessive firing, which may underlie chronic pain. The main types of glial cell in these ganglia are satellite glial cells (SGCs), which completely surround neuronal somata. SGCs undergo activation following peripheral lesions, which can enhance neuronal firing. How neuronal injury induces SGC activation has been an open question. Moreover, the mechanisms by which the injury is signaled from the periphery to the ganglia are obscure and may include electrical conduction, axonal and humoral transport, and transmission at the spinal level. We found that peripheral inflammation induced SGC activation and that the messenger between injured neurons and SGCs was nitric oxide (NO), acting by elevating cyclic guanosine monophosphate (cGMP) in SGCs. These results, together with work from other laboratories, indicate that a plausible (but not exclusive) mechanism for neuron-SGCs interactions can be formulated as follows: Firing due to peripheral injury induces NO formation in neuronal somata, which diffuses to SGCs. This stimulates cGMP synthesis in SGCs, leading to their activation and to other changes, which contribute to neuronal hyperexcitability and pain. Other mediators such as proinflammatory cytokines probably also contribute to neuron-SGC communications.


Asunto(s)
Dolor Crónico , Células Satélites Perineuronales , Dolor Crónico/metabolismo , Ganglios Sensoriales , Humanos , Inflamación/metabolismo , Neuroglía/metabolismo , Células Satélites Perineuronales/metabolismo
11.
Nature ; 602(7897): 468-474, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082448

RESUMEN

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.


Asunto(s)
Intestinos , Saciedad , Células Receptoras Sensoriales , Sed , Ganglios Sensoriales/citología , Intestinos/citología , Intestinos/inervación , Concentración Osmolar , Presión Osmótica , Saciedad/fisiología , Células Receptoras Sensoriales/citología , Sed/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Agua/metabolismo
12.
J Neuroinflammation ; 18(1): 227, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645458

RESUMEN

BACKGROUND: Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. METHODS: After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. RESULTS: The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. CONCLUSION: Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact.


Asunto(s)
Trasplante de Médula Ósea/métodos , Aumento de la Célula , Ganglios Sensoriales/patología , Macrófagos/patología , Traumatismos de los Nervios Periféricos/patología , Células Receptoras Sensoriales/patología , Animales , Ganglios Sensoriales/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/terapia , Células Receptoras Sensoriales/inmunología
13.
Ann Anat ; 238: 151776, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34082081

RESUMEN

BACKGROUND: Alpha-synuclein (Syn), an unfolded soluble cytosolic protein, is known as a disease-associated protein in the brain. However, little is known about distribution of this protein in the peripheral nervous system. In this study, expression of Syn was investigated in the sensory ganglia of the cranial nerves V, IX and X. METHODS: To analyze distribution of Syn and its co-expression with calcitonin gene-related peptide (CGRP) or the transient receptor potential cation channel subfamily V member 1 (TRPV1), immunohistochemical techniques were used in the rat cranial sensory ganglia and their peripheral tissues. RESULTS: Syn-immunoreactive (-ir) neurons were abundant in the sensory ganglia of the petrosal (56.7%), jugular (28.3%) and nodose ganglia (82.5%). These neurons had small to medium-sized cell bodies (petrosal, mean ± S.D. = 667.4 ± 310.8 µ m2; jugular, 625.1 ± 318.4 µ m2; nodose, 708.3 ± 248.3 µ m2), and were distributed throughout the ganglia. However, the trigeminal ganglion was mostly free of Syn-ir neurons. By double and triple immunofluorescence staining, Syn-ir neurons co-expressed CGRP and TRPV1 in the petrosal and jugular ganglia. Syn-immunoreactivity was expressed by nerve fibers in the epithelium and taste bud of oral and cervical viscerae. These nerve fibers were abundant in the naso-pharynx, epiglottis and laryngeal vestibule. Some taste bud cells were also immunoreactive for Syn. In addition, Syn-ir nerve fibers were detected in the vicinity of macrophages, dendritic cells and Langerhans cells. CONCLUSIONS: Syn was abundant in the visceral sensory neurons but not in somatic sensory neurons. This protein may play a role in nociceptive and chemosensory transduction in the glossopharyngeal and vagal sensory ganglia. It is possible that Syn has a function about the immune mechanism of the upper air way.


Asunto(s)
Ganglios Sensoriales , alfa-Sinucleína , Animales , Péptido Relacionado con Gen de Calcitonina , Ganglio Nudoso , Ratas , Células Receptoras Sensoriales
14.
Purinergic Signal ; 17(3): 411-424, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33934245

RESUMEN

As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms transduction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during its analgesia process. Male Sprague-Dawley rats underwent acute inflammatory pain by injecting Complete Freund's Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acupuncture research.


Asunto(s)
Terapia por Acupuntura/métodos , Adenosina Trifosfato/metabolismo , Articulación del Tobillo/metabolismo , Artritis Experimental/metabolismo , Líquido Extracelular/metabolismo , Ganglios Sensoriales/metabolismo , Adenosina Trifosfato/antagonistas & inhibidores , Analgesia/métodos , Animales , Artritis Experimental/patología , Artritis Experimental/terapia , Ganglios Sensoriales/patología , Masculino , Ratas , Ratas Sprague-Dawley
15.
Biomed Pharmacother ; 135: 111185, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33422932

RESUMEN

Aminoglycoside antibiotics, such as gentamicin, are known to have vestibulotoxic effects, including ataxia and disequilibrium. To date, however, the underlying cellular and molecular mechanisms are still unclear. In this study, we determined the role of gentamicin in regulating the sustained delayed rectifier K+ current (IDR) and membrane excitability in vestibular ganglion (VG) neurons in mice. Our results showed that the application of gentamicin to VG neurons decreased the IDR in a concentration-dependent manner, while the transient outward A-type K+ current (IA) remained unaffected. The decrease in IDR induced by gentamicin was independent of G-protein activity and led to a hyperpolarizing shift of the inactivation Vhalf. The analysis of phospho-c-Jun N-terminal kinase (p-JNK) revealed that gentamicin significantly stimulated JNK, while p-ERK and p-p38 remained unaffected. Blocking Kv1 channels with α-dendrotoxin or pretreating VG neurons with the JNK inhibitor II abrogated the gentamicin-induced decrease in IDR. Antagonism of JNK signaling attenuated the gentamicin-induced stimulation of PKA activity, whereas PKA inhibition prevented the IDR response induced by gentamicin. Moreover, gentamicin significantly increased the number of action potentials fired in both phasic and tonic firing type neurons; pretreating VG neurons with the JNK inhibitor II and the blockade of the IDR abolished this effect. Taken together, our results demonstrate that gentamicin decreases the IDR through a G-protein-independent but JNK and PKA-mediated signaling pathways. This gentamicin-induced IDR response mediates VG neuronal hyperexcitability and might contribute to its pharmacological vestibular effects.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Ganglios Sensoriales/efectos de los fármacos , Gentamicinas/toxicidad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Bloqueadores de los Canales de Potasio/toxicidad , Nervio Vestibular/efectos de los fármacos , Potenciales de Acción , Animales , Células Cultivadas , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Femenino , Ganglios Sensoriales/enzimología , Masculino , Ratones Endogámicos ICR , Neuronas/enzimología , Fosforilación , Transducción de Señal , Nervio Vestibular/enzimología
16.
Neuroscientist ; 27(1): 47-57, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32321356

RESUMEN

Axon bifurcation - a specific form of branching of somatosensory axons characterized by the splitting of the growth cone - is mediated by a cGMP-dependent signaling cascade composed of the extracellular ligand CNP (C-type natriuretic peptide), the transmembrane receptor guanylyl cyclase Npr2 (natriuretic peptide receptor 2), and the kinase cGKI (cGMP-dependent protein kinase I). In the absence of any one of these components, the formation of T-shaped axonal branches is impaired in neurons from DRGs (dorsal root ganglia), CSGs (cranial sensory ganglia) and MTNs (mesencephalic trigeminal neurons) in the murine spinal cord or hindbrain. Instead, axons from DRGs or from CSGs extend only either in an ascending or descending direction, while axons from MTNs either elongate within the hindbrain or extend via the trigeminal ganglion to the masseter muscles. Collateral formation from non-bifurcating stem axons is not affected by impaired cGMP signaling. Activation of Npr2 requires both binding of the ligand CNP as well as phosphorylation of serine and threonine residues at the juxtamembrane regions of the receptor. The absence of bifurcation results in an altered shape of termination fields of sensory afferents in the spinal cord and resulted in impaired noxious heat sensation and nociception whereas motor coordination appeared normal.


Asunto(s)
Axones/fisiología , GMP Cíclico/metabolismo , Ganglios Sensoriales/fisiología , Vías Nerviosas/fisiología , Receptores del Factor Natriurético Atrial/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Animales , Axones/metabolismo , Ganglios Sensoriales/metabolismo , Ratones , Vías Nerviosas/metabolismo , Células Receptoras Sensoriales/metabolismo
17.
Folia Morphol (Warsz) ; 80(4): 745-755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33330971

RESUMEN

Satellite glial cells are specialised cells that form a functional perineuronal sheath around sensory ganglion neurons. There are a large number of studies that reveal the morphological and functional characteristics of these cells. Satellite glial cells have been studied both in intact ganglions and in tissue cultures, using light and transmission electron microscopy, immunohistochemical and other methods. Satellite glial cells have polygonal form; they are mononuclear and have developed synthetic organelles, numerous receptors, adhesion molecules and ion channels, which enable them to interact with adjacent neurons, as well as transmit signals in the ganglions of the peripheral nervous system. Based on the literature data, satellite glial cells thanks to their characteristics can receive signals from other cells and react to changes in their surroundings. Previous studies have investigated the potential role of satellite glial cells in the formation of the blood-nervous tissue barrier of the peripheral nervous system, as well as in the neuropathic pain genesis. Some recent discoveries support the fact that satellite glial cells can participate in controlling of local viral infections and protecting pseudounipolar neurons from mentioned infections.


Asunto(s)
Ganglios Sensoriales , Neuroglía , Neuronas
19.
Semin Neurol ; 40(5): 580-590, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32906171

RESUMEN

Acute-onset and severe sensory and autonomic deficits with no motor dysfunction, typically preceded by a febrile illness, with poor recovery, and often fatal outcome are the hallmark features of acute sensory and autonomic neuronopathy (ASANN). Pathologically and electrophysiologically, ASANN is characterized by an extensive ganglionopathy affecting sensory and autonomic ganglia with preservation of motor neurons. Consequently, patients, usually children or young adult, develop acute-onset profound widespread loss of all sensory modalities resulting in automutilations, as well as autonomic failure causing neurogenic orthostatic hypotension, neurogenic underactive bladder, and gastroparesis and constipation. The diagnosis is clinical with support of nerve conduction studies and autonomic testing, as well as spinal cord magnetic resonance imaging showing characteristic posterior cord hyperintensities. Although the presumed etiology is immune-mediated, further studies are required to clarify the physiopathology of the disease. We here performed a systematic review of the epidemiology, pathophysiology, diagnosis, and management of ASANN, with three representative cases that recently presented at our clinic. All three patients had the typical clinical manifestations of ASANN but in different combinations, illustrating the variable phenotype of the disorder. Immunosuppression is seldom effective. Management options are limited to supportive and symptomatic care with the goal of minimizing complications and preventing death.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Ganglios Autónomos/patología , Ganglios Sensoriales/patología , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Enfermedades del Sistema Nervioso Autónomo/terapia , Humanos
20.
Prog Neurol Surg ; 35: 60-67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32683375

RESUMEN

Trigeminal branch stimulation is a type of peripheral nerve stimulation (PNS) used to treat a variety of craniofacial pain disorders. Common indications include trigeminal neuralgia, trigeminal neuropathic pain, trigeminal deafferentation pain, trigeminal postherpetic neuralgia, supraorbital neuralgia, and migraine headaches. Supraorbital and infraorbital arrays are the most common electrode configurations, although preauricular, mandibular branch, and subcutaneous peripheral nerve field stimulation arrays have also been described. Trigeminal branch stimulation may be used as a stand-alone neuromodulation therapy or it may be combined with occipital nerve, sphenopalatine ganglion, or Gasserian ganglion stimulation to treat more complex pain patterns. Consistent with other forms of PNS, trigeminal branch stimulation is a minimally invasive, safe, and straightforward method of treating medically refractory neuropathic pain.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Neuralgia Facial/terapia , Ganglios Autónomos , Ganglios Sensoriales , Nervio Trigémino , Terapia por Estimulación Eléctrica/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA