Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.455
Filtrar
1.
Gene ; 932: 148866, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39153704

RESUMEN

DNA meiotic recombinase 1 (disrupted meiotic cDNA, Dmc1) protein is homologous to the Escherichia coli RecA protein, was first identified in Saccharomyces cerevisiae. This gene has been well studied as an essential role in meiosis in many species. However, studies on the dmc1 gene in reptiles are limited. In this study, a cDNA fragment of 1,111 bp was obtained from the gonadal tissues of the Chinese soft-shell turtle via RT-PCR, containing a 60 bp 3' UTR, a 22 bp 5' UTR, and an ORF of 1,029 bp encoding 342 amino acids, named Psdmc1. Multiple sequence alignments showed that the deduced protein has high similarity (>95 %) to tetrapod Dmc1 proteins, while being slightly lower (86-88 %) to fish species.Phylogenetic tree analysis showed that PsDmc1 was clustered with the other turtles' Dmc1 and close to the reptiles', but far away from the teleost's. RT-PCR and RT-qPCR analyses showed that the Psdmc1 gene was specifically expressed in the gonads, and much higher in testis than the ovary, especially highest in one year-old testis. In situ hybridization results showed that the Psdmc1 was mainly expressed in the perinuclear cytoplasm of primary and secondary spermatocytes, weakly in spermatogonia of the testes. These results indicated that dmc1 would be majorly involved in the developing testis, and play an essential role in the germ cells' meiosis. The findings of this study will provide a basis for further investigations on the mechanisms behind the germ cells' development and differentiation in Chinese soft-shell turtles, even in the reptiles.


Asunto(s)
Gametogénesis , Filogenia , Tortugas , Animales , Tortugas/genética , Tortugas/metabolismo , Masculino , Gametogénesis/genética , Femenino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Testículo/metabolismo , Clonación Molecular , Secuencia de Aminoácidos , Meiosis/genética , Ovario/metabolismo , Espermatocitos/metabolismo , Pueblos del Este de Asia
2.
Biol Sex Differ ; 15(1): 70, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244546

RESUMEN

BACKGROUND: Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS: The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS: Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS: This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.


Blotched snakehead (Channa maculata) exhibits significant sexual dimorphism, as males display faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. However, the mechanisms underlying sex determination and differentiation in C. maculata remain insufficiently elucidated. In this study, sexual dimorphism in growth became evident starting from 90 dpf through the measurement of body length and weight of male and female C. maculata at different developmental stages. Histological observations indicated that morphological sex differentiation in females and males occurred at 20­25 dpf or earlier and 30­35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in male and female gonads after 30 dpf, suggesting that the period preceding 30 dpf might be the critical time window for sex control in C. maculata. The periods of 40­60 dpf and 60­90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in testicular differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and oogenesis. Additionally, numerous biological pathways linked to sex differentiation and gametogenesis were identified. Moreover, sexual dimorphism was observed in the levels of E2 and T during gonadal differentiation and development. Based on these findings, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a­Dmrt1­Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, thereby establishing a scientific foundation for sex control in this species.


Asunto(s)
Gametogénesis , Caracteres Sexuales , Diferenciación Sexual , Animales , Femenino , Masculino , Gónadas/crecimiento & desarrollo , Gónadas/anatomía & histología , Perfilación de la Expresión Génica , Peces/crecimiento & desarrollo , Peces/anatomía & histología , Peces/genética , Transcriptoma , Testículo/crecimiento & desarrollo , Testículo/anatomía & histología , Ovario/crecimiento & desarrollo , Ovario/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Channa punctatus
3.
Malar J ; 23(1): 267, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223522

RESUMEN

BACKGROUND: The spread of antimalarial drug resistance parasites is a major obstacle in eliminating malaria in endemic areas. This increases the urgency for developing novel antimalarial drugs with improved profiles to eliminate both sensitive and resistant parasites in populations. The invention of the drug candidates needs a model for sensitive and resistant parasites on a laboratory scale. METHODS: Repeated Incomplete Treatment (RIcT) method was followed in raising the rodent malaria parasite, Plasmodium berghei, resistant to sulfadoxine. Plasmodium berghei were exposed to an adequate therapeutic dose of sulfadoxine without finishing the treatment to let the parasite recover. Cycles of drug treatment and parasite recovery were repeated until phenotypic resistance appeared. RESULTS: After undergoing 3-4 cycles, phenotypic resistance was not yet found in mice treated with sulfadoxine. Nevertheless, the molecular biology of dhps gene (the target of sulfadoxine) was analyzed at the end of the RIcT cycle. There was no mutations found in the gene target. Interestingly, the appearance of gametocytes at the end of every cycle of drug treatment and parasite recovery was observed. These gametocytes later on would no longer extend their life in the RBC stage, unless mosquitoes bite the infected host. This phenomenon is similar to the case in human malaria infections treated with sulfadoxine-pyrimethamine (SP). CONCLUSIONS: In this study, the antimalarial drug sulfadoxine induced gametocytogenesis in P. berghei, which could raise the risk factor for malaria transmission.


Asunto(s)
Antimaláricos , Plasmodium berghei , Sulfadoxina , Plasmodium berghei/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Animales , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Ratones , Resistencia a Medicamentos/genética , Gametogénesis/efectos de los fármacos , Femenino , Malaria/tratamiento farmacológico , Malaria/parasitología
4.
Nat Commun ; 15(1): 7177, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187486

RESUMEN

The Plasmodium falciparum life cycle includes obligate transition between a human and mosquito host. Gametocytes are responsible for transmission from the human to the mosquito vector where gamete fusion followed by meiosis occurs. To elucidate how male and female gametocytes differentiate in the absence of sex chromosomes, we perform FACS-based cell enrichment of a P. falciparum gametocyte reporter line followed by single-cell RNA-seq. In our analyses we define the transcriptional programs and predict candidate driver genes underlying male and female development, including genes from the ApiAP2 family of transcription factors. A motif-driven, gene regulatory network analysis indicates that AP2-G5 specifically modulates male development. Additionally, genes linked to the inner membrane complex, involved in morphological changes, are uniquely expressed in the female lineage. The transcriptional programs of male and female development detailed herein allow for further exploration of the evolution of sex in eukaryotes and provide targets for future development of transmission blocking therapies.


Asunto(s)
Gametogénesis , Plasmodium falciparum , Análisis de la Célula Individual , Transcriptoma , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Gametogénesis/genética , Femenino , Humanos , Masculino , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Redes Reguladoras de Genes , RNA-Seq , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Germinativas/metabolismo , Diferenciación Celular/genética
5.
Int J Biol Macromol ; 277(Pt 3): 134449, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098680

RESUMEN

Pacific abalone (Haliotis discus hannai) is a marine gastropod mollusc with significant economic importance in both global fisheries and aquaculture. However, studies exploring the gonadal development and regulatory mechanisms of Haliotis discus hannai are limited. This study aimed to explore whether the vasa gene acted as a molecular marker for germ cells. Initially, the vasa gene was successfully cloned using the cDNA-end rapid amplification technique. The cloned gene had a 2478-bp-long open reading frame and encoded 825 amino acids. Then, a recombinant expression vector was constructed based on the Vasa protein, and an 87-kDa recombinant protein was prepared. Subsequently, a polyclonal antibody was prepared using the purified recombinant protein. The enzyme-linked immunosorbent assay (ELISA) confirmed the titer of the antibody to be ≥512 K. The immunohistochemical analysis revealed that Vasa was widely expressed in oogonia, Stage I oocytes, spermatogonia, and primary spermatocytes. The specific expression of Vasa in the hermaphroditic gonads of abalone was assessed using western blotting to investigate the effects of different photoperiods (12 L:12D, 24 L:0D, 18 L:6D, and 6 L:18D) on the gonadal development of abalone (P < 0.05), with higher expression levels observed in the ovarian proliferative and spermary maturing stages compared with other developmental stages (P < 0.05). Additionally, Vasa exhibited the highest expression in the spermary and ovary under a photoperiod of 18 L:6D (P < 0.05). These data demonstrated the key role of Vasa in developing germ cells in abalone. They shed light upon the molecular mechanism through which the photoperiod influenced Vasa expression and regulated gonadal development in abalone. The findings might provide theoretical references for analyzing the differentiation pattern of abalone germ cells and the genetic improvement and conservation of germplasm resources.


Asunto(s)
ARN Helicasas DEAD-box , Gastrópodos , Animales , Femenino , Masculino , Secuencia de Aminoácidos , Clonación Molecular/métodos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Gametogénesis/genética , Gastrópodos/genética , Gónadas/metabolismo , Fotoperiodo
6.
Curr Opin Genet Dev ; 87: 102224, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981182

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs in eukaryotes. Numerous studies have shown that m6A plays key roles in many biological and pathophysiological processes, including fertility. The factors involved in m6A-dependent mRNA regulation include writers, which deposit the m6A mark, erasers, which remove it, and readers, which bind to m6A-modified transcripts and mediate the regulation of mRNA fate. Many of these proteins are highly expressed in the germ cells of mammals, and some have been linked to fertility disorders in human patients. In this review, we summarise recent findings on the important roles played by proteins involved in m6A biology in mammalian gametogenesis and fertility. Continued study of the m6A pathway in the mammalian germline will shed further light on the importance of epitranscriptomics in reproduction and may lead to effective treatment of human fertility disorders.


Asunto(s)
Adenosina , Células Germinativas , ARN Mensajero , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Animales , Humanos , Células Germinativas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/genética , Epigénesis Genética , Gametogénesis/genética , Fertilidad/genética
7.
Parasit Vectors ; 17(1): 304, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003498

RESUMEN

BACKGROUND: Malaria, a global health concern, is caused by parasites of the Plasmodium genus, which undergo gametogenesis in the midgut of mosquitoes after ingestion of an infected blood meal. The resulting male and female gametes fuse to form a zygote, which differentiates into a motile ookinete. After traversing the midgut epithelium, the ookinete differentiates into an oocyst on the basal side of the epithelium. METHODS: Membrane proteins with increased gene expression levels from the gamete to oocyst stages in P. berghei were investigated utilizing PlasmoDB, the functional genomic database for Plasmodium spp. Based on this analysis, we selected the 184-kDa membrane protein, Pb184, for further study. The expression of Pb184 was further confirmed through immunofluorescence staining, following which we examined whether Pb184 is involved in fertilization using antibodies targeting the C-terminal region of Pb184 and biotin-labeled C-terminal region peptides of Pb184. RESULTS: Pb184 is expressed on the surface of male and female gametes. The antibody inhibited zygote and ookinete formation in vitro. When mosquitoes were fed on parasite-infected blood containing the antibody, oocyst formation decreased on the second day after feeding. Synthesized biotin-labeled peptides matching the C-terminal region of Pb184 bound to the female gamete and the residual body of male gametes, and inhibited differentiation into ookinetes in the in vitro culture system. CONCLUSIONS: These results may be useful for the further studying the fertilization mechanism of Plasmodium protozoa. There is also the potential for their application as future tools to prevent malaria transmission.


Asunto(s)
Fertilización , Plasmodium berghei , Proteínas Protozoarias , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animales , Femenino , Masculino , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ratones , Células Germinativas/metabolismo , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Cigoto/metabolismo , Anopheles/parasitología , Anopheles/metabolismo , Oocistos/metabolismo , Gametogénesis/genética
8.
Trends Parasitol ; 40(8): 662-663, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944561

RESUMEN

Gamete development is a precisely programmed process in Cryptosporidium parvum, a leading cause of diarrheal disease worldwide. Nava et al. recently described the developmentally regulated expression of CDPK5 during male gametogenesis. Here we discuss their main findings, posing this protein kinase as a promising target for antiparasitic interventions.


Asunto(s)
Cryptosporidium parvum , Gametogénesis , Masculino , Cryptosporidium parvum/genética , Cryptosporidium parvum/fisiología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Animales , Humanos , Criptosporidiosis/parasitología
9.
Cell Tissue Res ; 397(2): 111-124, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829397

RESUMEN

Nitric oxide (NO) is a gaseous molecule that regulates various reproductive functions. It is a well-recognized regulator of GnRH-FSH/LH-sex steroid secretion in vertebrates including fish. Kisspeptin is a recently discovered neuropeptide which also regulates GnRH secretion. Nitrergic and kisspeptin neurons are reported in close physical contact in the mammalian brain suggesting their interactive role in the release of GnRH. The existence of kisspeptin and NOS is also demonstrated in vertebrate gonads, but information on their reciprocal relation in gonads, if any, is obscure. Therefore, attempts were made to evaluate the functional reciprocal relation between nitric oxide and kisspeptin in the catfish gonads, if any, by administering the nitric oxide synthase (NOS) inhibitor, L-NAME {N(G)-nitro-L-arginine methyl ester}, which reduces NO production, and kisspeptin agonist (KP-10) and assessing their impacts on the expressions of kisspeptin1, different NOS isoforms, NO and steroid production in the gonadal tissue. The results revealed that L-NAME suppressed the expression of kiss1 in gonads of the catfish establishing the role of NO in kisspeptin expression. However, KP-10 increased the expression of all the isoforms of NOSs (iNOS, eNOS, nNOS) and concurrently NO and steroids in the ovary and testis. In vitro studies also indicate that kisspeptin stimulates the production of NO and estradiol and testosterone levels in the gonadal explants and medium. Thus, in vivo results clearly suggest a reciprocal interaction between kisspeptin and NO to regulate the gonadal activity of the catfish. The in vitro findings further substantiate our contention regarding the interactive role of kisspeptin and NO in gonadal steroidogenesis.


Asunto(s)
Bagres , Gametogénesis , Kisspeptinas , NG-Nitroarginina Metil Éster , Óxido Nítrico , Animales , Óxido Nítrico/metabolismo , Bagres/metabolismo , Kisspeptinas/metabolismo , Masculino , NG-Nitroarginina Metil Éster/farmacología , Femenino , Gametogénesis/efectos de los fármacos , Esteroides/biosíntesis , Óxido Nítrico Sintasa/metabolismo , Testículo/metabolismo , Testículo/efectos de los fármacos , Gónadas/metabolismo , Gónadas/efectos de los fármacos , Ovario/metabolismo
10.
Reprod Toxicol ; 128: 108630, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906490

RESUMEN

Infertility affects ∼12 % of couples, with environmental chemical exposure as a potential contributor. Of the chemicals that are actively manufactured, very few are assessed for reproductive health effects. Rodents are commonly used to evaluate reproductive effects, which is both costly and time consuming. Thus, there is a pressing need for rapid methods to test a broader range of chemicals. Here, we developed a strategy to evaluate large numbers of chemicals for reproductive toxicity via a yeast, S. cerevisiae high-throughput assay to assess gametogenesis as a potential new approach method (NAM). By simultaneously assessing chemicals for growth effects, we can distinguish if a chemical affects gametogenesis only, proliferative growth only or both. We identified a well-known mammalian reproductive toxicant, bisphenol A (BPA) and ranked 19 BPA analogs for reproductive harm. By testing mixtures of BPA and its analogs, we found that BPE and 17 ß-estradiol each together with BPA showed synergistic effects that worsened reproductive outcome. We examined an additional 179 environmental chemicals including phthalates, pesticides, quaternary ammonium compounds and per- and polyfluoroalkyl substances and found 57 with reproductive effects. Many of the chemicals were found to be strong reproductive toxicants that have yet to be tested in mammals. Chemicals having affect before meiosis I division vs. meiosis II division were identified for 16 gametogenesis-specific chemicals. Finally, we demonstrate that in general yeast reproductive toxicity correlates well with published reproductive toxicity in mammals illustrating the promise of this NAM to quickly assess chemicals to prioritize the evaluation for human reproductive harm.


Asunto(s)
Compuestos de Bencidrilo , Contaminantes Ambientales , Gametogénesis , Fenoles , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Gametogénesis/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Fenoles/toxicidad , Reproducción/efectos de los fármacos , Estradiol/toxicidad , Disruptores Endocrinos/toxicidad , Pruebas de Toxicidad/métodos , Animales , Ensayos Analíticos de Alto Rendimiento
11.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824128

RESUMEN

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Asunto(s)
Axonema , Intrones , Proteínas Protozoarias , Empalme del ARN , Proteínas de Unión al ARN , Intrones/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Masculino , Axonema/metabolismo , Femenino , Gametogénesis/genética , Empalmosomas/metabolismo , Empalmosomas/genética , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Malaria/parasitología , Plasmodium/genética , Plasmodium/metabolismo
12.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906101

RESUMEN

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Asunto(s)
Gametogénesis , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Coenzima A Ligasas/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Tomografía con Microscopio Electrónico , Meiosis , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporas Fúngicas/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína
13.
Artículo en Inglés | MEDLINE | ID: mdl-38862425

RESUMEN

Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.


Asunto(s)
Metilación de ADN , Bases de Datos Genéticas , Gametogénesis , Animales , Humanos , Ratones , Gametogénesis/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Masculino , Células Germinativas/metabolismo , Femenino , Espermatogénesis/genética , Oogénesis/genética , Genómica/métodos , Multiómica
14.
Anim Reprod Sci ; 267: 107522, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901082

RESUMEN

Environmental enrichment is used to provide well-being to the animals, such as fish, in captive conditions, mimicking their natural habitat. It may influence fish behavior, physiology, and survival. In terms of reproduction, however, the relationship between environment enrichment and successful reproduction in captivity is still poorly explored in fish species. Aiming to understand any possible benefits of structural enrichment on fish reproduction, 10-days-hatched larvae of the twospot astyanax Astyanax bimaculatus were raised for 18 weeks in tanks with different elements of structural environmental enrichment (PVC pipes, stones, and artificial plants). In the 5th month of life, those animals were hormonally induced to reproduce to assess gamete formation and offspring quality. Animals raised in a sterile-reared environment (non-enriched) showed earlier spawning than the enriched one, presenting significant quantities of Postovulatory follicle complexes (POCs) and cells in atresia in female ovaries, indicating possible reproductive dysfunction or stress, as well as a greater quantity of empty testicular lumen in males, indicating great release of sperm. On the contrary, animals cultivated in enriched environments showed gonads filled with semen in males and vitellogenic oocytes in females. Furthermore, offspring from the sterile-reared group presented significant rates of larval abnormality compared to the enriched group. In conclusion, the results of this study show that environmental enrichment can interfere with the reproduction of fish in captivity, mainly by preventing early maturation of gametes, which can result in low-quality offspring and, consequently, low production of fish species.


Asunto(s)
Characidae , Gametogénesis , Reproducción , Animales , Femenino , Masculino , Gametogénesis/fisiología , Reproducción/fisiología , Characidae/fisiología , Ambiente , Acuicultura
15.
Dev Cell ; 59(13): 1764-1782.e8, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906138

RESUMEN

Sexually reproducing eukaryotes employ a developmentally regulated cell division program-meiosis-to generate haploid gametes from diploid germ cells. To understand how gametes arise, we generated a proteomic census encompassing the entire meiotic program of budding yeast. We found that concerted waves of protein expression and phosphorylation modify nearly all cellular pathways to support meiotic entry, meiotic progression, and gamete morphogenesis. Leveraging this comprehensive resource, we pinpointed dynamic changes in mitochondrial components and showed that phosphorylation of the FoF1-ATP synthase complex is required for efficient gametogenesis. Furthermore, using cryoET as an orthogonal approach to visualize mitochondria, we uncovered highly ordered filament arrays of Ald4ALDH2, a conserved aldehyde dehydrogenase that is highly expressed and phosphorylated during meiosis. Notably, phosphorylation-resistant mutants failed to accumulate filaments, suggesting that phosphorylation regulates context-specific Ald4ALDH2 polymerization. Overall, this proteomic census constitutes a broad resource to guide the exploration of the unique sequence of events underpinning gametogenesis.


Asunto(s)
Gametogénesis , Meiosis , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosforilación , Proteoma/metabolismo , Gametogénesis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteómica/métodos , Mitocondrias/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomycetales/metabolismo , Saccharomycetales/genética
16.
Nat Commun ; 15(1): 5331, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909026

RESUMEN

Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.


Asunto(s)
Gametogénesis , Ratones Noqueados , Poliadenilación , ARN Mensajero , Espermatogénesis , Animales , Femenino , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ratones , Espermatogénesis/genética , Gametogénesis/genética , Oogénesis/genética , Polinucleotido Adenililtransferasa/metabolismo , Polinucleotido Adenililtransferasa/genética , Oocitos/metabolismo , Fertilidad/genética , Ratones Endogámicos C57BL
17.
Gene ; 927: 148703, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885817

RESUMEN

Cellular proteins and the mRNAs that encode them are key factors in oocyte and sperm development, and the mechanisms that regulate their translation and degradation play an important role during early embryogenesis. There is abundant evidence that expression of microRNAs (miRNAs) is crucial for embryo development and are highly involved in regulating translation during oocyte and early embryo development. MiRNAs are a group of short (18-24 nucleotides) non-coding RNA molecules that regulate post-transcriptional gene silencing. The miRNAs are secreted outside the cell by embryos during preimplantation embryo development. Understanding regulatory mechanisms involving miRNAs during gametogenesis and embryogenesis will provide insights into molecular pathways active during gamete formation and early embryo development. This review summarizes recent findings regarding multiple roles of miRNAs in molecular signaling, plus their transport during gametogenesis and embryo preimplantation.


Asunto(s)
Desarrollo Embrionario , MicroARNs , Técnicas Reproductivas Asistidas , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Desarrollo Embrionario/genética , Animales , Oocitos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gametogénesis/genética , Masculino
18.
Stem Cell Reports ; 19(7): 933-945, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38848715

RESUMEN

In vitro gametogenesis (IVG), the reconstitution of germ cell development in vitro, is an emerging stem cell-based technology with profound implications for reproductive science. Despite researchers' long-term goals for future clinical applications, little is currently known about the views of IVG held by the stakeholders potentially most affected by its introduction in humans. We conducted focus groups and interviews with 80 individuals with lived experience of infertility and/or LGBTQ+ family formation in the US, two intersecting groups of potential IVG users. Respondents expressed hope that IVG would lead to higher reproductive success than current assisted reproductive technology (ART), alleviate suffering associated with ART use, and promote greater social inclusion, while expressing concerns predominantly framed in terms of equity and safety. These findings underscore the importance of sustained engagement with stakeholders with relevant experience to anticipate the implications of IVG for research and clinical translation.


Asunto(s)
Gametogénesis , Humanos , Femenino , Masculino , Adulto , Infertilidad/terapia , Participación de los Interesados , Técnicas Reproductivas Asistidas , Células Germinativas
19.
Cell Rep ; 43(6): 114263, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38814783

RESUMEN

The protozoan parasite Cryptosporidium is a leading cause of diarrhea in young children. The parasite's life cycle involves a coordinated and timely progression from asexual to sexual stages, leading to the formation of the transmissible oocyst. Underlying molecular signaling mechanisms orchestrating sexual development are not known. Here, we describe the function of a signaling kinase in Cryptosporidium male gametogenesis. We reveal the expression of Cryptosporidium parvum calcium-dependent protein kinase 5 (CDPK5) during male gamete development and its important role in the egress of mature gametes. Genetic ablation of this kinase results in viable parasites, indicating that this gene is dispensable for parasite survival. Interestingly, cdpk5 deletion decreases parasite virulence and impacts oocyst shedding in immunocompromised mice. Using phosphoproteomics, we identify possible CDPK5 substrates and biological processes regulated by this kinase. Collectively, these findings illuminate parasite cell biology by revealing a mechanism controlling male gamete production and a potential target to block disease transmission.


Asunto(s)
Gametogénesis , Proteínas Protozoarias , Animales , Masculino , Ratones , Virulencia , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Cryptosporidium parvum/patogenicidad , Cryptosporidium parvum/enzimología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Criptosporidiosis/parasitología , Humanos , Transducción de Señal
20.
Sci Adv ; 10(21): eadm8713, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787947

RESUMEN

Most Pacific salmon species grow in the ocean, return to their native rivers to reproduce, and then die (semelparous type). However, rainbow trout survive after spawning and reproduce repeatedly until the end of their lives (iteroparous type). Little is known about how germline stem cells behave during gametogenesis in the two types of Pacific salmon. In this study, we show that all germline stem cells disappear after the first gametogenesis in Chinook and Kokanee salmon, whereas germline stem cells are maintained in rainbow trout. However, the germline stem cells of Chinook and Kokanee salmon transplanted into rainbow trout survive even after their spawning seasons and supply salmon gametes for multiple years. These results indicate that the behavior of the germline stem cells is mainly regulated by the somatic environment.


Asunto(s)
Oncorhynchus mykiss , Salmón , Animales , Células Germinativas , Reproducción , Femenino , Masculino , Gametogénesis , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA