RESUMEN
Periphytic algae are important components of aquatic ecosystems. However, the factors driving periphyton species richness variation remain largely unexplored. Here, we used data from a subtropical floodplain (Upper Paraná River floodplain, Brazil) to quantify the influence of environmental variables (total suspended matter, temperature, conductivity, nutrient concentrations, hydrology, phytoplankton biomass, phytoplankton species richness, aquatic macrophyte species richness and zooplankton density) on overall periphytic algal species richness and on the richness of different algal groups defined by morphological traits (cell size and adherence strategy). We expected that the coefficients of determination of the models estimated for different trait-based groups would be higher than the model coefficient of determination of the entire algal community. We also expected that the relative importance of explanatory variables in predicting species richness would differ among algal groups. The coefficient of determination for the model used to predict overall periphytic algal species richness was higher than the ones obtained for models used to predict the species richness of the different groups. Thus, our first prediction was not supported. Species richness of aquatic macrophytes was the main predictor of periphyton species richness of the entire community and a significant predictor of the species richness of small mobile, large mobile and small-loosely attached algae. Abiotic variables, phytoplankton species richness, chlorophyll-a concentration, and hydrology were also significant predictors, depending on the group. These results suggest that habitat heterogeneity (as proxied by aquatic macrophytes richness) is important for maintaining periphyton species richness in floodplain environments. However, other factors played a role, suggesting that the analysis of species richness of different trait-based groups unveils relationships that were not detectable when the entire community was analysed together.
Asunto(s)
Biodiversidad , Fitoplancton , Zooplancton , Animales , Biomasa , Brasil , Adhesión Celular , Tamaño de la Célula , Clorofila/análisis , Clorofila A , Chlorophyta/citología , Chlorophyta/crecimiento & desarrollo , Chlorophyta/fisiología , Fitoplancton/citología , Fitoplancton/crecimiento & desarrollo , Fitoplancton/fisiología , Densidad de Población , Dinámica Poblacional , Zooplancton/citología , Zooplancton/crecimiento & desarrollo , Zooplancton/fisiologíaRESUMEN
The diatom genus Chaetoceros is one of the most abundant and diverse phytoplankton in marine and brackish waters worldwide. Within this genus, Chaetoceros socialis has been cited as one of the most common species. However, recent studies from different geographic areas have shown the presence of pseudo-cryptic diversity within the C. socialis complex. Members of this complex are characterized by curved chains (primary colonies) aggregating into globular clusters, where one of the four setae of each cell curves toward the center of the cluster and the other three orient outwards. New light and electron microscopy observations as well as molecular data on marine planktonic diatoms from the coastal waters off Chile revealed the presence of two new species, Chaetoceros sporotruncatus sp. nov. and C. dichatoensis. sp. nov. belonging to the C. socialis complex. The two new species are similar to other members of the complex (i.e., C. socialis and C. gelidus) in the primary and secondary structure of the colony, the orientation pattern of the setae, and the valve ultrastructure. The only morphological characters that can be used to differentiate the species of this complex are aspects related to resting spore morphology. The two newly described species are closely related to each other and form a sister clade to C. gelidus in molecular phylogenies. We also provide a phylogenetic status along with the morphological characterization of C. radicans and C. cintus, which are genetically related to the C. socialis complex.
Asunto(s)
Diatomeas/clasificación , Filogenia , Fitoplancton/clasificación , Chile , ADN de Algas/genética , Diatomeas/citología , Diatomeas/genética , Diatomeas/ultraestructura , Francia , Italia , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fitoplancton/citología , Fitoplancton/genética , Fitoplancton/ultraestructura , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
Satellite images are an effective tool for the detection of phytoplankton blooms, since they cause striking changes in water color. Bloom intensity can be expressed in terms of chlorophyll-a concentration. Previous studies suggest the use of Landsat TM4/TM3 reflectance ratio to retrieve surface chlorophyll-a concentration from aquatic systems. In this study we assumed that a remote sensing trophic state index can be applied to investigate how changes in HRT along the hydrologic year affect the spatial distribution of the phytoplankton blooms at Ibitingas reservoir surface. For that, we formulated two objectives: (1) apply a semi-empirical model which uses this reflectance ratio to map chlorophyll-a concentration at Ibitinga reservoir along the 2005 hydrologic year and (2) assess how changes in hydraulic residence time (HRT) affect the spatial distribution of phytoplankton blooms at Ibitinga Reservoir. The study site was chosen because previous studies reported seasonal changes in the reservoir limnology which might be related to the reservoir seasonality and hydrodynamics. Six Landsat/TM images were acquired over Ibitinga reservoir during 2005 and water flow measurements provided by the Brazilian Electric System National Operator - ONS were used to compute the reservoir´s residence time, which varied from 5.37 to 52.39 days during 2005. The HRT in the date of image acquisition was then compared to the distribution of chlorophyll-a in the reservoir. The results showed that the HRT increasing implies the increasing of the reservoir surface occupied by phytoplankton blooms.(AU)
As imagens de satélite são frequentemente usadas para a identificação de florações de fitoplâncton porque sua presença causa mudanças significativas na cor da água. A abundância das florações pode ser quantificada por medidas de concentração de clorofila-a. Diversos estudos sugerem o uso da razão de reflectância das bandas TM4/TM3 Landsat, para determinar as concentrações de clorofila-a em sistemas aquáticos. Este trabalho tem como objetivos: (1) aplicar um modelo semi-empírico que usa essa razão para mapear a concentração de clorofila-a no reservatório de Ibitinga ao longo do ano hidrológico de 2005; (2) avaliar como as mudanças no tempo de residência hidráulica afetaram a distribuição de florações na superfície do reservatório. O reservatório de Ibitinga foi selecionado porque estudos prévios indicavam mudanças sazonais nas propriedades limnológicas do reservatório, as quais poderiam estar relacionadas à sazonalidade e à hidrodinâmica. Seis imagens TM/Landsat foram adquiridas sobre o reservatório de Ibitinga durante o ano de 2005. Foi então usada uma tabela associando intervalos de razão de banda a intervalos de concentração de clorofila-a. Medidas de vazão fornecidas pelo Operador Nacional do Sistema Elétrico ONS foram utilizadas para calcular o tempo de residência hidráulica do reservatório, que variou entre 5,37 e 52,39 dias durante 2005. O tempo de residência hidráulica em cada data de aquisição da imagem foi então comparado com a área ocupada pelas florações de fitoplancton. Os resultados indicaram uma forte relação entre o tempo de residência hidráulica e a área ocupada por florações. Em junho de 2005, quando o reservatório atingiu seu menor tempo de residência hidráulica, apenas 20% de sua área estiveram ocupadas por florações. Em setembro e outubro, quando a residência hidráulica atinge o seu máximo, mais que 80% da superfície do reservatório foram ocupadas por florações de fitoplancton.(AU)
Asunto(s)
Fitoplancton/citología , Fitoplancton/crecimiento & desarrollo , Tiempo , Clorofila A/análisis , Clorofila A/biosíntesisRESUMEN
Monitoring programs for harmful algal blooms (HABs) typically rely on time-consuming manual methods for identification and enumeration of phytoplankton, which make it difficult to obtain results with sufficient temporal resolution for early warning. Continuous automated imaging-in-flow by the Imaging FlowCytobot (IFCB) deployed at Port Aransas, TX has provided early warnings of six HAB events. Here we describe the progress in automating this early warning system for blooms of Karenia brevis. In 2009, manual inspection of IFCB images in mid-August 2009 provided early warning for a Karenia bloom that developed in mid-September. Images from 2009 were used to develop an automated classifier that was employed in 2011. Successful implementation of automated file downloading, processing and image classification allowed results to be available within 4 h after collection and to be sent to state agency representatives by email for early warning of HABs. No human illness (neurotoxic shellfish poisoning) has resulted from these events. In contrast to the common assumption that Karenia blooms are near monospecific, post-bloom analysis of the time series revealed that Karenia cells comprised at most 60-75 % of the total microplankton.