Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 529(16): 3676-3708, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34259349

RESUMEN

In the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.1, 10.8, and 37.7 million WMICs within the infracortical white matter of the galago, squirrel monkey, and crested macaque, respectively. The total numbers of WMICs form a distinct negative allometric relationship with brain mass and white matter volume when examined in a larger sample of primates where similar measures have been obtained. In all three primates studied, the highest densities of WMICs were in the white matter of the frontal lobe, with the occipital lobe having the lowest. Immunostaining revealed significant subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS) and calretinin, with very few WMICs containing parvalbumin, and none containing calbindin. The nNOS and calretinin immunopositive WMICs represent approximately 21% of the total WMIC population; however, variances in the proportions of these neurochemical phenotypes were noted. Our results indicate that both the squirrel monkey and crested macaque might be informative animal models for the study of WMICs in neurodegenerative and psychiatric disorders in humans.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/citología , Galagidae/fisiología , Macaca/fisiología , Neuronas/ultraestructura , Saimiri/fisiología , Sustancia Blanca/citología , Animales , Calbindina 2/metabolismo , Calbindinas/metabolismo , Recuento de Células , Lóbulo Frontal/citología , Lóbulo Frontal/ultraestructura , Inmunohistoquímica , Masculino , Neuronas/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Lóbulo Occipital/citología , Lóbulo Occipital/ultraestructura , Parvalbúminas/metabolismo , Especificidad de la Especie , Sustancia Blanca/química
2.
Am J Phys Anthropol ; 171(3): 430-438, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31710709

RESUMEN

OBJECTIVES: Small-bodied vertical clinging and leaping primates have elongated calcanei which enhance leap performance by optimizing leap velocity, distance, and acceleration, but at the expense of experiencing relatively large forces during takeoff and landing. This study tests the hypothesis that the elongated calcaneus of leaping galagids is adapted to resist larger and more stereotyped bending loads compared to more quadrupedal galagids. MATERIALS AND METHODS: The calcanei of 14 individuals of Otolemur and 14 individuals of Galago (three species of each genus) were µCT scanned. Calcaneal cross-sectional properties (maximum and minimum second moments of area and polar section modulus) were obtained from a slice representing the 50% position of bone segment length and dimensionless ratios were created for each variable using calcaneal cuboid facet area as a proxy for body mass. RESULTS: There were no significant differences in size-adjusted bending strength between Galago and Otolemur. Galago exhibited more elliptically shaped calcaneal cross sections, however, suggesting that its calcanei are more adapted to stereotyped loading regimes than those of Otolemur. DISCUSSION: The results suggest that the calcaneus of specialized leapers is adapted to more stereotyped loading patterns. The lack of predicted bone strength differences between Galago and Otolemur may be related to body size differences between these taxa, or it may indicate that loads encountered by Galago during naturalistic leaping are not reflected in the available experimental force data.


Asunto(s)
Calcáneo/crecimiento & desarrollo , Hueso Cortical/fisiología , Galagidae/fisiología , Adaptación Biológica , Animales , Fenómenos Biomecánicos , Femenino , Galago/fisiología , Masculino , Especificidad de la Especie
3.
Folia Primatol (Basel) ; 90(5): 319-335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31416067

RESUMEN

Vocal repertoires and call structure can provide insights into the behaviour and evolution of species, as well as aid in taxonomic classification. Nocturnal primates have large vocal repertoires. This suggests that acoustic communication plays an important role in their life histories. Little is known about the behavioural context or the intraspecific variation of their vocalisations. We used autonomous recording units and manual recorders to investigate the vocal behaviour and structure of loud calls of the small-eared greater galago (Otolemur garnettii)in Kenya and Tanzania. We describe the vocal repertoire, temporal calling patterns and structure of 2 loud calls of 2 subspecies: O. g. panganiensis and O. g. kikuyuensis. We found considerable intraspecific structural differences in both loud calls. These are congruent with the current subspecies classification. Differences in vocalisations among populations are not consistent with the "acoustic adaptation hypothesis," rather they are likely a result of geographic variation due to isolation caused by vegetational barriers in southern Kenya.


Asunto(s)
Galagidae/fisiología , Vocalización Animal , Animales , Galagidae/clasificación , Kenia , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA