Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.343
Filtrar
1.
Clin Epigenetics ; 16(1): 127, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261973

RESUMEN

Fibrosis is an abnormal tissue healing process characterized by the excessive accumulation of ECM components, such as COL I and COL III, in response to tissue injury or chronic inflammation. Recent advances in epitranscriptomics have underscored the importance of m6A modification in fibrosis. m6A, the most prevalent modification in eukaryotic RNA, is catalyzed by methyltransferases (e.g., METTL3), removed by demethylases (e.g., FTO), and recognized by reader proteins (e.g., YTHDF1/2). These modifications are crucial in regulating collagen metabolism and associated diseases. Understanding the role of m6A modification in fibrosis and other collagen-related conditions holds promise for developing targeted therapies. This review highlights the latest progress in this area.


Asunto(s)
Adenosina , Fibrosis , Metiltransferasas , Humanos , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Fibrosis/genética , Metiltransferasas/genética , Epigénesis Genética/genética , Enfermedades del Colágeno/genética , Animales , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Colágeno/genética , Colágeno/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , ARN/genética
2.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201512

RESUMEN

Crohn's disease (CD) is frequently complicated by strictures that can be either inflammatory or fibrostenotic. This distinction is important for deciding the best treatment course, but it can be difficult to determine clinically, sometimes even by advanced imaging techniques. We performed miRNA PCR panel screening on pooled samples of ileum with CD fibrostenosis or inflammatory stenosis. Eight miRNAs with profibrotic (miR-93-5p, miR-376c-3p and miR-424-5p), or fibroprotective (miR-133a-3p, miR-133b, miR-193a-5p, miR-335-5p and miR-378a-3p) functions described in the literature were selected for validation on 20 samples each of CD with fibrostenosis or inflammatory stenosis, with a separate sampling of the submucosa and subserosa. The results showed significant differences between the groups in subserosal samples, with upregulation of profibrotic miRNAs and downregulation of fibroprotective miRNAs in fibrostenosis compared to inflammatory stenosis. Only miR-424-5p showed a significant difference in the submucosa. There were significant differences in miRNA expression between subserosa and submucosa. Our results provide further evidence that the major differences between fibrostenosis and inflammatory stenosis are located in the subserosa, which is inaccessible to endoscopic sampling, highlighting the need for cross-sectional imaging or serological markers. We identify several miRNAs previously not connected to fibrosis in CD, which could potentially serve as biomarkers of fibrostenosis.


Asunto(s)
Enfermedad de Crohn , Fibrosis , MicroARNs , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Enfermedad de Crohn/metabolismo , Humanos , MicroARNs/genética , Fibrosis/genética , Masculino , Constricción Patológica/genética , Adulto , Femenino , Persona de Mediana Edad , Íleon/metabolismo , Íleon/patología , Regulación de la Expresión Génica , Perfilación de la Expresión Génica
3.
Nat Cardiovasc Res ; 3(3): 343-355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39183958

RESUMEN

Heart failure affects millions of people worldwide, with men exhibiting a higher incidence than women. Our previous work has shown that mosaic loss of the Y chromosome (LOY) in leukocytes is causally associated with an increased risk for heart failure. Here, we show that LOY macrophages from the failing hearts of humans with dilated cardiomyopathy exhibit widespread changes in gene expression that correlate with cardiac fibroblast activation. Moreover, we identify the ubiquitously transcribed t et ratricopeptide Y-linked (Uty) gene in leukocytes as a causal locus for an accelerated progression of heart failure in male mice with LOY. We demonstrate that Uty disruption leads to epigenetic alterations in both monocytes and macrophages, increasing the propensity of differentiation into profibrotic macrophages. Treatment with a transforming growth factor-ß-neutralizing antibody prevented the cardiac pathology associated with Uty deficiency in leukocytes. These findings shed light on the mechanisms that contribute to the higher incidence of heart failure in men.


Asunto(s)
Cromosomas Humanos Y , Epigénesis Genética , Insuficiencia Cardíaca , Animales , Masculino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Cromosomas Humanos Y/genética , Fibrosis/genética , Fibrosis/patología , Macrófagos/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Modelos Animales de Enfermedad , Ratones , Femenino , Fenotipo , Ratones Endogámicos C57BL , Células Cultivadas , Ratones Noqueados
4.
Clin Epigenetics ; 16(1): 119, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192299

RESUMEN

BACKGROUND: Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. RESULT: In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-ß to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-ß-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. CONCLUSION: Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.


Asunto(s)
Dioxigenasas , Fibroblastos , Fibrosis , Animales , Fibrosis/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ratones , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Daño del ADN/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Masculino , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
5.
J Physiol Investig ; 67(4): 198-206, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39148295

RESUMEN

ABSTRACT: The role of microRNAs in regulating tubulointerstitial fibrosis, a key feature of progressive chronic kidney disease, is of significant importance. LIN28A has been reported to attenuate renal fibrosis in obstructive nephropathy. Here, our objective was to investigate the precise biological function of the miR-92a-3p/LIN28A axis in tubulointerstitial fibrosis. The human renal proximal tubular epithelial (HK-2) cell line was exposed to transforming growth factor (TGF)-ß1, establishing an in vitro model mimicking tubulointerstitial fibrosis. Luciferase reporter assay was utilized to investigate the relationship between miR-92a-3p and LIN28A. Cell transfection techniques were employed to modify the expression of miR-92a-3p and LIN28A. An in vivo model of tubulointerstitial fibrosis was created by inducing unilateral ureteral obstruction (UUO) in C57BL/6N mice. Our initial observations showed that TGF-ß1 treatment of HK-2 cells and the UUO mice model led to an increase in miR-92a-3p expression and a decrease in LIN28A expression. We confirmed that miR-92a-3p directly targeted LIN28A in HK-2 cells. In TGF-ß1-stimulated HK-2 cells, knocking down miR-92a-3p notably reduced the levels of alpha smooth muscle actin and vimentin and concurrently enhanced the expression of E-cadherin. These changes were counteracted upon transfection with si-LIN28A. Thus, directing interventions toward miR-92a-3p holds the potential to emerge as a viable therapeutic approach for addressing tubulointerstitial fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis , Ratones Endogámicos C57BL , MicroARNs , Proteínas de Unión al ARN , Factor de Crecimiento Transformador beta1 , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Animales , Humanos , Fibrosis/metabolismo , Fibrosis/genética , Fibrosis/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratones , Transición Epitelial-Mesenquimal/genética , Línea Celular , Masculino , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Técnicas de Silenciamiento del Gen
6.
Exp Cell Res ; 442(1): 114194, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127440

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the role and possible mechanism of lncRNA XIST in renal fibrosis and to provide potential endogenous targets for renal fibrosis in obstructive nephropathy (ON). METHODS: The study included 50 cases of ON with renal fibrosis (samples taken from patients undergoing nephrectomy due to ON) and 50 cases of normal renal tissue (samples taken from patients undergoing total or partial nephrectomy due to accidental injury, congenital malformations, and benign tumors). Treatment of human proximal renal tubular epithelium (HK-2) cells with TGF-ß1 simulated renal fibrosis in vitro. Cell viability and proliferation were measured by CCK-8 and EdU, and cell migration was measured by transwell. XIST, miR-124-3p, ITGB1, and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, α-SMA, and fibronectin) were detected by PCR and immunoblot. The targeting relationship between miR-124-3p and XIST or ITGB1 was verified by starBase and dual luciferase reporter gene experiments. In addition, The left ureter was ligated in mice as a model of unilateral ureteral obstruction (UUO), and the renal histopathology was observed by HE staining and Masson staining. RESULTS: ON patients with renal fibrosis had elevated XIST and ITGB1 levels and reduced miR-124-3p levels. The administration of TGF-ß1 exhibited a dose-dependent promotion of HK-2 cell viability, proliferation, migration, and EMT. Conversely, depleting XIST or enhancing miR-124-3p hindered HK-2 cell viability, proliferation, migration, and EMT in TGF-ß1-damaged HK-2 cells HK-2 cells. XIST functioned as a miR-124-3p sponge. Additionally, miR-124-3p negatively regulated ITGB1 expression. Elevating ITGB1 weakened the impact of XIST depletion on TGF-ß1-damaged HK-2 cells. Down-regulating XIST improved renal fibrosis in UUO mice. CONCLUSION: XIST promotes renal fibrosis in ON by elevating miR-124-3p and reducing ITGB1 expressions.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis , Enfermedades Renales , MicroARNs , ARN Largo no Codificante , ARN Largo no Codificante/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Fibrosis/genética , Fibrosis/patología , Fibrosis/metabolismo , Animales , Ratones , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Transición Epitelial-Mesenquimal/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Proliferación Celular , Masculino , Movimiento Celular/genética , Riñón/patología , Riñón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Línea Celular , Femenino , Obstrucción Ureteral/patología , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/genética
7.
J Biochem Mol Toxicol ; 38(9): e23818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180371

RESUMEN

Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-ß1 (TGF-ß1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. GREM1 was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of GREM1 mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of GREM1 and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-ß1; when miR-542-5p was overexpressed or GREM1 mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.


Asunto(s)
Fibrosis , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis/genética , Animales , Ratones , Humanos , Masculino , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Riñón/patología , Riñón/metabolismo , Progresión de la Enfermedad , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo
9.
Theriogenology ; 227: 151-156, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089078

RESUMEN

Prostaglandins have many roles in the equine reproductive tract, including but not limited to luteolysis, luteal support, ovulation, transport through the uterine tube, uterine contraction, embryonic mobility, inflammation, and fibrosis. Altered secretion of inflammatory proteins are likely to disrupt the balance of endometrial function and could impair fertility. Our overall goal was to measure the expression of several prostaglandin- and inflammation-related genes in mares with different degrees of endometrial histological changes. Our hypothesis was that mares with neutrophilic and lymphocytic plasmocytic inflammation, fibrosis, or different biopsy grades would have altered concentrations of prostaglandin E2 (PGE2) and F2α (PGF2α), as well as altered expression of inflammation- and prostaglandin-related genes, compared to mares with minimal to no histological changes on biopsy evaluation. Forty-five endometrial biopsies from estrous mares were assessed by a reproductive pathologist for the degree of neutrophilic inflammation, lymphocytic and plasmocytic inflammation, and fibrosis, and a biopsy grade was assigned based on the Kenney-Doig system. A low-volume uterine lavage was collected from a subset of twenty-six mares prior to biopsy collection and was used to measure PGE2 and PGF2α concentrations via ELISA. Total RNA was extracted from biopsies and mRNA expression was evaluated for twenty-five genes of interest. A restricted maximum likelihood linear model was used to compare differences of mRNA expression, with a statistical significance set at P < 0.05. There was no difference in the abundance of PGE2 or PGF2α between any of the variables tested. Mares with endometrial biopsy grade I had lower expression of NF-kB, PTGS1 and HPGD compared to grade IIA or IIB (P < 0.05). Mares with neutrophilic inflammation had decreased expression of NF-kB, PTGS1, PTGER4, CBR1, mPGES2 and PTGIS compared to mares without inflammation. Mares with mild or minimal endometrial fibrosis had increased expression of mPGES2 and PTGIS, compared to mares with moderate endometrial fibrosis. In conclusion, several genes were identified to be differentially expressed in mares with histological changes compared to mares with no to minimal histological changes. The presence of inflammation and fibrosis may alter the concentration of prostaglandins in endometrial tissue, which could impair many of the uterine reproductive and immune functions during estrus, affecting early embryo survival.


Asunto(s)
Endometrio , Fibrosis , Inflamación , Animales , Femenino , Caballos , Endometrio/metabolismo , Endometrio/patología , Fibrosis/veterinaria , Fibrosis/genética , Biopsia/veterinaria , Inflamación/veterinaria , Inflamación/genética , Inflamación/metabolismo , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/metabolismo , Enfermedades de los Caballos/patología , Regulación de la Expresión Génica , Prostaglandinas/metabolismo , Prostaglandinas/genética , Endometritis/veterinaria , Endometritis/patología , Endometritis/genética , Endometritis/metabolismo
10.
Orphanet J Rare Dis ; 19(1): 300, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148141

RESUMEN

OBJECTIVE: This study aimed to describe the clinical and genetic characteristics of Chinese patients with congenital fibrosis of the extraocular muscles (CFEOM), and to evaluate the phenotype-genotype correlations in these patients. METHODS: This was a retrospective study. Patients with CFEOM underwent detailed ophthalmic examinations and magnetic resonance imaging (MRI). Panel-based next-generation sequencing was performed to identify pathogenic variants of disease-causing genes. RESULTS: Sixty-two patients with CFEOM were recruited into this study. Thirty-nine patients were diagnosed with CFEOM1 and 23 with CFEOM3. Forty-nine of the 62 patients with CFEOM carried either KIF21A (41/49) or TUBB3 variants (8/49). Six known missense variants in the KIF21A and TUBB3 genes, and a novel variant (c.3906T > A, p.D1302E) in the KIF21A gene were detected. Most patients with CFEOM1 carrying the KIF21A mutation displayed isolated CFEOM, whereas patients with CFEOM3 carrying the TUBB3 mutation had a wide range of clinical manifestations, either CFEOM alone or syndromes. Nystagmus was also present in 12 patients with CFEOM. Furthermore, the MRI findings varied, ranging from attenuation of the extraocular muscles to dysgenesis of the cranial nerves and brain structure. CONCLUSIONS: The novel variants identified in this study will further expand the spectrum of pathogenic variants in CFEOM-related genes. However, no phenotype-genotype correlations were established because of the diversity of the clinical characteristics of these patients.


Asunto(s)
Fibrosis , Cinesinas , Humanos , Masculino , Femenino , Fibrosis/genética , Fibrosis/patología , Niño , Cinesinas/genética , Estudios Retrospectivos , Adolescente , Preescolar , Adulto , Tubulina (Proteína)/genética , Adulto Joven , Imagen por Resonancia Magnética , Músculos Oculomotores/patología , Músculos Oculomotores/diagnóstico por imagen , Pueblo Asiatico/genética , Lactante , Mutación/genética , Pueblos del Este de Asia , Trastornos Congénitos de Denervación Craneal , Oftalmoplejía
11.
Biol Direct ; 19(1): 52, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956667

RESUMEN

BACKGROUND: Adiposity profoundly impacts reproductive health in both humans and animals. However, the precise subpopulations contributing to infertility under obese conditions remain elusive. RESULTS: In this study, we established an obese mouse model through an eighteen-week high-fat diet regimen in adult female mice. Employing single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive single-cell atlas of ovarian tissues from these mice to scrutinize the impact of obesity on the ovarian microenvironment. ScRNA-seq revealed notable alterations in the microenvironment of ovarian tissues in obese mice. Granulosa cells, stromal cells, T cells, and macrophages exhibited functional imbalances compared to the control group. We observed heightened interaction strength in the SPP1-CD44 pairing within lgfbp7+ granulosa cell subtypes and Il1bhigh monocyte subtypes in the ovarian tissues of obese mice. Moreover, the interaction strength between Il1bhigh monocyte subtypes and Pdgfrb+ stromal cell subtypes in the form of TNF - TNFrsf1α interaction was also enhanced subsequently to obesity, potentially contributing to ovarian fibrosis pathogenesis. CONCLUSIONS: We propose a model wherein granulosa cells secrete SPP1 to activate monocytes, subsequently triggering TNF-α secretion by monocytes, thereby activating stromal cells and ultimately leading to the development of ovarian fibrosis. Intervening in this process may represent a promising avenue for improving clinical outcomes in fertility treatments for obese women.


Asunto(s)
Fibrosis , Ratones Obesos , Obesidad , Análisis de la Célula Individual , Animales , Femenino , Ratones , Fibrosis/genética , Obesidad/genética , Obesidad/metabolismo , Perfilación de la Expresión Génica , Ovario/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Células de la Granulosa/metabolismo
12.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987851

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Asunto(s)
Senescencia Celular , Células Epiteliales , Exosomas , Túbulos Renales , Macrófagos , MicroARNs , Telómero , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular/genética , Exosomas/metabolismo , Exosomas/genética , Animales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Macrófagos/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Ratones , Telómero/genética , Telómero/metabolismo , Humanos , Ratones Endogámicos C57BL , Masculino , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Fibrosis/genética , Angiotensina II
13.
Biochem Biophys Res Commun ; 727: 150336, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959731

RESUMEN

Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.


Asunto(s)
Vesículas Extracelulares , Fibrosis , MicroARNs , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis/genética , Animales , Miocardio/patología , Miocardio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Biomarcadores/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
14.
PLoS One ; 19(7): e0307227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990974

RESUMEN

Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.


Asunto(s)
Fibroblastos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Análisis de Secuencia de ARN , Femenino , Masculino , Glaucoma/genética , Glaucoma/patología , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/patología , Anciano , Persona de Mediana Edad , Cirugía Filtrante/efectos adversos , Fibrosis/genética , Células Cultivadas , Perfilación de la Expresión Génica
15.
Front Immunol ; 15: 1400819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863696

RESUMEN

Background: Integrin-dependent cell adhesion and migration play important roles in systemic sclerosis (SSc). The roles of integrin activating molecules including talins and kindlins, however, are unclear in SSc. Objectives: We aimed to explore the function of integrin activating molecules in SSc. Methods: Transcriptome analysis of skin datasets of SSc patients was performed to explore the function of integrin-activating molecules including talin1, talin2, kindlin1, kindlin2 and kindlin3 in SSc. Expression of talin1 in skin tissue was assessed by multiplex immunohistochemistry staining. Levels of talin1 in serum were determined by ELISA. The effects of talin1 inhibition were analyzed in human dermal fibroblasts by real-time PCR, western blot and flow cytometry. Results: We identified that talin1 appeared to be the primary integrin activating molecule involved in skin fibrosis of SSc. Talin1 was significantly upregulated and positively correlates with the modified Rodnan skin thickness score (mRSS) and the expression of pro-fibrotic biomarkers in the skin lesions of SSc patients. Further analyses revealed that talin1 is predominantly expressed in the dermal fibroblasts of SSc skin and promotes fibroblast activation and collagen production. Additionally, talin1 primarily exerts its effects through integrin ß1 and ß5 in SSc. Conclusions: Overexpressed talin1 is participated in skin fibrosis of SSc, and talin1 appears to be a potential new therapeutic target for SSc.


Asunto(s)
Fibrosis , Esclerodermia Sistémica , Piel , Talina , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Cultivadas , Fibroblastos/metabolismo , Fibrosis/etiología , Fibrosis/genética , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/patología , Piel/metabolismo , Piel/patología , Talina/metabolismo , Talina/genética
17.
Zhen Ci Yan Jiu ; 49(6): 566-576, 2024 Jun 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38897800

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) on the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition (EMT)-related proteins in rats with intrauterine adhesions (IUA), so as to explore the possible mechanisms of EA in repairing endometrial damage in IUA. METHODS: Female SD rats were randomly divided into blank, model, EA, and ICG-001 groups, with 10 rats in each group. The IUA model was established by using mechanical scraping combined with lipopolysaccharide infection for double injury. In the EA group, "Guanyuan" (CV4) was needled and EA (2 Hz/15 Hz, 1-2 mA) was applied to "Zusanli" (ST36) and "Sanyinjiao"(SP6) on both sides. In the ICG-001 group, ICG-001 (5 mg/kg), the inhibitor of ß-catenin was intraperitoneally injected. After intervention, samples were taken from 5 rats in each group, and uterine endometrium morphology, endometrial thickness, and gland counts were observed using HE staining. Masson staining was used to assess the degree of fibrosis in the endometrial tissue. Immunohistochemistry was used to detect the positive expression of transforming growth factor ß1 (TGF-ß1), α-smooth muscle actin (α-SMA), fibronectin (FN), connective tissue growth factor (CTGF), type I collagen (Col- Ⅰ), glycogen synthase kinase-3ß (GSK-3ß), ß-catenin, E-cadherin, N-cadherin, and Vimentin in the endometrial tissue. Western blot was used to detect the relative expression of GSK-3ß, ß-catenin, E-cadherin, N-cadherin, and Vimentin proteins in the endometrial tissue. Another 5 rats from each group were placed in cages with male rats after intervention to record the number of embryo implantations. RESULTS: Necrosis and loss of endometrial tissue in the model group observed after HE staining were alleviated in the EA group, better than those in the ICG-001 group. Compared with the blank group, the numbers of glands and endometrial thickness in the uterine endometrial tissue, relative expression and positive expression of E-cadherin and GSK-3ß proteins in the uterine endometrial tissue, and embryo implantation numbers were reduced(P<0.000 1, P<0.001, P<0.01) in the model group, while fibrosis area ratio in the uterine endometrial tissue, TGF- ß 1, α -SMA, FN, CTGF, Col- Ⅰ positive expressions, N-cadherin, Vimentin, and ß-catenin proteins expression and positive expression were increased(P<0.000 1, P<0.001, P<0.01). Compared with the model group, the number of glands and endometrial thickness, E-cadherin and GSK-3ß proteins expression and positive expression, and embryo implantation numbers were increased (P<0.001, P<0.05, P<0.01) in the EA and ICG-001 groups, while the fibrosis area ratio in the uterine endometrial tissue, TGF-ß1, α-SMA, FN, CTGF, Col- Ⅰ positive expression, and N-cadherin, Vimentin, and ß-catenin proteins expression and positive expression were decreased(P<0.001, P<0.01, P<0.05). Compared with the EA group, the differences of the above-mentioned indicators in the ICG-001 group were not statistically significant. CONCLUSIONS: EA may reverse the EMT process and reduce the degree of fibrosis in endometrial tissue by inhibiting the Wnt/ß-catenin signaling pathway, thereby promoting the repair of endometrial damage in IUA.


Asunto(s)
Electroacupuntura , Endometrio , Transición Epitelial-Mesenquimal , Fibrosis , Ratas Sprague-Dawley , Vía de Señalización Wnt , beta Catenina , Animales , Femenino , Ratas , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Endometrio/metabolismo , Fibrosis/terapia , Fibrosis/genética , Adherencias Tisulares/terapia , Adherencias Tisulares/metabolismo , Adherencias Tisulares/genética , Enfermedades Uterinas/terapia , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/genética , Cadherinas/metabolismo , Cadherinas/genética , Puntos de Acupuntura , Útero/metabolismo
18.
Mol Biomed ; 5(1): 24, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937317

RESUMEN

Chronic kidney disease (CKD) poses a significant global health dilemma, emerging from complex causes. Although our prior research has indicated that a deficiency in Reticulon-3 (RTN3) accelerates renal disease progression, a thorough examination of RTN3 on kidney function and pathology remains underexplored. To address this critical need, we generated Rtn3-null mice to study the consequences of RTN3 protein deficiency on CKD. Single-cell transcriptomic analyses were performed on 47,885 cells from the renal cortex of both healthy and Rtn3-null mice, enabling us to compare spatial architectures and expression profiles across 14 distinct cell types. Our analysis revealed that RTN3 deficiency leads to significant alterations in the spatial organization and gene expression profiles of renal cells, reflecting CKD pathology. Specifically, RTN3 deficiency was associated with Lars2 overexpression, which in turn caused mitochondrial dysfunction and increased reactive oxygen species levels. This shift induced a transition in renal epithelial cells from a functional state to a fibrogenic state, thus promoting renal fibrosis. Additionally, RTN3 deficiency was found to drive the endothelial-to-mesenchymal transition process and disrupt cell-cell communication, further exacerbating renal fibrosis. Immunohistochemistry and Western-Blot techniques were used to validate these observations, reinforcing the critical role of RTN3 in CKD pathogenesis. The deficiency of RTN3 protein in CKD leads to profound changes in cellular architecture and molecular profiles. Our work seeks to elevate the understanding of RTN3's role in CKD's narrative and position it as a promising therapeutic contender.


Asunto(s)
Progresión de la Enfermedad , Fibrosis , Perfilación de la Expresión Génica , Insuficiencia Renal Crónica , Análisis de la Célula Individual , Animales , Ratones , Fibrosis/patología , Fibrosis/metabolismo , Fibrosis/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Riñón/patología , Riñón/metabolismo , Transcriptoma , Especies Reactivas de Oxígeno/metabolismo , Transición Epitelial-Mesenquimal/genética , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167206, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718848

RESUMEN

The long noncoding RNA growth arrest-specific 5 (lncRNA Gas5) is implicated in various kidney diseases. In this study, we investigated the lncRNA Gas5 expression profile and its critical role as a potential biomarker in the progression of chronic kidney disease. Subsequently, we assessed the effect of lncRNA Gas5 deletion on renal fibrosis induced by unilateral ureteral obstruction (UUO). The results indicated that loss of lncRNA Gas5 exacerbates UUO-induced renal injury and extracellular matrix deposition. Notably, the deletion of lncRNA Gas5 had a similar effect on control mice. The fibrogenic phenotype observed in mice lacking lncRNA Gas5 correlates with peroxisome proliferator-activated receptor (PPAR) signaling pathway activation and aberrant cytokine and chemokine reprogramming. Single-cell RNA sequencing analysis revealed key transcriptomic features of fibroblasts after Gas5 deletion, revealing heterogeneous cellular states suggestive of a propensity for renal fibrosis. Our findings indicate that lncRNA Gas5 regulates the differentiation and activation of immune cells and the transcription of key genes in the PPAR signaling pathway. These data offer novel insights into the involvement of lncRNA Gas5 in renal fibrosis, potentially paving the way for innovative diagnostic and therapeutic targets.


Asunto(s)
Fibrosis , ARN Largo no Codificante , Análisis de la Célula Individual , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Fibrosis/genética , Ratones , Perfilación de la Expresión Génica , Masculino , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Riñón/patología , Riñón/metabolismo , Transcriptoma , Transducción de Señal/genética , Ratones Endogámicos C57BL , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Ratones Noqueados , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo
20.
Signal Transduct Target Ther ; 9(1): 130, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816371

RESUMEN

The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.


Asunto(s)
Enfermedades Cardiovasculares , Macrófagos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Fibrosis/genética , Inflamación/genética , Inflamación/patología , Inflamación/inmunología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA