Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Environ Toxicol Pharmacol ; 110: 104535, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142473

RESUMEN

The escalating concern surrounding fluoranthene (FLN), phenanthrene (Phe), and pyrene (Pyr), underscores the urgency to investigate their dynamics in the context of agricultural ecosystems. Brassica rapa subsp. chinensis (Bok choy), a globally consumed vegetable, holds particular significance in this scenario. This study explores the migration and transformation of FLN, Phe, and Pyr from soil to Brassica rapa subsp. chinensis during its growth. The germination rates of seeds in these treatments varied, with soil+Bok choy and soil+FLN+Bok choy treatments showing higher rates (77.8 %), while soil+mix+Bok choy exhibited the lowest rate (11.1 %) after 3 days. Analyzing the distribution of FLN, Phe, and Pyr in Brassica rapa subsp. chinensis parts after 30 days revealed a sequence of accumulation in stem> root> leaf. This study provides information on practical implications for regulating the soil-plant migration and transformation of FLN, Phe, and Pyr, offering valuable insights for migration of PAHs pollution in agricultural settings.


Asunto(s)
Brassica rapa , Fluorenos , Fenantrenos , Pirenos , Contaminantes del Suelo , Pirenos/toxicidad , Fenantrenos/toxicidad , Contaminantes del Suelo/toxicidad , Brassica rapa/crecimiento & desarrollo , Brassica rapa/efectos de los fármacos , Fluorenos/toxicidad , Germinación/efectos de los fármacos , Suelo/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos
2.
Mar Pollut Bull ; 205: 116674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981191

RESUMEN

Fluorene is a coastal sediment pollutant with high ecological risk. Perinereis aibuhitensis is an ecotoxicological model used for polycyclic aromatic hydrocarbon bioremediation; however, the effects of fluorene on the physiological metabolism of P. aibuhitensis and its corresponding responses remain unclear. This study explored the tolerance and defense responses of P. aibuhitensis in sediments with different fluorene concentrations using histology, ecological biomarkers, and metabolic responses. Metabolomics analyses revealed that P. aibuhitensis has high tolerance to fluorene in sediments. Fluorene stress disrupted the normal metabolism of the P. aibuhitensis body wall, resulting in excessive glycosphospholipid and stearamide accumulation and elevated oxygen consumption rates. To mitigate this, P. aibuhitensis has adopted tail cutting, yellowing, and modulation of metabolite contents in the body wall. This study provides novel insights into the potential ecological risk of fluorene pollution in marine sediments and proposes the use of P. aibuhitensis in the bioremediation of fluorene-contaminated sediments.


Asunto(s)
Fluorenos , Sedimentos Geológicos , Metabolómica , Contaminantes Químicos del Agua , Fluorenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Sedimentos Geológicos/química , Poliquetos/efectos de los fármacos , Poliquetos/metabolismo , Biodegradación Ambiental
3.
Mar Environ Res ; 199: 106628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968804

RESUMEN

Chemical and microlitter (ML) pollution in three Estonian coastal areas (Baltic Sea) was investigated using mussels (Mytilus trossulus). Polycyclic aromatic hydrocarbons (PAH) in mussel tissues were observed in moderate levels with high bioaccumulation factors for the more hydrophilic and low molecular weight PAH (LMW PAH), namely anthracene and fluorene. Tissue concentrations of polybrominated diphenyl ethers (PBDE) and cadmium within mussel populations exceeded the Good Environmental Status thresholds by more than 200% and 60%, respectively. Multiple contamination at the Muuga Harbour site by tributyltin, high molecular weight PAH, including the highly toxic benzo[c]fluorene and PBDE, coincided with the inhibition of acetylcholinesterase activity and a lower condition index of the mussels. The metabolization and removal of bioaccumulated LMW PAH, reflected in the dominance of oxy-PAH such as anthracene-9,10-dione, is likely associated with the increased activity of glutathione S-transferase in caged mussels. Only a few microplastic particles were observed among the ML in mussel tissues, with coloured cellulose-based microfibers being the most prevalent. The average concentration of ML in mussels was significantly higher at the harbour area than at other sites. The integrated biomarker response index values allowed for the differentiation of pollution levels across studied locations representing high, intermediate, and low pollution levels within the studied area.


Asunto(s)
Monitoreo del Ambiente , Éteres Difenilos Halogenados , Mytilus , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/toxicidad , Finlandia , Fluorenos/toxicidad , Antracenos
4.
J Hazard Mater ; 475: 134914, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885588

RESUMEN

Due to the highly toxic nature of mercury ions to living organisms, accurately detecting Hg2+ in water samples and biological systems is of great significance. In this study, we designed and synthesized a novel red-to-near-infrared Aggregation-Induced Emission (AIE) fluorescent probe (named as DS) based Fluorene derivatives on specifically for Hg2+ detection. Probe DS can visually identify Hg2+ through an red-to-near-infrared fluorescence enhancement change, characterized by a large Stokes shift (130 nm) and AIE feature. This probe offers a fast response, high selectivity and sensitivity. The Hg2+-induced deprotection reaction of the thioketal mechanism was thoroughly investigated using nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) calculation. Additionly, dynamic light scattering (DLS) results indicated that the aggregation states changes of the molecular play a crucial role in the AIE fluorescence response of probe DS toward Hg2+. The red-to-near-infrared response with AIE feature not only avoids the interference of auto-fluorescence signals in complex environments, but also reduces the fluorescence quenching caused by probe molecular aggregation. This makes probe DS highly suitable for high-quality imaging detection of Hg2+ in aqueous environments. Furthermore, probe DS demonstrates the capability for visual fluorescence detection of Hg2+ concentrations in water sample, plant roots and living cells.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Mercurio/análisis , Mercurio/química , Colorantes Fluorescentes/química , Humanos , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Fluorenos/química , Fluorenos/toxicidad , Células HeLa
5.
J Hazard Mater ; 475: 134925, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889458

RESUMEN

The polychaete Perinereis aibuhitensis is used for bioremediation; however, its ability to remove fluorene, a common environmental pollutant, from sediments remains unclear, especially at low concentrations of fluorene (10 mg/kg). In this study, we explored the mechanism of intestinal injury induced by low concentrations of fluorene and the reason intestinal injury is alleviated in high fluorene concentration groups (100 and 1000 mg/kg) using histology, ecological biomarkers, gut microbiome, and metabolic response analyses. The results show that P. aibuhitensis showed high tolerance to fluorene in sediments, with clearance rates ranging 25-50 %. However, the remediation effect at low fluorene concentrations (10 mg/kg) was poor. This is attributed to promoting the growth of harmful microorganisms such as Microvirga, which can cause metabolic disorders, intestinal flora imbalances, and the generation of harmful substances such as 2-hydroxyfluorene. These can result in severe intestinal injury in P. aibuhitensis, reducing its fluorene clearance rate. However, high fluorene concentrations (100 and 1000 mg/kg) may promote the growth of beneficial microorganisms such as Faecalibacterium, which can replace the dominant harmful microorganisms and improve metabolism to reverse the intestinal injury caused by low fluorene concentrations, ultimately restoring the fluorene-removal ability of P. aibuhitensis. This study demonstrates an effective method for evaluating the potential ecological risks of fluorene pollution in marine sediments and provides guidance for using P. aibuhitensis for remediation.


Asunto(s)
Fluorenos , Microbioma Gastrointestinal , Intestinos , Metabolómica , Poliquetos , Contaminantes Químicos del Agua , Animales , Fluorenos/toxicidad , Fluorenos/metabolismo , Poliquetos/efectos de los fármacos , Poliquetos/metabolismo , Poliquetos/microbiología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Intestinos/microbiología , Intestinos/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Biodegradación Ambiental
6.
J Environ Sci (China) ; 145: 13-27, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844314

RESUMEN

Increasing evidence indicates that disturbance of the clock genes, which leads to systemic endocrine perturbation, plays a crucial role in the pathogenesis of metabolic and liver diseases. Fluorene-9-bisphenol (BHPF) is utilized in the manufacturing of plastic materials but its biological effects on liver homeostasis remain unknown. The impacts and involved mechanisms of BHPF on the liver diseases, metabolism, and circadian clock were comprehensively studied by zebrafish and mouse models. The therapeutic effect of melatonin (MT) was also verified. Zebrafish and mouse models with either acute exposure (0.5 and 1 µmol/L, 1-4 days post-fertilization) or chronic oral exposure (0.5 and 50 mg/(kg·2 days), 30 days) were established with various BHPF concentrations. Herein, we identified a crucial role for estrogenic regulation in liver development and circadian locomotor rhythms damaged by BHPF in a zebrafish model. BHPF mice showed chaos in circadian activity through the imbalance of circadian clock component Brain and Muscle Aryl hydrocarbon receptor nuclear translocator-like 1 in the liver and brain. The liver sexual dimorphic alteration along with reduced growth hormone and estrogens played a critical role in damaged glucose metabolism, hepatic inflammation, and fibrosis induced by BHPF. Besides, sleep improvement by exogenous MT alleviated BHPF-related glucose metabolism and liver injury in mice. We proposed the pathogenesis of metabolic and liver disease resulting from BHPF and promising targeted therapy for liver metabolism disorders associated with endocrine perturbation chemicals. These results might play a warning role in the administration of endocrine-disrupting chemicals in everyday life and various industry applications.


Asunto(s)
Ritmo Circadiano , Fluorenos , Pez Cebra , Animales , Ratones , Fluorenos/toxicidad , Ritmo Circadiano/efectos de los fármacos , Hepatopatías/tratamiento farmacológico , Fenoles/toxicidad
7.
Environ Res ; 255: 119169, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763277

RESUMEN

Previous studies have identified the exposure to ubiquitous environmental endocrine disruptors may be a risk factor of neurological disorders. However, the effects of fluorene-9-bisphenol (BHPF) in environmental exposure concentrations associated with these disorders are poorly understood. In this study, classic light-dark and social behavior tests were performed on zebrafish larvae and adults exposed BHPF exposure to evaluate social behavioral disorders and the microbiota-gut-brain axis was assessed to reveal the potential mechanisms underlying the behavioral abnormalities observed. Our results demonstrated that zebrafish larvae exposed to an environmentally relevant concentration (0.1 nM) of BHPF for 7 days showed a diminished response to external environmental factors (light or dark). Zebrafish larvae exposed to BHPF for 7 days or adults exposed to BHPF for 30 days at 1 µM displayed significant behavioral inhibition and altered social behaviors, including social recognition, social preference, and social fear contagion, indicating autism-like behaviors were induced by the exposure. BHPF exposure reduced the distribution of Nissl bodies in midbrain neurons and significantly reduced 5-hydroxytryptamine signaling. Oxytocin (OXT) levels and expression of its receptor oxtra in the gut and brain were down-regulated by BHPF exposure. In addition, the expression levels of genes related to the excitation-inhibitory balance of synaptic transmission changed. Microbiomics revealed increased community diversity and altered abundance of some microflora, such as an elevation in Bacillota and Bacteroidota and a decline in Mycoplasmatota in zebrafish guts, which might contribute to the abnormal neural circuits and autism-like behaviors induced by BHPF. Finally, the rescue effect of exogenous OXT on social behavioral defects induced by BHPF exposure was verified in zebrafish, highlighting the crucial role of OXT signaling through gut-brain axis in the regulatory mechanisms of social behaviors affected by BHPF. This study contributes to understanding the effects of environmental BHPF exposure on neuropsychiatric disorders and attracts public attention to the health risks posed by chemicals in aquatic organisms. The potential mental disorders should be considered in the safety assessments of environmental pollutants.


Asunto(s)
Eje Cerebro-Intestino , Fluorenos , Oxitocina , Conducta Social , Pez Cebra , Animales , Fluorenos/toxicidad , Oxitocina/metabolismo , Eje Cerebro-Intestino/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Conducta Animal/efectos de los fármacos , Larva/efectos de los fármacos , Fenoles/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos
8.
Ecotoxicol Environ Saf ; 276: 116315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614001

RESUMEN

This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.


Asunto(s)
Fluorenos , Ácidos Indolacéticos , Lolium , Superóxido Dismutasa , Fluorenos/toxicidad , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Reguladores del Crecimiento de las Plantas , Antioxidantes/metabolismo
9.
Environ Sci Pollut Res Int ; 31(20): 29385-29399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573577

RESUMEN

Fluorene-9-bisphenol (BHPF) is widely used in the manufacture of plastic products and potentially disrupts several physiological processes, but its biological effects on social behavior remain unknown. In this study, we investigated the effects of BHPF exposure on anxiety-like and social behavior in female mice and the potential mechanisms, thereby proposing a potential therapy strategy. We exposed female Balb/c mice to BHPF by oral gavage at different doses (0.5, 50 mg/kg bw/2-day) for 28 days, which were found BHPF (50 mg/kg) exposure affected motor activity in the open field test (OFT) and elevated cross maze (EPM), resulting in anxiety-like behaviors, as well as abnormal social behavioral deficits in the Social Interaction Test (SIT). Analysis of histopathological staining results showed that BHPF exposure caused damage to hippocampal neurons in the CA1/CA3/DG region and decreased Nissl pyramidal neurons in the CA1/CA3 regions of the hippocampus, as well as a decrease in parvalbumin neuron expression. In addition, BHPF exposure upregulated the expression of excitatory and inhibitory (E/I) vesicle transporter genes (Vglut1, Vglut2, VGAT, GAD67, Gabra) and axon growth gene (Dcc) in the mouse hippocampus. Interestingly, behavioral disturbances and E/I balance could be alleviated by exogenous melatonin (15 mg/kg bw/2-day) therapy. Our findings suggest that exogenous melatonin may be a potential therapy with protective potential for ameliorating or preventing BHPF-induced hippocampal neuronal damage and behavioral disturbances. This study provided new insight into the neurotoxicological effects on organisms exposed to endocrine-disrupting chemicals and aroused our vigilance in current environmental safety about chemical use.


Asunto(s)
Ansiedad , Fluorenos , Melatonina , Ratones Endogámicos BALB C , Conducta Social , Animales , Ratones , Ansiedad/inducido químicamente , Femenino , Fluorenos/toxicidad , Melatonina/farmacología , Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Fenoles/toxicidad
10.
Arch Toxicol ; 98(7): 2247-2259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635053

RESUMEN

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.


Asunto(s)
Endotelio Vascular , Fluorenos , FN-kappa B , Especies Reactivas de Oxígeno , Pez Cebra , Animales , Especies Reactivas de Oxígeno/metabolismo , Fluorenos/toxicidad , FN-kappa B/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Permeabilidad Capilar/efectos de los fármacos
11.
Chemosphere ; 352: 141412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336035

RESUMEN

This study examined the multifaceted impacts of fluorene exposure on Tubifex tubifex, encompassing acute (survival analysis and behavioral responses) and subchronic exposure regimens (antioxidant enzyme response and histopathology), molecular docking studies, and generalized read-across analysis. Survival analysis revealed concentration-dependent increases in toxicity over varying time intervals, with LC50 values decreasing from 30.072 mg/L at 24 h to 12.365 mg/L at 96 h, emphasizing the time-sensitive and concentration-responsive nature of the stressor. Behavioral responses were both concentration- and duration-dependent. While Erratic Movement and Clumping Tendency exhibited earlier responses (within 24 h) at lower concentrations, the wrinkling effect and mucus secretion) exhibited delayed onset, suggesting intricate regulatory mechanisms underlying adaptability to environmental challenges; moreover, the wrinkling effect was consistently induced at higher concentrations, indicating greater sensitivity to the toxic effects of fluorene. With sublethal environmentally relevant concentrations-1.24 mg/l and 2.47 mg/L i.e., 10% and 20% 96 h, respectively-the antioxidant enzyme response (i.e., upregulation of SOD, CAT, and GST) with increasing fluorene concentration, revealing a nonlinear, hormetic response, suggested adaptive protection at lower doses but inhibition at higher concentrations. Histopathological examination indicated that higher fluorene concentrations caused cellular proliferation, inflammation, and severe tissue damage in the digestive tract and body wall. Molecular docking studies demonstrated robust interactions between fluorene and major stress biomarker enzymes, disrupting their functions and inducing oxidative stress. Interactions with cytochrome c oxidase suggested interference with cellular energy production. Generalized Read-Across (GenRA) analysis unveiled shared toxicity mechanisms among fluorene and its analogs, involving the formation of reactive epoxides and the influence of cytochrome P450 enzymes. The diverse functional groups of these analogs, particularly chlorine-containing compounds, were implicated in toxicity through lipid peroxidation and membrane damage. Adverse outcome pathways and broader consequences for aquatic ecosystem health are discussed.


Asunto(s)
Oligoquetos , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Ecosistema , Simulación del Acoplamiento Molecular , Biomarcadores/metabolismo , Fluorenos/toxicidad , Fluorenos/metabolismo , Contaminantes Químicos del Agua/metabolismo
12.
Analyst ; 149(6): 1921-1928, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38375539

RESUMEN

The electrochemical detection method of cytotoxicity using intracellular purines as biomarkers has shown great potential for in vitro drug toxicity evaluation. However, no electrochemical detection system based on an in vitro drug metabolism mechanism has been devised. In this paper, electrochemical voltammetry was used to investigate the effect of the S9 system on the electrochemical behavior of HepG2 cells, and benzo[a]pyrene, fluoranthene, and pyrene were employed to investigate the sensitivity of electrochemical signals of cells to the cytotoxicity of drugs metabolized by the S9 system. The results showed that, within 8 h of exposure to the S9 system, the electrochemical signal of HepG2 cells at 0.7 V did not alter noticeably. The levels of xanthine, guanine, hypoxanthine, and adenine in the cells were not significantly altered. Compared with the absence of S9 system metabolism, benzo[a]pyrene and fluoranthene processed by the S9 system decreased the electrochemical signal of the cells in a dose-dependent manner, while pyrene did not change it appreciably. HPLC also revealed that benzo[a]pyrene and fluoranthene metabolized by the S9 system decreased the intracellular purine levels, whereas pyrene had no effect on them before and after S9 system metabolism. The cytotoxicity results of the three drugs examined by electrochemical voltammetry and MTT assay showed a strong correlation and good agreement. The S9 system had no effect on the intracellular purine levels or the electrochemical signal of cells. When the drug was metabolized by the S9 system, variations in cytotoxicity could be precisely detected by electrochemical voltammetry.


Asunto(s)
Benzo(a)pireno , Fenómenos Bioquímicos , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Fluorenos/toxicidad , Guanina , Mutágenos
13.
Biodegradation ; 35(3): 299-313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37792261

RESUMEN

The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-life t 1 / 2  of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.


Asunto(s)
Antracenos , Contaminantes Ambientales , Naftalenos , Hidrocarburos Policíclicos Aromáticos , Pirenos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Consorcios Microbianos , Fluorenos/toxicidad , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-37659611

RESUMEN

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment due to oil and diesel fuel spills is a serious threat to Arctic fish populations. PAHs produce multiple toxic effects in fish, but disturbance of electrical and contractile activity of the heart seems to be the most negative effect. Our study focused on the effects of fluorene, a tricyclic PAH resembling the well-investigated tricyclic phenanthrene, on major ionic currents and action potential (AP) waveform in isolated ventricular myocytes and on contractile activity in isolated whole hearts of polar navaga cod (Eleginus nawaga). Among the studied currents, the repolarizing rapid delayed rectifier K+ current IKr demonstrated the highest sensitivity to fluorene with IC50 of 0.54 µM. The depolarizing inward currents, INa and ICaL, were inhibited with 10 µM fluorene by 20.2 ± 2.8 % and 27.9 ± 8.4 %, respectively, thereby being much less sensitive to fluorene than IKr. Inward rectifier IK1 current was insensitive to fluorene (up to 10 µM). While 3 µM fluorene prolonged APs, 10 µM also slowed the AP upstroke. Resting membrane potential was not affected by any tested concentrations. In isolated heart experiments 10 µM fluorene caused modest depression of ventricular contractile activity. Thus, we have demonstrated that fluorene, a tricyclic PAH present in high quantities in crude oil, strongly impacts electrical activity with only slight effects on contractile activity in the heart of the polar fish, the navaga cod.


Asunto(s)
Gadiformes , Hidrocarburos Policíclicos Aromáticos , Animales , Ventrículos Cardíacos , Fluorenos/toxicidad , Hidrocarburos , Miocitos Cardíacos
15.
Mar Pollut Bull ; 194(Pt A): 115390, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37573818

RESUMEN

The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture on marine meiofauna, but with a special focus on nematodes' morphological and functional traits. The results showed changes in the abundances for all tested concentrations of both compounds. The nematode communities exposed to the highest concentrations of fluoranthene (30 ng.g-1 Dry Weight (DW)) and polystyrene (100 mg.kg-1 DW) alone or in a mixture, were significantly less diverse compared to control and were associated with significant changes in the percentage of taxonomic composition and feeding-guilds. The most sensitive taxa to fluoranthene comprised epistratum feeders, whereas the nematodes mostly affected by polystyrene were omnivores-carnivores. A new functional tool, the Index of Sensitivity (IOS), proved to be reliable in depicting the changes that occurred in the taxonomic and functional features of the nematofauna.


Asunto(s)
Nematodos , Poliestirenos , Animales , Poliestirenos/toxicidad , Fluorenos/toxicidad
16.
Anal Chim Acta ; 1274: 341526, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455068

RESUMEN

A novel π-electron rich fluoranthene embellished with a phenyl spacer and coupled with terpyridine (TS1) was developed through Diels-Alder reaction. Single crystal X-ray structure evidences the variations in dihedral angles between the fluoranthene and the phenyl unit responsible for development of non-coplanar interactions and stabilized by a wave-like molecular packing in the crystal lattice with weak π-π interaction of 4.125 Å. The peripheral terpyridine of TS1 endows an efficient binding with multiple metal ions by colorimetric and fluorometric methods. TS1 exhibits a ratiometric fluorescence response from sky blue to yellow colour upon the addition of Zn2+ ions with a limit of detection (LOD) of 0.05 ppm. The other metal ions such as Cu2+, Co2+ and Fe2+ demonstrate fluorescence quenching behaviour with LODs of 0.1, 0.3 and 0.7 ppm, respectively. The intramolecular charge transfer (ICT) shows the variation in TS1 emission behaviour upon metal ions interaction and quantitatively discriminates the metal ion concentrations. TS1 conferred a visual colorimetric change from colourless to magenta, enabling naked-eye detection of Fe2+ and showing clear discrimination between Fe2+ and Fe3+ ions for the real-time water samples. Furthermore, we have investigated the effect of TS1 in Zebrafish larvae/embryos and cytotoxicity in human urinary tract transitional cell carcinoma cells (UM-UC-3).


Asunto(s)
Metales , Pez Cebra , Animales , Humanos , Metales/química , Fluorenos/toxicidad , Iones/química , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química
17.
Sci Total Environ ; 871: 162014, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740067

RESUMEN

Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antioxidantes/metabolismo , Oligoquetos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Fluorenos/toxicidad , Fluorenos/metabolismo , Encéfalo/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
18.
Environ Sci Pollut Res Int ; 30(3): 7617-7624, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36044141

RESUMEN

Fluoranthene (FLU) has shown relatively high toxicity to aquatic life as a priority polycyclic aromatic hydrocarbon (PAH). Considering the toxic effects of FLU on aquatic organisms and its high detection frequency in the aquatic environment, it is necessary and critical to derive FLU water quality criteria (WQC) for the protection of aquatic organisms and ecological risk assessment. However, due to the lack of toxicity data at different classification levels, there has been no research about the WQC of FLU. In this study, nine acute and three chronic toxicity tests were carried out on 9 Chinese indigenous aquatic species from different classification levels to obtain toxicity data. According to the US EPA guidelines, the criterion maximum concentration of 0.570 mg/L and the criterion continuous concentration of 0.174 mg/L were developed. There is no significant difference when comparing the species sensitivity distributions between indigenous and exotic species. Therefore, it is possible to use toxicity data from organisms in different areas for ecological risk assessment of FLU. CAPSULE: We compared the sensitivity between indigenous and exotic aquatic species for fluoranthene and derived its water quality criteria.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Contaminantes Químicos del Agua/análisis , Fluorenos/toxicidad , Organismos Acuáticos , China
19.
Environ Sci Technol ; 57(1): 561-569, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36443945

RESUMEN

Fluorene-9-bisphenol (BHPF), a bisphenol A (BPA) substitute, has been increasingly used as a material in syntheses of polymers that are widely used in road markings, artificial tracks, coating floors, building paints, etc., increasing the likelihood of BHPF contamination in the aquatic environment due to its release from the products. However, to date, it is unknown whether it may have actual impacts on fish in real environments. In this study, a 105-day exposure experiment of BHPF at various concentrations (0.01, 0.1, 1, and 10 µg/L) on Chinese medaka (Oryzias sinensis) was performed under laboratory conditions and found decreased fecundity, such as lower egg qualities and quantities, retarded oogenesis, and atretic follicles in the fish and deformed eyes and bodies in its F1 generation. Toxico-transcriptome analyses showed that estrogen-responsive genes were significantly suppressed by BHPF, indicating that antagonist properties of BHPF on estrogen receptors might be causes for the decreased fecundity. Field investigations (Beijing) demonstrated that BHPF was detectable in 60% surface waters, with a mean concentration of 10.49 ± 6.33 ng/L, by gas chromatography-mass spectrometry, and similar effects in wild Chinese medaka were also observed, some of which the parameters were found to be obviously correlated with the BHPF levels in corresponding waters.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Fluorenos/toxicidad , Fluorenos/química , Reproducción , Contaminantes Químicos del Agua/toxicidad
20.
Ecotoxicol Environ Saf ; 242: 113906, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878500

RESUMEN

Identifying chemicals with endocrine disrupting properties linked to disease outcomes is a key concern, as stated in the WHO-UNEP 2012 report on endocrine-disrupting chemicals. The chemical 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) is widely and increasingly applied in synthesizing fluorene-based cardo polymers with superior optical, thermal and mechanical properties for various uses. However, little toxicological information is available regarding its safety. Here, we studied the endocrine disrupting property of BPEF by multiple toxicological tools and investigated its effects on female development in adolescent mice. Using the yeast two-hybrid bioassay, BPEF showed strong antiestrogenicity which was similar to that of tamoxifen, an effective antiestrogenic drug. In adolescent CD-1 mice, BPEF significantly decreased the uterine weight at relatively low doses and induced marked endometrial atrophy. Immunohistochemical staining and transcriptome analyses of the mice uteri revealed that BPEF could repressed the expressions of estrogen-responsive genes. Molecular simulation indicated that BPEF could be docked into the antagonist pocket of human estrogen receptor α, and the formation of hydrogen bonds and hydrophobic interactions between BPEF and the active site of receptor maintained their strong binding. All of the data demonstrated that BPEF possessed strong antiestrogenic property and might disrupt female development, suggesting it should be avoided in making products that might directly expose to people, particularly immature women.


Asunto(s)
Disruptores Endocrinos , Antagonistas de Estrógenos , Adolescente , Animales , Disruptores Endocrinos/análisis , Antagonistas de Estrógenos/toxicidad , Estrógenos , Femenino , Fluorenos/toxicidad , Humanos , Ratones , Tamoxifeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA