Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.997
Filtrar
1.
Appl Ergon ; 121: 104371, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39222562

RESUMEN

Fall injuries often occur on extension ladders. The extendable fly section of an extension ladder is typically closer to the user than the base section, though this design is minimally justified. This study investigates the effects of reversing the fly on foot placement, frictional requirements, adverse stepping events (repositioning the foot or kicking the rung), and user preferences. Participant foot placement was farther posterior (rung contacted nearer to toes) in the traditional ladder compared to the reversed fly condition during descent, with farther anterior foot placements during ascent. The reversed configuration had similar friction requirements during early/mid stance and significantly lower frictional requirements during late stance. Increased friction requirements during late stance were associated with farther anterior foot placement and further plantar flexed foot orientation. The reversed fly had 5 adverse stepping events versus 22 that occurred in the traditional configuration. Users typically preferred the reversed fly. These results suggest that a reversed extension ladder configuration offers potential benefits in reducing fall-related injuries that should motivate future research and development work.


Asunto(s)
Accidentes por Caídas , Diseño de Equipo , Fricción , Humanos , Accidentes por Caídas/prevención & control , Masculino , Femenino , Adulto , Pie/fisiología , Fenómenos Biomecánicos , Seguridad , Adulto Joven , Subida de Escaleras/fisiología
2.
Med Eng Phys ; 131: 104227, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39284651

RESUMEN

Mechanical testing machines are used to evaluate kinematics, kinetics, wear, and efficacy of spinal implants. The simulation of "physiological" spinal loading conditions necessitates the simultaneous use of multiple actuators. The challenge in achieving a desired loading profile lies in achieving close synchronization of these actuators. Errors in load application can be attributed to both the control system and the intrinsic sample response. Moreover, the presence of friction in the setup can have an impact on the measured outcome. The optimization of setup parameters can substantially improve the ability to simulate spinal loading conditions and obtain reliable data on implant performance. In this study, a reproducible kinematic test protocol was developed to evaluate the sensitivity of the kinetic response (i.e., measured loads, moments, and stiffnesses) of a cervical disc prosthesis to several testing parameters. In this context, five ceramic ball and socket sample implants were mounted in a 6 DOF material testing machine and tested with a constant axial compressive force of 100 N in two motion modes: 1) flexion-extension (±7.5°) and 2) lateral bending (±6°). Parameters including rotation rate, slider friction, friction between the samples' articulating surfaces, and moment arm were considered to determine their effects on measured kinetic parameters. The sensitivity analysis indicated that all setup parameters except friction between the samples' articulating surfaces had a substantial effect on the results. The findings were then compared to predictions from a free body diagram to determine the optimal setup parameters. Consequently, the setup with the lowest rotation rate and employing passive sliders yielded results that were consistent with the free body diagram. This study demonstrated the significance of a comprehensive setup evaluation for reliable and reproducible testing of spinal implants, also for comparison between labs.


Asunto(s)
Vértebras Cervicales , Ensayo de Materiales , Cinética , Vértebras Cervicales/cirugía , Vértebras Cervicales/fisiología , Prótesis e Implantes , Disco Intervertebral/fisiología , Disco Intervertebral/cirugía , Fenómenos Biomecánicos , Fricción , Pruebas Mecánicas , Humanos , Soporte de Peso
3.
Angle Orthod ; 94(5): 532-540, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230024

RESUMEN

OBJECTIVES: To evaluate anchorage loss after en masse retraction in bimaxillary dentoalveolar protrusion patients using friction vs frictionless mechanics. MATERIALS AND METHODS: Thirty patients with bimaxillary dentoalveolar protrusion needing extraction of upper first premolars and en masse retraction with maximum anchorage were included in this two-arm, parallel, single-center, single-blinded randomized clinical trial with a 1:1 allocation ratio using fully sealed opaque envelopes. Friction group retraction utilized elastomeric power chain between miniscrews and hooks crimped mesial to upper canines on 17 × 25 stainless steel archwire. Frictionless group used customized T-loop springs loading upper first molars indirectly anchored to miniscrews. Activation was every 4 weeks until full retraction. The primary outcome assessed was anchorage loss evaluated at cusp tip and root apex of the first molar. First molar rotation, incisor tip and torque, and root resorption of anterior teeth were evaluated on digital models and cone beam computed tomography taken before and after space closure. RESULTS: Anchorage loss at crown of first molar was significantly more in frictionless group by 2.1 mm (95% CI = -0.4 to 3.5), (P = .014), while there was no significant difference in anchorage loss at root apex between groups. Significant mesial in molar rotation of 6.672° (95% CI = 12.2-21.2), (P = 0.02) was greater in the frictionless group. Both groups showed comparable tip, torque, and root resorption values. No severe harms were reported. There was mild gingival overgrowth and inflammation in the frictionless group due to T-loop irritation. CONCLUSIONS: Extra anchorage considerations are needed during en masse retraction when frictionless mechanics is implemented as higher anchorage loss and molar rotation were detected. No difference in tip, torque, and root resorption was observed.


Asunto(s)
Fricción , Métodos de Anclaje en Ortodoncia , Técnicas de Movimiento Dental , Humanos , Métodos de Anclaje en Ortodoncia/instrumentación , Métodos de Anclaje en Ortodoncia/métodos , Femenino , Masculino , Adolescente , Técnicas de Movimiento Dental/métodos , Técnicas de Movimiento Dental/instrumentación , Método Simple Ciego , Alambres para Ortodoncia , Diente Molar , Tomografía Computarizada de Haz Cónico/métodos , Maxilar , Adulto Joven , Resorción Radicular/etiología , Resorción Radicular/diagnóstico por imagen , Torque , Diseño de Aparato Ortodóncico , Tornillos Óseos , Cierre del Espacio Ortodóncico/instrumentación , Cierre del Espacio Ortodóncico/métodos
4.
An Acad Bras Cienc ; 96(suppl 1): e20240040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258699

RESUMEN

Currently, it is crucial for the lubricant formulation industry to explore cost-effective and environmentally friendly methodologies for analyzing the tribological properties of engine aviation lubricants under high-temperature and high-pressure operating conditions. This study demonstrates the feasibility of employing molecular dynamic simulations to gain essential insights into the evolution of the tribological properties of lubricants during operation. A three-layer molecular model was devised, comprising nickel aluminide molecules in the top and bottom layers, and polyol ester in the core. The impact of sliding velocities ranging from 20 km/h to 100 km/h was investigated under varying temperature and pressure conditions. Concentration, temperature and velocity profiles, radial distribution function, mean square displacement, and friction coefficient were calculated and analyzed in detail. Notably, the highest friction coefficients - ranging from 2.5 to 0.75 - were observed at the lowest temperature and pressure conditions tested. Conversely, other sections of the gas turbine exhibited substantially lower friction coefficients - ranging from 0 to 0.01.Simulations demonstrate that increasing pressure and temperature reduce polymer chain mobility, leading to stronger internal interactions within the lubricant. Consequently, lubricant adsorption onto metal surfaces decreases. Furthermore, the lubricant performs exceptionally well when its molecules encounter higher velocities and temperatures. Based on the results obtained, the research demonstrates that the presented technique provides both quantitative and qualitative tribological information essential for understanding a system molecular behavior, serving as a guiding framework for researchers in the field.


Asunto(s)
Lubricantes , Simulación de Dinámica Molecular , Lubricantes/química , Fricción , Presión , Temperatura , Lubrificación
5.
PLoS One ; 19(9): e0310111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39255294

RESUMEN

The excavation of Earth Pressure Balance (EPB) shield can be divided into two distinct stages, i.e. advancing and lining installation. The frictional force applied on surrounding soils reverses at these two stages, which is harmful to the settlement control. Based on Mindlin's method, a new model of surface settlement is derived to involve the reversed friction. A closed form formula is then obtained for the major type of metro tunnels. Main operational parameters are also used as input of the formula. Numerous operational data and measured settlements are collected from EPB tunnels of Chengdu Metro, Line 7. The proposed formula is validated against these field data in sandy gravels. It is shown that the new formula gives reasonable prediction of surface settlement along the tunnel sections. The accuracy of new formula is significantly higher than that of Peck's formula. This study provides a new vision in settlement control of EPB shield tunneling. The increase of chamber pressure will induce higher negative friction during the lining installation. Therefore, surface settlement of EPB tunneling cannot be controlled by just increasing chamber pressure. A balanced relationship between the chamber pressure and the thrust should be maintained instead.


Asunto(s)
Fricción , Presión , Arena , Modelos Teóricos , Propiedades de Superficie , Suelo/química
6.
Biomater Sci ; 12(18): 4747-4758, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39118400

RESUMEN

Synovial fluid lubricates articular joints by forming a hydrated layer between the cartilage surfaces. In degenerative joint diseases like osteoarthritis (OA), the synovial fluid is compromised, which leads to less effective innate lubrication and exacerbated cartilage degeneration. Studies over the years have led to the development of partially or fully synthetic biolubricants to reduce the coefficient of friction with cartilage in knee joints. Cartilage-adhering, hydrated lubricants are particularly important to provide cartilage lubrication and chondroprotection under high normal load and slow speed. Here, we report the development of a hyaluronic acid (HA)-based lubricant functionalized with cationic branched poly-L-lysine (BPL) molecules that bind to cartilage via electrostatic interactions. We surmised that the electrostatic interactions between the BPL-modified HA molecules (HA-BPL) and the cartilage facilitate localization of the HA molecules to the cartilage surface. The number of BPL molecules on the HA backbone was varied to determine the optimal grafting density for cartilage binding and HA localization. Collectively, our results show that our HA-BPL molecules adhered readily to cartilage and were effective as a lubricant in cartilage-on-cartilage shear measurements where the modified HA molecules significantly reduce the coefficient of friction compared to phosphate-buffered saline or HA alone. This proof-of-concept study shows how the incorporation of cartilage adhering moieties, such as cationic molecules, can be used to enhance cartilage binding and lubrication properties of HA.


Asunto(s)
Cartílago Articular , Cationes , Ácido Hialurónico , Lubrificación , Polilisina , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Adsorción , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cationes/química , Animales , Polilisina/química , Polilisina/farmacología , Bovinos , Lubricantes/química , Lubricantes/farmacología , Fricción/efectos de los fármacos , Líquido Sinovial/metabolismo , Líquido Sinovial/química , Líquido Sinovial/efectos de los fármacos
7.
PLoS One ; 19(8): e0303064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39208287

RESUMEN

In view of the lack of accurate models for discrete element simulation in the current research and development process of forage harvesting and crushing machinery, the contact parameters were calibrated based on Hertz-Mindlin (no slip) contact model by EDEM simulation software with alfalfa stalk at primary florescence as the research object. Based on the angle of repose, the restitution coefficient, static friction coefficient, rolling friction coefficient of alfalfa stalks were determined through the Placket-Burman test, steepest ascent test and Box-Behnken test. The simulation test of the repose angle was carried out with the determined contact parameters. The results showed that the relative error between the simulated repose angle and the physical test repose angle was 0.48%, which indicated that the calibrated contact parameters could truly reflect the physical characteristics of alfalfa stalks at the primary florescence. It provided a reliable model and parameter calibration method for the discrete element simulation in the research and development process of forage machinery, and also provided a reference for the research and optimization design of forage harvesting, crushing and processing machinery.


Asunto(s)
Medicago sativa , Calibración , Fricción , Simulación por Computador
8.
J Biomech Eng ; 146(12)2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39152721

RESUMEN

Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.


Asunto(s)
Análisis de Elementos Finitos , Modelos Biológicos , Cartílago , Estrés Mecánico , Fenómenos Biomecánicos , Fricción , Animales , Cartílago Articular/fisiopatología
9.
J Biomech ; 174: 112272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146899

RESUMEN

The synovium plays a crucial role in diarthrodial joint health, and its study has garnered appreciation as synovitis has been linked to osteoarthritis symptoms and progression. Quantitative synovium structure-function data, however, remain sparse. In the present study, we hypothesized that tissue glycosaminoglycan (GAG) content contributes to the low friction properties of the synovium. Bovine and human synovium tribological properties were evaluated using a custom friction testing device in two different cases: (1) proteoglycan depletion to isolate the influence of tissue GAGs in the synovium friction response and (2) interleukin-1 (IL) treatment to observe inflammation-induced structural and functional changes. Following proteoglycan depletion, synovium friction coefficients increased while GAG content decreased. Conversely, synovium explants treated with the proinflammatory cytokine IL exhibited elevated GAG concentrations and decreased friction coefficients. For the first time, a relationship between synovium friction coefficient and GAG concentration is demonstrated. The study of synovium tribology is necessary to fully understand the mechanical environment of the healthy and diseased joint.


Asunto(s)
Fricción , Proteoglicanos , Membrana Sinovial , Membrana Sinovial/metabolismo , Humanos , Bovinos , Animales , Proteoglicanos/metabolismo , Glicosaminoglicanos/metabolismo , Interleucina-1/metabolismo
10.
J Texture Stud ; 55(4): e12857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107967

RESUMEN

The tribological properties of 19 commercial food products, grouped into six categories (yogurt, dressings, spreads, porridges, emulsified sauces, and syrups) were investigated in relation to their rheological (dynamic oscillatory shear test) and nutritional properties (fat, carbohydrate, and protein). A tribological system (a glass ball and three polydimethylsiloxane pins) generated the extended Stribeck curve, monitoring friction factors (f) over an extended range of sliding speed (v) (10-8 to 100 m/s). Tribological parameters (f, v) at four inflection points dividing the frictional regimes (X1, breakaway point between the static and kinetic regimes; X1-X2, boundary; X2-X3, mixed; X3-X4, hydrodynamic regimes) and the slope between X3 and X4 (s) were subjected to principal component analysis and hierarchical clustering on principal components, using rheological and nutritional parameters as quantitative supplementary variables. Tribological patterns were predominantly influenced by viscosity, viscoelasticity, yield stress, fat content, and the presence of particles (e.g., sugar, proteins, and fibers) and pasting materials (e.g., starches and modified starches). The 19 tribological patterns were classified into 3 clusters: low f and s for fat- and/or viscoelastic-dominant foods (Cluster 1), low f and high s for food emulsions and/or those with low extent of shear-thinning (Cluster 2), and high f at the boundary regime either for the most viscous foods or for those in the presence of particulates (Cluster 3). These results suggest that the compositional and rheological properties have a more profound impact on the classification of complex tribological patterns than the categories of food products.


Asunto(s)
Valor Nutritivo , Reología , Viscosidad , Elasticidad , Alimentos , Fricción , Análisis de los Alimentos , Análisis de Componente Principal
11.
Dent Mater ; 40(9): 1487-1496, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969574

RESUMEN

OBJECTIVE: Current standardized in vitro bending experiments for orthodontic archwires cannot capture friction conditions and load sequencing during multi-bracket treatment. This means that clinically relevant forces exerted by superelastic wires cannot be predicted. To address these limitations, this study explored a novel test protocol that estimates clinical load range. METHODS: The correction of a labially displaced maxillary incisor was simulated using an in vitro model with three lingual brackets. Deflection force levels derived from four different protocols were designed to explore the impact of friction and wire load history. These force levels were compared in nickel-titanium (NiTi) archwires with three commonly used diameters. The unloading path varied between protocols, with single or multiple sequences and different load orders and initial conditions. RESULTS: Deflection forces from the new protocol, employing multiple continuous load/unload cycles (CCincr), consistently exceeded those from the conventional protocol using a single continuous unloading path (CUdecr). Mean differences in plateau force ranged from 0.54 N (Ø 0.014" wire) to 1.19 N (Ø 0.016" wire). The CCinr protocol also provided average force range estimates of 0.47 N (Ø 0.012" wire), 0.89 N (Ø 0.014" wire), and 1.15 N (Ø 0.016" wire). SIGNIFICANCE: Clinical orientation towards CUdecr carries a high risk of excessive therapeutic forces because clinical loading situations caused by friction and load history are underestimated. Physiological tooth mobility using NiTi wires contributes decisively to the therapeutic load situation. Therefore, only short unloading sequences starting from the maximum deflection in the load history, as in CCincr, are clinically meaningful.


Asunto(s)
Análisis del Estrés Dental , Elasticidad , Ensayo de Materiales , Níquel , Alambres para Ortodoncia , Titanio , Níquel/química , Titanio/química , Técnicas In Vitro , Incisivo , Humanos , Diseño de Aparato Ortodóncico , Soportes Ortodóncicos , Aleaciones Dentales/química , Fricción , Maxilar
12.
PLoS One ; 19(7): e0300516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008493

RESUMEN

To improve the accuracy of the Hami melon discrete element model, the parameters of the Hami melon seed discrete element model were calibrated by combining practical experiments and simulation tests. The basic physical parameters of Hami melon seeds were obtained through physical experiments, including triaxial size, 100-grain mass, moisture content, density, Poisson's ratio, Young's modulus, shear modulus, angle of repose, suspension speed and various contact parameters. Taking the repose angle of seed simulation as an index, the parameters of each simulation model were significantly screened by the Plackett-Burman test. The results showed that the recovery coefficient, static friction coefficient and rolling friction coefficient of Hami melon seeds had significant effects on repose angle. Based on the steepest climbing test and quadratic regression orthogonal rotation combination test, it was determined that the significant order of the influence of various contact parameters on the angle of repose was static friction coefficient, collision recovery coefficient, and rolling friction coefficient. The optimal parameter combination was obtained through the mathematical regression model between the angle of repose and various contact parameters, namely, the collision recovery coefficient of Hami melon seeds was 0.518, the static friction coefficient of Hami melon seeds was 0.585 and the rolling friction coefficient of Hami melon seeds was 0.337. Under this condition, three static seed-dropping experiments and dynamic rolling accumulation experiments were carried out. The average simulated angle of repose was 31.93°, and the relative error with the actual value was only 1.71%. The average simulated rolling accumulation angle was 51.98°, and the relative error with the actual value was only 1.92%.


Asunto(s)
Cucurbitaceae , Semillas , Cucurbitaceae/fisiología , Semillas/fisiología , Calibración , Simulación por Computador , Módulo de Elasticidad , Modelos Teóricos , Fricción
13.
Biomed Eng Online ; 23(1): 72, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054528

RESUMEN

Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.


Asunto(s)
Antibacterianos , Fricción , Nanotecnología , Ortodoncia , Técnicas de Movimiento Dental , Humanos , Técnicas de Movimiento Dental/instrumentación , Corrosión , Antibacterianos/farmacología , Antibacterianos/química
14.
J Mech Behav Biomed Mater ; 157: 106660, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033558

RESUMEN

Enhancing friction force in lubricated, compliant contacts is of particular interest due to its wide application in various engineering and biological systems. In this study, we have developed bioinspired surfaces featuring film-terminated ridges, which exhibit a significant increase in lubricated friction force compared to flat samples. We propose that the enhanced sliding friction can be attributed to the energy dissipation at the lubricated interface caused by elastic hysteresis resulting from cyclic terminal film deformation. Furthermore, increasing inter-ridge spacing or reducing terminal film thickness are favorable design criteria for achieving high friction performance. These findings contribute to our understanding of controlling lubricated friction and provide valuable insights into surface design strategies for novel functional devices.


Asunto(s)
Fricción , Propiedades de Superficie , Lubrificación , Materiales Biomiméticos/química , Ensayo de Materiales , Lubricantes/química , Fenómenos Mecánicos
15.
ACS Appl Mater Interfaces ; 16(29): 38550-38563, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980156

RESUMEN

The role of carboxylic, aldehyde, or epoxide groups incorporated into bottlebrush macromolecules as anchoring blocks (or cartilage-binding blocks) is investigated by measuring their lubricating properties and cartilage-binding effectiveness. Mica modified with amine groups is used to mimic the cartilage surface, while bottlebrush polymers functionalized with carboxylic, aldehyde, or epoxide groups played the role of the lubricant interacting with the cartilage surface. We demonstrate that bottlebrushes with anchoring blocks effectively reduce the friction coefficient on modified surfaces by 75-95% compared to unmodified mica. The most efficient polymer appears to be the one with epoxide groups, which can react spontaneously with amines at room temperature. In this case, the value of the friction coefficient is the lowest and equals 0.009 ± 0.001, representing a 95% reduction compared to measurements on nonmodified mica. These results show that the presence of the functional groups within the anchoring blocks has a significant influence on interactions between the bottlebrush polymer and cartilage surface. All synthesized bottlebrush polymers are also used in the preliminary lubrication tests carried out on animal cartilage surfaces. The developed materials are very promising for future in vivo studies to be used in osteoarthritis treatment.


Asunto(s)
Cartílago Articular , Lubrificación , Polímeros , Polímeros/química , Animales , Cartílago Articular/química , Cartílago Articular/fisiología , Propiedades de Superficie , Silicatos de Aluminio/química , Fricción , Lubricantes/química
16.
Eur J Orthod ; 46(4)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39011819

RESUMEN

BACKGROUND: Extraction space closure is a challenging phase during orthodontic treatment that affects not only the total treatment duration but also the whole treatment outcome. OBJECTIVE: To compare the efficiency of friction and frictionless mechanics during en-masse retraction of maxillary anterior teeth in adult patients with bimaxillary dentoalveolar protrusion. TRIAL DESIGN: Two-arm parallel group, single-center randomized clinical trial. MATERIALS AND METHODS: Thirty-two adult patients with bimaxillary protrusion were recruited and randomly allocated to two different retraction mechanics. A friction group, using NiTi coil springs and a frictionless group using closing T-loops for en-masse retraction. Randomization in a 1:1 ratio was generated by Microsoft Excel. The randomization numbers were secured in opaque sealed envelopes for allocation concealment. Retraction started in all patients following first premolars extraction using miniscrews as a source of indirect anchorage. Activation was done on a monthly basis until complete retraction of anterior segment. The rate of retraction, amount of anchorage loss, the dental, and soft tissue changes were analyzed on digital models and lateral cephalograms taken before retraction and after space closure. BLINDING: The outcome assessor was blinded through data concealment during assessment. RESULTS: Two patients were lost to follow up, so 30 patients completed the trial. The rate of anterior segment retraction was 0.88 ±â€…0.66 mm/month in the frictionless group compared to 0.72 ±â€…0.36 mm/month in the friction group which was statistically significant. Anchorage loss of 1.18 ±â€…0.72 mm in the friction group compared to 1.29 ±â€…0.55 mm in the frictionless group with no significant difference. Comparable dental and soft tissue changes following en-masse retraction were reported in both groups, with no statistically significant difference. HARM: one patient complained of soft tissue swelling following miniscrew insertion, but the swelling disappeared after one week of using mouth wash. LIMITATION: The study focused only on the maxillary arch. CONCLUSION: Both mechanics have successfully achieved the required treatment objectives in patients with bimaxillary dentoalveolar protrusion. Frictionless group showed a faster rate of retraction than the friction group, which was statistically but not clinically significant. TRIAL REGISTRATION: Clinicaltrials.gov with the identifier NCT03261024.


Asunto(s)
Fricción , Maxilar , Técnicas de Movimiento Dental , Humanos , Masculino , Femenino , Adulto , Técnicas de Movimiento Dental/métodos , Técnicas de Movimiento Dental/instrumentación , Adulto Joven , Cierre del Espacio Ortodóncico/métodos , Cierre del Espacio Ortodóncico/instrumentación , Métodos de Anclaje en Ortodoncia/instrumentación , Métodos de Anclaje en Ortodoncia/métodos , Maloclusión Clase I de Angle/terapia , Maloclusión Clase I de Angle/fisiopatología , Diseño de Aparato Ortodóncico , Alambres para Ortodoncia , Cefalometría/métodos , Resultado del Tratamiento , Níquel , Titanio
17.
J Neural Eng ; 21(4)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39074496

RESUMEN

Objective.Implanted neural microelectrodes are an important tool for recording from and stimulating the cerebral cortex. The performance of chronically implanted devices, however, is often hindered by the development of a reactive tissue response. Previous computational models have investigated brain strain from micromotions of neural electrodes after they have been inserted, to investigate design parameters that might minimize triggers to the reactive tissue response. However, these models ignore tissue damage created during device insertion, an important contributing factor to the severity of inflammation. The objective of this study was to evaluate the effect of electrode geometry, insertion speed, and surface friction on brain tissue strain during insertion.Approach. Using a coupled Eulerian-Lagrangian approach, we developed a 3D finite element model (FEM) that simulates the dynamic insertion of a neural microelectrode in brain tissue. Geometry was varied to investigate tip bluntness, cross-sectional shape, and shank thickness. Insertion velocities were varied from 1 to 8 m s-1. Friction was varied from frictionless to 0.4. Tissue strain and potential microvasculature hemorrhage radius were evaluated for brain regions along the electrode shank and near its tip.Main results. Sharper tips resulted in higher mean max principal strains near the tip except for the bluntest tip on the square cross-section electrode, which exhibited high compressive strain values due to stress concentrations at the corners. The potential vascular damage radius around the electrode was primarily a function of the shank diameter, with smaller shank diameters resulting in smaller distributions of radial strain around the electrode. However, the square shank interaction with the tip taper length caused unique strain distributions that increased the damage radius in some cases. Faster insertion velocities created more strain near the tip but less strain along the shank. Increased friction between the brain and electrode created more strain near the electrode tip and along the shank, but frictionless interactions resulted in increased tearing of brain tissue near the tip.Significance. These results demonstrate the first dynamic FEM study of neural electrode insertion, identifying design factors that can reduce tissue strain and potentially mitigate initial reactive tissue responses due to traumatic microelectrode array insertion.


Asunto(s)
Electrodos Implantados , Análisis de Elementos Finitos , Microelectrodos , Estrés Mecánico , Animales , Encéfalo/fisiología , Modelos Neurológicos , Simulación por Computador , Fricción
18.
J Dent Res ; 103(8): 839-847, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38877734

RESUMEN

Computer-aided design (CAD)/computer-aided manufacturing (CAM) milling and handpiece grinding are critical procedures in the fabrication and adjustment of ceramic dental restorations. However, due to the formation of microfractures, these procedures are detrimental to the strength of ceramics. This study analyzes the damage associated with current brittle-regime grinding and presents a potential remedy in the application of a safer yet still efficient grinding regime known as "ductile-regime grinding." Disc-shaped specimens of a lithium disilicate glass-ceramic material (IPS e.max CAD) were obtained by cutting and crystallizing the lithium metasilicate CAD/CAM blanks (the so-called blue blocks) following the manufacturer's instructions. The discs were then polished to a 1 µm diamond suspension finish. Single-particle micro-scratch tests (n = 10) with a conical diamond indenter were conducted to reproduce basic modes of deformation and fracture. Key parameters such as coefficient of friction and penetration depth were recorded as a function of scratch load. Further, biaxial flexure strength tests (n = 6) were performed after applying various scratch loads to analyze their effects on ceramic strength. Scanning electron microscopy (SEM) and focused ion beam (FIB) were used to characterize surface and subsurface damage. Statistical analysis was performed using one-way analysis of variance and Tukey tests. While the SEM surface analysis of scratch tracks revealed the occurrence of both ductile and brittle removal modes, it failed to accurately determine the threshold load for the brittle-ductile transition. The threshold load for brittle-ductile transition was determined to be 70 mN based on FIB subsurface damage analyses in conjunction with strength degradation studies. Below 70 mN, the specimens exhibited neither strength degradation nor the formation of subsurface cracks. Determination of the brittle-ductile thresholds is significant because it sets a foundation for future research on the feasibility of implementing ductile-regime milling/grinding protocols for fabricating damage-free ceramic dental restorations.


Asunto(s)
Diseño Asistido por Computadora , Porcelana Dental , Ensayo de Materiales , Porcelana Dental/química , Propiedades de Superficie , Análisis del Estrés Dental , Cerámica/química , Microscopía Electrónica de Rastreo , Fricción
19.
J Dent ; 147: 105120, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857647

RESUMEN

OBJECTIVES: To evaluate the wear resistance of three additively manufactured dental crown materials (NextDent C&B MFH, Saremco print CROWNTEC and Bego VarseoSmile Crown) under two environmental conditions (dry and artificial saliva), two loads (49 N and 70 N) and two surface treatments (polished and glazed). METHODS: A total of 120 specimens were divided into 24 groups and tested for wear under two loads (49 N and 70 N), surface treatment (polished or glazed), and environment (dry or submerged in artificial saliva). All samples underwent reciprocating wear testing at 1 Hz using a wear simulator, replicating 48 months of In Vivo conditions with a stainless-steel ball as the antagonist. The coefficient of friction (CoF), surface roughness, volumetric and vertical wear loss were measured and statistically analysed. Confocal microscopy assessed the surface properties of crown materials and the antagonists. RESULTS: The NextDent material demonstrated the most homogenous wear, with relatively low vertical and volumetric loss across all groups (p < 0.004). NextDent and Bego materials performed similarly in artificial saliva regardless of the load type (p > 1.000). The CoF remained below 0.3 for all groups. All groups exhibited significant increases in surface roughness after testing, however, this did not correlate with an increase in the CoF. Confocal analysis revealed material deformities due to load and notable scratch marks on the stainless-steel antagonists. CONCLUSION: It was found that all investigated addtively manufactured materials can be suggested for provisional use. Both vertical loss and volumetric loss results should be included for material evaluation. CoF and surface roughness should be implemented into wear evaluation. CLINICAL SIGNIFICANCE: This study highlights the practical value of additively manufactured dental crown materials, particularly for provisional restorations. However, their extended use requires careful consideration of individual patient needs, emphasising the need for judicious clinical application evaluation.


Asunto(s)
Coronas , Materiales Dentales , Alisadura de la Restauración Dental , Fricción , Ensayo de Materiales , Saliva Artificial , Propiedades de Superficie , Saliva Artificial/química , Materiales Dentales/química , Humanos , Pulido Dental , Acero Inoxidable/química , Microscopía Confocal , Análisis del Estrés Dental
20.
Elife ; 122024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864737

RESUMEN

Filamentous cyanobacteria are one of the oldest and today still most abundant lifeforms on earth, with manifold implications in ecology and economics. Their flexible filaments, often several hundred cells long, exhibit gliding motility in contact with solid surfaces. The underlying force generating mechanism is not yet understood. Here, we demonstrate that propulsion forces and friction coefficients are strongly coupled in the gliding motility of filamentous cyanobacteria. We directly measure their bending moduli using micropipette force sensors, and quantify propulsion and friction forces by analyzing their self-buckling behavior, complemented with analytical theory and simulations. The results indicate that slime extrusion unlikely generates the gliding forces, but support adhesion-based hypotheses, similar to the better-studied single-celled myxobacteria. The critical self-buckling lengths align well with the peaks of natural length distributions, indicating the importance of self-buckling for the organization of their collective in natural and artificial settings.


Asunto(s)
Cianobacterias , Cianobacterias/fisiología , Fenómenos Biomecánicos , Fricción , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA