Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.072
Filtrar
1.
Theriogenology ; 229: 202-213, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39217649

RESUMEN

BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT: Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION: This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.


Asunto(s)
Hormona Liberadora de Gonadotropina , Maduración Sexual , Animales , Femenino , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Ratones , Maduración Sexual/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Poliaminas/metabolismo , Envejecimiento , Ovario/efectos de los fármacos , Ovario/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
2.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273467

RESUMEN

In vitro embryonic technology is crucial for improving farm animal reproduction but is hampered by the poor quality of oocytes and insufficient development potential. This study investigated the relationships among changes in the gut microbiota and metabolism, serum features, and the follicular fluid metabolome atlas. Correlation network maps were constructed to reveal how the metabolites affect follicular development by regulating gene expression in granulosa cells. The superovulation synchronization results showed that the number of follicle diameters from 4 to 8 mm, qualified oocyte number, cleavage, and blastocyst rates were improved in the dairy heifers (DH) compared with the non-lactating multiparous dairy cows (NDC) groups. The gut microbiota was decreased in Rikenellaceae_RC9_gut_group, Alistipes, and Bifidobacterium, but increased in Firmicutes, Cyanobacteria, Fibrobacterota, Desulfobacterota, and Verrucomicrobiota in the NDC group, which was highly associated with phospholipid-related metabolites of gut microbiota and serum. Metabolomic profiling of the gut microbiota, serum, and follicular fluid further demonstrated that the co-metabolites were phosphocholine and linoleic acid. Moreover, the expression of genes related to arachidonic acid metabolism in granulosa cells was significantly correlated with phosphocholine and linoleic acid. The results in granulosa cells showed that the levels of PLCB1 and COX2, participating in arachidonic acid metabolism, were increased in the DH group, which improved the concentrations of PGD2 and PGF2α in the follicular fluid. Finally, the expression levels of apoptosis-related proteins, cytokines, and steroidogenesis-related genes in granulosa cells and the concentrations of steroid hormones in follicular fluid were determinants of follicular development. According to our results, gut microbiota-related phosphocholine and linoleic acid participate in arachidonic acid metabolism in granulosa cells through the gut-follicle axis, which regulates follicular development. These findings hold promise for enhancing follicular development and optimizing oocyte quality in subfertile dairy cows.


Asunto(s)
Ácido Araquidónico , Microbioma Gastrointestinal , Folículo Ovárico , Animales , Bovinos , Femenino , Ácido Araquidónico/metabolismo , Folículo Ovárico/metabolismo , Células de la Granulosa/metabolismo , Líquido Folicular/metabolismo , Metabolómica/métodos , Metaboloma , Multiómica
3.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273540

RESUMEN

5-Hydroxytryptamine (5-HT) is an inhibitory neurotransmitter widely distributed in mammalian tissues, exerting its effects through binding to various receptors. It plays a crucial role in the proliferation of granulosa cells (GCs) and the development of follicles in female animals, however, its effect on porcine follicle development is not clear. The aim of this study is to investigate the expression of 5-HT and its receptors in various parts of the pig ovary, as well as the effect of 5-HT on porcine follicular development by using ELISA, quantitative real-time PCR (qPCR) and EdU assays. Firstly, we examined the levels of 5-HT and its receptors in porcine ovaries, follicles, and GCs. The findings revealed that the expression of different 5-HT receptors varied among follicles of different sizes. To investigate the relationship between 5-HT and its receptors, we exposed the GCs to 5-HT and found a decrease in 5-HT receptor expression compared to the control group. Subsequently, the treatment of GCs with 0.5 µM, 5 µM, and 50 µM 5-HT showed an increase in the expression of cell cycle-related genes, and EdU results indicated cell proliferation after the 0.5 µM 5-HT treatment. Additionally, the expression of genes involved in E2 synthesis was examined after the treatment of granulosa cells with 0.5 µM 5-HT. The results showed that CYP19A1 and HSP17ß1 expression was decreased. These results suggest that 5-HT might affect the development of porcine follicle by promoting the proliferation of GCs and inhibiting the synthesis of estrogen. This provides a new finding for exploring the effect of 5-HT on follicular development, and lays a foundation for further research on the mechanism of 5-HT in follicles.


Asunto(s)
Proliferación Celular , Células de la Granulosa , Folículo Ovárico , Receptores de Serotonina , Serotonina , Animales , Serotonina/farmacología , Serotonina/metabolismo , Femenino , Porcinos , Folículo Ovárico/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/crecimiento & desarrollo , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética , Proliferación Celular/efectos de los fármacos
4.
Ecol Evol Physiol ; 97(4): 220-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39270326

RESUMEN

AbstractThe social environment can drive female birds to alter their investment in reproduction in the form of greater incubation behavior, more parental care, and greater allocation of physiological mediators to yolks. However, less is known about how social variables impact the speed at which females grow ovarian follicles in preparation for ovulation. We hypothesized that the social environment would influence how long ovarian follicles remain in rapid yolk deposition before reaching the size necessary for ovulation. For 8 d, we tested the effects of three types of social interactions: no social engagement (control), engagement with the same four females (social group 1), or engagement with the same four females plus six randomly selected roosters (social group 2). Starting on day 5 of engagement, we collected eggs and measured egg and yolk masses and yolk diameters. Then we stained the yolks with potassium dichromate to quantify the number of days the ovarian follicle spent accumulating yolk. We compared the results of the treatment groups with those of the control hens that were kept in individual laying cages throughout the study. The number of eggs laid, the yolk mass, and the yolk diameter did not differ among any of the three groups, but hens exposed to both females and males produced yolks with significantly more rings than hens in the other groups. Thus, the presence of males appeared to lengthen the time it took for ovarian follicles to reach the size needed for ovulation but did not result in larger or heavier yolks.


Asunto(s)
Pollos , Yema de Huevo , Animales , Femenino , Yema de Huevo/metabolismo , Yema de Huevo/química , Masculino , Medio Social , Folículo Ovárico/metabolismo , Factores de Tiempo
5.
Cell Death Dis ; 15(9): 658, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245708

RESUMEN

In mammalian ovary, the primordial follicle pool serves as the source of developing follicles and fertilizable ova. To maintain the normal length of female reproductive life, the primordial follicles must have adequate number and be kept in a quiescent state before menopause. However, the molecular mechanisms underlying primordial follicle survival are poorly understood. Here, we provide genetic evidence showing that lacking protein phosphatase 4 (PPP4) in oocytes, a member of PP2A-like subfamily, results in infertility in female mice. A large quantity of primordial follicles has been depleted around the primordial follicle pool formation phase and the ovarian reserve is exhausted at about 7 months old. Further investigation demonstrates that depletion of PPP4 causes the abnormal activation of mTOR, which suppresses autophagy in primordial follicle oocytes. The abnormal primordial follicle oocytes are eventually erased by pregranulosa cells in the manner of lysosome invading. These results show that autophagy prevents primordial follicles over loss and PPP4-mTOR pathway governs autophagy during the primordial follicle formation and dormant period.


Asunto(s)
Autofagia , Oocitos , Folículo Ovárico , Fosfoproteínas Fosfatasas , Animales , Femenino , Ratones , Infertilidad Femenina/patología , Infertilidad Femenina/metabolismo , Infertilidad Femenina/genética , Ratones Noqueados , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
6.
Gen Comp Endocrinol ; 357: 114599, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128814

RESUMEN

Knowledge on hormonal regulation of reproductive cycles in viperid snakes is still incipient, especially when it comes to females and tropical species. There is an urgent need to understand the reproduction of venomous snakes to improve assisted reproduction techniques and optimize the maintenance of these animals in captivity. With this in mind, we monitored Northern pit viper females year-round throughout different seasons via serum levels of progesterone (P4) and estradiol (E2) in conjunction with ultrasound examinations. Ovarian follicles were classified according to their size and stage of vitellogenesis in F-I and F-II (non-vitellogenic phase) or in F-III and F-IV (vitellogenic phase). During autumn and winter, five adult males were rotated among these females for reproductive pairing, which resulted in 17 copulations and 2 pregnancies in the first year and 12 copulations and 5 pregnancies in the second year. Then, we assessed changes in P4 and E2 levels according to seasons, predominant ovarian structures and the presence of embryos or eggs in the oviduct. Our findings showed high levels of E2 when a greater number of vitellogenic follicles were detected, indicating a possible influence of E2 on vitellogenesis and higher levels of P4 whenever eggs and embryos were visualized in the oviduct, implying its role in maintaining pregnancy. Descriptive analysis of the vipers' ovarian cycles revealed a greater number of vitellogenic follicles during winter, probably as a result of increases in E2; whereas pregnancies occurred predominantly in spring, under the influence of P4. The use of ultrasound images, as a minimally invasive methodology, associated with serum steroid levels has proven to be an efficient approach in the reproductive monitoring of Northern pit vipers in vivo. In addition, these data suggest that female pit vipers under human care display a seasonal reproductive cycle, despite earlier studies involving captive males of the species indicating a lack of seasonality in sperm production and quality.


Asunto(s)
Estradiol , Progesterona , Ultrasonografía , Animales , Femenino , Progesterona/sangre , Estradiol/sangre , Estaciones del Año , Masculino , Bothrops , Ovario/diagnóstico por imagen , Ovario/metabolismo , Folículo Ovárico/diagnóstico por imagen , Folículo Ovárico/metabolismo , Genitales Femeninos/diagnóstico por imagen , Bothrops atrox
7.
Theriogenology ; 229: 8-15, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39142068

RESUMEN

Connexin 43 (Cx43) is a gap junction protein that participates in small molecule exchange between adjacent cells. It is a predominant Cx within the mammalian ovary, where is associated with proper follicle development. The expression and regulation of Cx43 in the chicken ovary is largely unknown. The aim of the present study was to examine the expression of the Cx43 gene (GJA1) and protein as well as the immunolocalization of Cx43 in the laying hen ovary in relation to follicle development, and to examine how tamoxifen (TMX; an estrogen receptor modulator) treatment affects these factors. qRT-PCR and western blotting demonstrated differences in Cx43 mRNA transcript and protein abundances in ovarian white follicles, yellowish follicles, small yellow follicles, and the largest yellow preovulatory follicles (F3-F1). In general, Cx43 was more abundant in hierarchical than prehierarchical follicles and in granulosa cells compared with theca cells. Further, the response to TMX treatment depended on the stage of follicle development and the layer of the follicular wall. Ovarian regression following TMX treatment was accompanied by an increase in Cx43 expression in most ovarian tissues, which may impact the formation and function of Cx43 hemichannels. Overall, our results showed, for the first time, the differences in Cx43 mRNA and protein levels between ovarian follicles, suggesting the potential involvement of this gap junction protein in the regulation of ovarian follicle development and function. In addition, the results indicate a possible role for estradiol in regulation of Cx43 transcription and/or translation in the chicken ovary. Understanding the contribution of Cx43 in mechanisms underlying ovarian follicle development may be of considerable importance for poultry egg production.


Asunto(s)
Pollos , Conexina 43 , Regulación de la Expresión Génica , Ovario , Tamoxifeno , Animales , Conexina 43/genética , Conexina 43/metabolismo , Femenino , Tamoxifeno/farmacología , Pollos/metabolismo , Ovario/metabolismo , Ovario/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
8.
J Proteomics ; 308: 105281, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39154802

RESUMEN

Chicken proteomics is a valuable method for comprehending the many mechanisms involved in follicle growth and reproduction in birds. This study offers a thorough summary of the latest progress in chicken proteomics research, specifically highlighting the knowledge obtained regarding follicle development and reproductive physiology. Proteomic studies have revealed essential proteins and pathways that play a role in follicle development, including those that control oocyte size, maturation, and ovulation. Proteomic investigations have provided insight into the molecular pathways that govern reproductive processes. By utilizing advanced proteomic technologies, including mass spectrometry and protein microarray analysis, we have been able to identify and measure many proteins in chicken follicles at their different developmental stages. The utilization of proteomic methods has enabled the identification of previously unknown biomarkers for reproductive efficiency that expedited the creation of innovative diagnostic instruments for monitoring reproductive health in chicken. Chicken proteomics not only offers insights into follicle growth and reproduction but also uncovers the effects of environmental influences on reproductive function. This provides new opportunities for exploring the molecular pathways that cause these effects. The integration of current data with upcoming proteomic technologies offers the potential for innovative strategies to enhance chicken reproduction.


Asunto(s)
Pollos , Folículo Ovárico , Proteómica , Reproducción , Animales , Folículo Ovárico/metabolismo , Proteómica/métodos , Femenino , Reproducción/fisiología , Proteínas Aviares/metabolismo
9.
Endocrinology ; 165(10)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39158086

RESUMEN

Salt-inducible kinases (SIKs), a family of serine/threonine kinases, were found to be critical determinants of female fertility. SIK2 silencing results in increased ovulatory response to gonadotropins. In contrast, SIK3 knockout results in infertility, gonadotropin insensitivity, and ovaries devoid of antral and preovulatory follicles. This study hypothesizes that SIK2 and SIK3 differentially regulate follicle growth and fertility via contrasting actions in the granulosa cells (GCs), the somatic cells of the follicle. Therefore, SIK2 or SIK3 GC-specific knockdown (SIK2GCKD and SIK3GCKD, respectively) mice were generated by crossing SIK floxed mice with Cyp19a1pII-Cre mice. Fertility studies revealed that pup accumulation over 6 months and the average litter size of SIK2GCKD mice were similar to controls, although in SIK3GCKD mice were significantly lower compared to controls. Compared to controls, gonadotropin stimulation of prepubertal SIK2GCKD mice resulted in significantly higher serum estradiol levels, whereas SIK3GCKD mice produced significantly less estradiol. Cyp11a1, Cyp19a1, and StAR were significantly increased in the GCs of gonadotropin-stimulated SIK2GCKD mice. However, Cyp11a1 and StAR remained significantly lower than controls in SIK3GCKD mice. Interestingly, Cyp19a1 stimulation in SIK3GCKD was not statistically different compared to controls. Superovulation resulted in SIK2GCKD mice ovulating significantly more oocytes, whereas SIK3GCKD mice ovulated significantly fewer oocytes than controls. Remarkably, SIK3GCKD superovulated ovaries contained significantly more preantral follicles than controls. SIK3GCKD ovaries contained significantly more apoptotic cells and fewer proliferating cells than controls. These data point to the differential regulation of GC function and follicle development by SIK2 and SIK3 and supports the therapeutic potential of targeting these kinases for treating infertility or developing new contraceptives.


Asunto(s)
Gonadotropinas , Células de la Granulosa , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Ratones , Gonadotropinas/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , Fertilidad/genética , Fertilidad/efectos de los fármacos , Estradiol/farmacología
10.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201747

RESUMEN

Follicle development refers to the process in which the follicles in the ovary gradually develop from the primary stage to a mature state, and most primary follicles fail to develop normally, without forming a dense granular cell layer and cell wall, which is identified as atretic follicles. Granulosa cells assist follicle development by producing hormones and providing support, and interference in the interaction between granulosa cells and oocytes may lead to the formation of atretic follicles. Ferroptosis, as a non-apoptotic form of death, is caused by cells accumulating lethal levels of iron-dependent phospholipid peroxides. Healthy follicles ranging from 4 to 5 mm were randomly divided into two groups: a control group (DMSO) and treatment group (10 uM of ferroptosis inducer erastin). Each group was sequenced after three repeated cultures for 24 h. We found that ferroptosis was associated with atretic follicles and that the in vitro treatment of healthy follicles with the ferroptosis inducer erastin produced a phenotype similar to that of atretic follicles. Overall, our study elucidates that tRF-1:30-Gly-GCC-2 is involved in the apoptosis and ferroptosis of GCs. Mechanistically, tRF-1:30-Gly-GCC-2 inhibits granulosa cell proliferation and promotes ferroptosis by inhibiting Mitogen-activated protein kinase 1 (MAPK1). tRF-1:30-Gly-GCC-2 may be a novel molecular target for improving the development of atretic follicles in ovarian dysfunction. In conclusion, our study provides a new perspective on the pathogenesis of granulosa cell dysfunction and follicular atresia.


Asunto(s)
Ferroptosis , Células de la Granulosa , Proteína Quinasa 1 Activada por Mitógenos , Folículo Ovárico , Ferroptosis/genética , Femenino , Células de la Granulosa/metabolismo , Animales , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Folículo Ovárico/metabolismo , Ratones , Proliferación Celular , Regulación hacia Abajo , Apoptosis , Células Cultivadas
11.
Sci Rep ; 14(1): 19788, 2024 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187528

RESUMEN

During follicular development, changes in the composition of the follicular fluid are synchronized with the development of oocytes. Our aim was to screen the key factors affecting oocyte maturation and optimize the in vitro culture protocol by understanding the changes of proteins and metabolites in follicular fluid. Follicles are divided into three groups according to their diameter (small follicle fluid (SFF): 10 mm < d < 20 mm; medium follicle fluid (MFF): 20 mm < d < 30 mm; large follicle fluid (LFF): 30 mm < d). Proteins and metabolites from the follicular fluid were analyzed by mass spectrometry. The results showed that: in LFF vs MFF, 20 differential abundant protein (DAP) and 88 differential abundant metabolites (DAM) were screened out; In SFF vs MFF, 3 DAPs and 65 DAMs were screened out; In MFF vs SFF, 24 DAPs and 35 DAMs were screened out. The analysis of differential proteins and metabolites showed that glycerophosphate hydrolysis decreased during follicular development, and proteins played a major role in metabolism and binding. In addition, DAMs and DAPs are co-enriched in the "linoleic acid metabolism" pathway. Combinatorial analysis reveals the dynamic profile of follicular fluid during follicular development and provides fundation for further exploring the function of follicular fluid in Mongolian horse.


Asunto(s)
Líquido Folicular , Metaboloma , Folículo Ovárico , Proteoma , Líquido Folicular/metabolismo , Animales , Caballos , Proteoma/metabolismo , Proteoma/análisis , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Femenino , Metabolómica/métodos , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo
12.
Int J Biol Sci ; 20(10): 3863-3880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113716

RESUMEN

The mechanisms behind the selection and initial recruitment of primordial follicles (PmFs) from the non-growing PmF pool during each estrous cycle in females remain largely unknown. This study demonstrates that PmFs closest to the ovulatory follicle are preferentially activated in mouse ovaries under physiological conditions. PmFs located within 40 µm of the ovulatory follicles were more likely to be activated compared to those situated further away during the peri-ovulation period. Repeated superovulation treatments accelerated the depletion of the PmF reserve, whereas continuous suppression of ovulation delayed PmF reserve consumption. Spatial transcriptome sequencing of peri-ovulatory follicles revealed that ovulation primarily induces the degradation and remodeling of the extracellular matrix (ECM). This ECM degradation reduces mechanical stress around PmFs, thereby triggering their activation. Specifically, Cathepsin L (CTSL), a cysteine proteinase and lysosomal enzyme involved in ECM degradation, initiates the activation of PmFs adjacent to ovulatory follicles in a distance-dependent manner. These findings highlight the link between ovulation and selective PmF activation, and underscore the role of CTSL in this process under physiological conditions.


Asunto(s)
Catepsina L , Matriz Extracelular , Folículo Ovárico , Ovulación , Animales , Femenino , Ratones , Folículo Ovárico/metabolismo , Catepsina L/metabolismo , Ovulación/fisiología , Matriz Extracelular/metabolismo , Ovario/metabolismo , Ciclo Estral/fisiología
13.
Clin Transl Med ; 14(8): e1791, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113233

RESUMEN

BACKGROUND: Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS: We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION: These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS: Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.


Asunto(s)
Apoptosis , Daño del ADN , Ratones Noqueados , Oocitos , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Oocitos/metabolismo , Daño del ADN/genética , Femenino , Apoptosis/genética , Dinámicas Mitocondriales/genética , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo
14.
Cell Signal ; 122: 111334, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102927

RESUMEN

OBJECTIVE: Chronic psychological stress is associated with impaired follicular development and ovarian dysfunction. Many aspects of this dysfunction and the underlying mechanisms remain unclear. Using a chronic unpredictable mild stress (CUMS) mouse model, we investigate the influence of chronic stress on ovarian function and explore potential mechanisms. METHODS: A CUMS mouse model was constructed over eight months, covering the period from sexual maturity to the onset of declining fertility in mice. At the end of the 2nd, 4th, 6th, and 8th months of exposure to CUMS, behavioral and physiological assays, including the sucrose preference test, tail suspension test, and serum corticosterone levels, were conducted to validate the effectiveness of the stress model. Fertility and ovarian function were assessed by analyzing the estrous cycle, number of offspring, sex hormone levels, follicle counts, granulosa cell proliferation and apoptosis, and the expression levels of fibrosis markers. Furthermore, proteomic analyses were performed on the ovaries to investigate the molecular mechanisms of ovarian fibrosis induced by CUMS. RESULTS: With continued CUMS exposure, there was a gradual decline in both the ovary-to-body weight ratio and the number of offspring. Moreover, the percentage of atretic follicles was notably higher in the CUMS-exposed groups compared to the control groups. It is noticeable that CUMS triggered granulosa cell apoptosis and halted proliferation. Additionally, increased expression of α-SMA and Collagen I in the ovaries of CUMS-exposed mice indicated that CUMS could induce ovarian fibrosis. Proteomic analysis provided insights into the activation of specific biological processes and molecules associated with fibrosis induced by chronic stress. CONCLUSIONS: Our results strongly suggest that exposure to CUMS induces ovarian fibrosis, which influences follicular development and ultimately contributes to fertility decline. These findings offer novel perspectives on the impact of chronic stress on ovarian dysfunction.


Asunto(s)
Fertilidad , Fibrosis , Ovario , Estrés Psicológico , Animales , Femenino , Ratones , Estrés Psicológico/complicaciones , Ovario/patología , Ovario/metabolismo , Apoptosis , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Modelos Animales de Enfermedad , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , Proliferación Celular
15.
Reprod Biol Endocrinol ; 22(1): 98, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107809

RESUMEN

BACKGROUND: At present, a number of clinical trials have been carried out on GLP-1 receptor agonist liraglutide in the treatment of polycystic ovary syndrome (PCOS). However, the effect of liraglutide on follicle development and its specific mechanism are still unclear. METHODS: RNA sequencing was used to explore the molecular characteristics of granulosa cells from patients with PCOS treated with liraglutide. The levels of C-X-C motif chemokine ligand 10 (CXCL10) in follicular fluid were detected by ELISA, the expression levels of ovulation related genes and inflammatory factor genes in follicles and granulosa cells were detected by qPCR and the protein levels of connexin 43 (Cx43), Janus Kinase 2 (JAK2) and phosphorylated JAK2 were detected by Western blot. The mouse ovarian follicles culture system in vitro was used to detect the status of follicle development and ovulation. RESULTS: In the present study, we found that liraglutide inhibited the secretion of inflammatory factors in PCOS granulosa cells, among which CXCL10 was the most significant. In addition, CXCL10 was significantly higher in granulosa cells and follicular fluid in PCOS patients than in non-PCOS patients. We applied in vitro follicle culture and other techniques to carry out the mechanism exploration which revealed that CXCL10 disrupted the homeostasis of gap junction protein alpha 1 (GJA1) between oocyte and granulosa cells before physiological ovulation, thus inhibiting follicular development and ovulation. Liraglutide inhibited CXCL10 secretion in PCOS granulosa cells by inhibiting the JAK signaling pathway and can improved dehydroepiandrosterone (DHEA)-induced follicle development disorders, which is reversed by CXCL10 supplementation. CONCLUSIONS: The present study suggests that liraglutide inhibits CXCL10 secretion in granulosa cells through JAK signaling pathway, thereby improving the homeostasis of GJA1 between oocyte and granulosa cells before physiological ovulation and ultimately improving the follicular development and ovulation of PCOS, which provides more supportive evidence for the clinical application of liraglutide in the treatment of ovulatory disorders in PCOS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Quimiocina CXCL10 , Células de la Granulosa , Liraglutida , Folículo Ovárico , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Femenino , Liraglutida/farmacología , Liraglutida/uso terapéutico , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Humanos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Animales , Ratones , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Adulto , Ovulación/efectos de los fármacos , Líquido Folicular/metabolismo , Células Cultivadas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
16.
Endocr Regul ; 58(1): 174-180, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121477

RESUMEN

In preovulatory follicles, after the endogenous gonadotropin surge, the oocyte-cumulus complexes (OCCs) produce hyaluronan (HA) in a process called "cumulus expansion". During this process, the heavy chains (HCs) of the serum-derived inter-alpha-trypsin inhibitor (IαI) family bind covalently to synthesized HA and form a unique structure of the expanded cumulus HA-rich extracellular matrix. Understanding the biochemical mechanism of the covalent linkage between HA and the HCs of the IαI family is one of the most significant discoveries in reproductive biology, since it explains basis of the cumulus expansion process running in parallel with the oocyte maturation, both essential for ovulation. Two recent studies have supported the above-mentioned findings: in the first, seven components of the extracellular matrix were detected by proteomic, evolutionary, and experimental analyses, and in the second, the essential role of serum in the process of cumulus expansion in vitro was confirmed. We have previously demonstrated the formation of unique structure of the covalent linkage of HA to HCs of IαI in the expanded gonadotropin-stimulated OCC, as well as interactions with several proteins produced by the cumulus cells: tumor necrosis factor-alpha-induced protein 6, pentraxin 3, and versican. Importantly, deletion of these genes in the mice produces female infertility due to defects in the oocyte-cumulus structure.


Asunto(s)
Células del Cúmulo , Matriz Extracelular , Ácido Hialurónico , Oocitos , Folículo Ovárico , Ácido Hialurónico/metabolismo , Femenino , Matriz Extracelular/metabolismo , Animales , Folículo Ovárico/metabolismo , Células del Cúmulo/metabolismo , Oocitos/metabolismo , Humanos , alfa-Globulinas/metabolismo , Ratones , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Proteína C-Reactiva/metabolismo
17.
Semin Immunopathol ; 46(3-4): 11, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134914

RESUMEN

Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.


Asunto(s)
Macrófagos , Ovario , Humanos , Femenino , Ovario/inmunología , Ovario/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Enfermedades del Ovario/metabolismo , Enfermedades del Ovario/patología , Embarazo , Folículo Ovárico/metabolismo
18.
Mol Cell Endocrinol ; 592: 112347, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39181310

RESUMEN

Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.


Asunto(s)
Cuerpo Lúteo , Células del Cúmulo , Vesículas Extracelulares , Folículo Ovárico , Progesterona , Animales , Femenino , Células del Cúmulo/metabolismo , Células del Cúmulo/citología , Bovinos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Cuerpo Lúteo/metabolismo , Cuerpo Lúteo/citología , Progesterona/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/citología , Oocitos/metabolismo , Comunicación Celular
19.
Reprod Fertil Dev ; 362024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39133816

RESUMEN

Context The overproduction of reactive oxygen species (ROS) during in vitro culture of ovarian tissues impairs follicular development and survival. Aims To evaluate the effects of punicalagin on the development and survival of primordial follicles, stromal cell and collagen fibres, as well as on the levels of mRNA for nuclear factor erythroid 2-related factor 2 (NRF2 ), superoxide dismutase 1 (SOD1 ), catalase (CAT ), glutathione peroxidase 1 (GPX1 ) and perirredoxin 6 (PRDX6 ), and activity of antioxidant enzymes in cultured bovine ovarian tissues. Methods Bovine ovarian cortical tissues were cultured for 6days in α-MEM+ alone or with 1.0, 10.0, or 100.0µM punicalagin at 38.5°C with 5% CO2 . Follicle morphology and growth, stromal cell density, and collagen fibres were evaluated by classical histology, while the expression of mRNA was evaluated by real-time PCR. The activity of enzymes was analysed by the Bradford method. Key results Punicalagin improved follicle survival and development, reduced mRNA expression for SOD1 and CAT , but did not influence stromal cells or collagen fibres. Punicalagin (10.0µM) increased the levels of thiol and activity of SOD1, CAT , and GPX1 enzymes. Conclusions Punicalagin (10.0µM) promotes follicle survival and development and activates SOD1, CAT , and GPX1 enzymes in bovine ovarian tissues. Implications Punicalagin improves follicle development and survival in cultured ovarian tissues.


Asunto(s)
Catalasa , Glutatión Peroxidasa GPX1 , Glutatión Peroxidasa , Taninos Hidrolizables , Folículo Ovárico , Animales , Femenino , Bovinos , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Folículo Ovárico/enzimología , Taninos Hidrolizables/farmacología , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Catalasa/metabolismo , Catalasa/genética , Ovario/efectos de los fármacos , Ovario/enzimología , Ovario/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Técnicas de Cultivo de Tejidos , Superóxido Dismutasa/metabolismo
20.
Sci Rep ; 14(1): 19321, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164442

RESUMEN

Much remains unknown about the reproductive physiology of southern white rhinoceros (SWR) and the effect of ovarian stimulation prior to ovum pickup (OPU) have not been fully elucidated. Granulosa cells (GC) provide valuable insight into follicle growth and oocyte maturation status. The goals of this study were to evaluate transcriptomic changes in GC from three stages of follicle development and to identify biomarkers possibly associated with follicular growth and maturation as a result of ovarian stimulation. GC collected from SWRs following OPU were assigned stages based upon follicle size. Total RNA was isolated, and cDNA libraries were prepared and sequenced on a NovaSeq 6000. All bioinformatics analyses were performed utilizing the Galaxy web platform. Reads were aligned to CerSimCot1.0, and the manual curation was performed with EquCab3.0. Overall, 39,455 transcripts (21,612 genes) were identified across follicle stages, and manual curation yielded a 61% increase in gene identification from the original annotation. Granulosa cells from preovulatory follicles expressed the highest number of unique transcripts. The following seven biomarkers were determined based upon cluster analysis and patterns of expression: COL1A1, JMY, FBXW11, NRG1, TMPO, MACIR and COL4A1. These data can be used to potentially evaluate the effects of different ovarian stimulation protocols on follicle dynamics, improve OPU results, and support conservation efforts in this species.


Asunto(s)
Células de la Granulosa , Folículo Ovárico , Perisodáctilos , Transcriptoma , Animales , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/citología , Folículo Ovárico/metabolismo , Folículo Ovárico/citología , Perisodáctilos/genética , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA