Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.019
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125679

RESUMEN

Dent disease-1 (DD-1) is a rare X-linked tubular disorder characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and nephrocalcinosis. This disease is caused by inactivating mutations in the CLCN5 gene which encodes the voltage-gated ClC-5 chloride/proton antiporter. Currently, the treatment of DD-1 is only supportive and focused on delaying the progression of the disease. Here, we generated and characterized a Clcn5 knock-in mouse model that carries a pathogenic CLCN5 variant, c. 1566_1568delTGT; p.Val523del, which has been previously detected in several DD-1 unrelated patients, and presents the main clinical manifestations of DD-1 such as high levels of urinary b2-microglobulin, phosphate and calcium. Mutation p.Val523del causes partial ClC-5 retention in the endoplasmic reticulum. Additionally, we assessed the ability of sodium 4-phenylbutyrate, a small chemical chaperone, to ameliorate DD-1 symptoms in this mouse model. The proposed model would be of significant value in the investigation of the fundamental pathological processes underlying DD-1 and in the development of effective therapeutic strategies for this rare condition.


Asunto(s)
Canales de Cloruro , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Fenilbutiratos , Proteinuria , Animales , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ratones , Proteinuria/tratamiento farmacológico , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Mutación , Masculino , Humanos , Enfermedad de Dent/tratamiento farmacológico , Enfermedad de Dent/genética , Nefrolitiasis
2.
J Biochem ; 176(3): 179-186, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38955196

RESUMEN

Aberrant proteostasis is thought to be involved in the pathogenesis of neurodegenerative diseases. Some proteostasis abnormalities are ameliorated by chaperones. Chaperones are divided into three groups: molecular, pharmacological and chemical. Chemical chaperones intended to alleviate stress in organelles, such as the endoplasmic reticulum (ER), are now being administered clinically. Of the chemical chaperones, 4-phenylbutyrate (4-PBA) has been used as a research reagent, and its mechanism of action includes chaperone effects and the inhibition of histone deacetylase. Moreover, it also binds to the B-site of SEC24 and regulates COPII-mediated transport from the ER. Although its therapeutic effect may not be strong, elucidating the mechanism of action of 4-PBA may contribute to the identification of novel therapeutic targets for neurodegenerative diseases.


Asunto(s)
Chaperonas Moleculares , Enfermedades Neurodegenerativas , Fenilbutiratos , Proteostasis , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Proteostasis/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos
3.
FASEB J ; 38(14): e23818, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38989572

RESUMEN

The association between cardiac fibrosis and galectin-3 was evaluated in patients with acute myocardial infarction (MI). The role of galectin-3 and its association with endoplasmic reticulum (ER) stress activation in the progression of cardiovascular fibrosis was also evaluated in obese-infarcted rats. The inhibitor of galectin-3 activity, modified citrus pectin (MCP; 100 mg/kg/day), and the inhibitor of the ER stress activation, 4-phenylbutyric acid (4-PBA; 500 mg/kg/day), were administered for 4 weeks after MI in obese rats. Overweight-obese patients who suffered a first MI showed higher circulating galectin-3 levels, higher extracellular volume, and LV infarcted size, as well as lower E/e'ratio and LVEF compared with normal-weight patients. A correlation was observed between galectin-3 levels and extracellular volume. Obese-infarcted animals presented cardiac hypertrophy and reduction in LVEF, and E/A ratio as compared with control animals. They also showed an increase in galectin-3 gene expression, as well as cardiac fibrosis and reduced autophagic flux. These alterations were associated with ER stress activation characterized by enhanced cardiac levels of binding immunoglobulin protein, which were correlated with those of galectin-3. Both MCP and 4-PBA not only reduced cardiac fibrosis, oxidative stress, galectin-3 levels, and ER stress activation, but also prevented cardiac functional alterations and ameliorated autophagic flux. These results show the relevant role of galectin-3 in the development of diffuse fibrosis associated with MI in the context of obesity in both the animal model and patients. Galectin-3 in tandem with ER stress activation could modulate different downstream mechanisms, including inflammation, oxidative stress, and autophagy.


Asunto(s)
Estrés del Retículo Endoplásmico , Galectina 3 , Obesidad , Animales , Galectina 3/metabolismo , Obesidad/metabolismo , Obesidad/complicaciones , Masculino , Ratas , Humanos , Pectinas/farmacología , Persona de Mediana Edad , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/complicaciones , Femenino , Fibrosis , Ratas Wistar , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Fenilbutiratos/farmacología , Autofagia , Miocardio/metabolismo , Miocardio/patología , Galectinas/metabolismo , Anciano , Proteínas Sanguíneas/metabolismo
4.
Cell Biol Toxicol ; 40(1): 60, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073694

RESUMEN

Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.


Asunto(s)
Acetilcisteína , Apoptosis , Diterpenos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Compuestos Epoxi , Lipopolisacáridos , Fenantrenos , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Especies Reactivas de Oxígeno , Fenantrenos/farmacología , Fenantrenos/toxicidad , Diterpenos/farmacología , Diterpenos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lipopolisacáridos/toxicidad , Compuestos Epoxi/toxicidad , Compuestos Epoxi/farmacología , Animales , Especies Reactivas de Oxígeno/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Acetilcisteína/farmacología , Factor de Transcripción Activador 4/metabolismo , Fenilbutiratos/farmacología , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Caspasa 3/metabolismo , Masculino , Leupeptinas
5.
Toxins (Basel) ; 16(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057956

RESUMEN

The characteristic accumulation of circulating uremic toxins, such as indoxyl sulfate (IS), in chronic kidney disease (CKD) further exacerbates the disease progression. The gut microbiota, particularly gut bacterial-specific enzymes, represents a selective and attractive target for suppressing uremic toxin production and slowing the progression of renal failure. This study investigates the role of 4-phenylbutyrate (PB) and structurally related compounds, which are speculated to possess renoprotective properties in suppressing IS production and slowing or reversing renal failure in CKD. In vitro enzyme kinetic studies showed that 7-phenylheptanoic acid (PH), a PB homologue, suppresses the tryptophan indole lyase (TIL)-catalyzed decomposition of tryptophan to indole, the precursor of IS. A hydroxypropyl ß-cyclodextrin (HPßCD) inclusion complex formulation of PH was prepared to enhance its biopharmaceutical properties and to facilitate in vivo evaluation. Prophylactic oral administration of the PH-HPßCD complex formulation reduced circulating IS and attenuated the deterioration of renal function and tubulointerstitial fibrosis in adenine-induced CKD mice. Additionally, treatment of moderately advanced adenine-induced CKD mice with the formulation ameliorated renal failure, although tissue fibrosis was not improved. These findings suggest that PH-HPßCD can slow the progression of renal failure and may have implications for preventing or managing CKD, particularly in early-stage disease.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Adenina , Progresión de la Enfermedad , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/inducido químicamente , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Masculino , Ratones , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Indicán , Ratones Endogámicos C57BL , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Tóxinas Urémicas
6.
Clin Drug Investig ; 44(7): 495-512, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38909349

RESUMEN

The absence of a definitive cure for amyotrophic lateral sclerosis (ALS) emphasizes the crucial need to explore new and improved treatment approaches for this fatal, progressive, and disabling neurodegenerative disorder. As at the end of 2023, five treatments - riluzole, edaravone, dextromethorphan hydrobromide + quinidine sulfate (DHQ), tofersen, and sodium phenylbutyrate-tauroursodeoxycholic acid (PB-TUDCA) - were FDA approved for the treatment of patients with ALS. Among them PB-TUDCA has been shown to impact DNA processing impairments, mitochondria dysfunction, endoplasmic reticulum stress, oxidative stress, and pathologic folded protein agglomeration defects, which have been associated with ALS pathophysiology. The Phase 2 CENTAUR trial demonstrated significant impact of PB-TUDCA on the ALS Functional Rating Scale-Revised (ALSFRS-R) risk of death, hospitalization, and the need for tracheostomy or permanent assisted ventilation in patients with ALS based on post hoc analyses. More recently, contrasting with the CENTAUR trial results, results from the Phase 3 PHOENIX trial (NCT05021536) showed no change in ALSFRS-R total score at 48 weeks. Consequently, the sponsor company initiated the process with the US FDA and Health Canada to voluntarily withdraw the marketing authorizations for PB-TUDCA. In the present article, we review ALS pathophysiology, with a focus on PB-TUDCA's proposed mechanisms of action and recent clinical trial results and discuss the implications of conflicting trial data for ALS and other neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Fenilbutiratos , Ácido Tauroquenodesoxicólico , Humanos , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/fisiopatología , Fenilbutiratos/uso terapéutico , Fenilbutiratos/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
7.
Int Immunopharmacol ; 138: 112514, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943974

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is considered to be associated with aging. Both ER stress and the unfolded protein response (UPR) have been associated with pulmonary fibrosis via key mechanisms including AEC apoptosis, EMT, altered myofibroblast differentiation, and M2 macrophage polarization. A relationship between ER stress and aging has also been demonstrated in vitro, with increased p16 and p21 levels seen in lung epithelial cells of older IPF patients. The mechanism underlying ER stress regulation of IPF fibroblasts is still unclear. In this study, we aimed to delineate ER stress regulation in IPF-derived fibroblasts. Here, we found that ER stress markers (p-eIF2α, p-IREα, ATF6) and fibrosis markers (α-SMA and Collagen-I) were significantly increased in lung tissues of IPF patients and bleomycin-induced mouse models. Notably, the expression of PGC-1α was decreased in fibroblasts. In vivo experiments were designed using an AAV-6 vector mediated conditional PGC-1α knockout driven by a specific α-SMA promoter. Ablation of PGC-1α expression in fibroblasts promoted ER stress and supported the development of pulmonary fibrosis in a bleomycin-induced mouse model. In another experimental group, mice with conditional knockout of PGC-1α in fibroblasts and injected intraperitoneally with 4-PBA (an endoplasmic reticulum stress inhibitor) were protected from lung fibrosis. We further constructed an AAV-6 vector mediated PGC-1α overexpression model driven by a specific Collagen-I promoter. Overexpression of PGC-1α in fibroblasts suppressed ER stress and attenuated development of pulmonary fibrosis in bleomycin-induced mouse models. Taken together, this study identified PGC-1α as a promising target for developing novel therapeutic options for the treatment of lung fibrosis.


Asunto(s)
Bleomicina , Estrés del Retículo Endoplásmico , Fibroblastos , Fibrosis Pulmonar Idiopática , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenilbutiratos , Animales , Femenino , Humanos , Masculino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenilbutiratos/farmacología
8.
Geroscience ; 46(5): 4855-4868, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38755466

RESUMEN

Aging is a primary risk factor for cognitive impairment and exacerbates multiple biological processes in the brain, including but not limited to nutrient sensing, insulin signaling, and histone deacetylation activity. Therefore, a pharmaceutical intervention of aging that targets distinct but overlapping pathways provides a basis for testing combinations of drugs as a cocktail. Our previous study showed that middle-aged mice treated with a cocktail of rapamycin, acarbose, and phenylbutyrate for 3 months had increased resilience to age-related cognitive decline. This finding provided the rationale to investigate the transcriptomic and molecular changes within the brains of mice that received this cocktail treatment or control treatment. Transcriptomic profiles were generated through ribonucleic acid (RNA) sequencing, and pathway analysis was performed by gene set enrichment analysis to evaluate the overall RNA message effect of the drug cocktail. Molecular endpoints representing aging pathways were measured using immunohistochemistry to further validate the attenuation of brain aging in the hippocampus of mice that received the cocktail treatment, each individual drug or control. Results showed that biological processes that enhance aging were suppressed, with an increased trend of autophagy in the brains of mice given the drug cocktail. The molecular endpoint assessments indicated that treatment with the drug cocktail was overall more effective than any of the individual drugs for relieving cognitive impairment by targeting multiple aging pathways.


Asunto(s)
Acarbosa , Disfunción Cognitiva , Fenilbutiratos , Sirolimus , Animales , Acarbosa/farmacología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/tratamiento farmacológico , Sirolimus/farmacología , Fenilbutiratos/farmacología , Masculino , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Envejecimiento/efectos de los fármacos , Quimioterapia Combinada , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Transcriptoma/efectos de los fármacos
9.
Synapse ; 78(4): e22301, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38819491

RESUMEN

Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.


Asunto(s)
Enfermedades del Sistema Nervioso , Fenilbutiratos , Humanos , Fenilbutiratos/uso terapéutico , Fenilbutiratos/farmacología , Animales , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo
10.
Mol Genet Metab ; 142(3): 108495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772223

RESUMEN

PURPOSE: To identify therapies for combined D, L-2-hydroxyglutaric aciduria (C-2HGA), a rare genetic disorder caused by recessive variants in the SLC25A1 gene. METHODS: Patients C-2HGA were identified and diagnosed by whole exome sequencing and biochemical genetic testing. Patient derived fibroblasts were then treated with phenylbutyrate and the functional effects assessed by metabolomics and RNA-sequencing. RESULTS: In this study, we demonstrated that C-2HGA patient derived fibroblasts exhibited impaired cellular bioenergetics. Moreover, Fibroblasts form one patient exhibited worsened cellular bioenergetics when supplemented with citrate. We hypothesized that treating patient cells with phenylbutyrate (PB), an FDA approved pharmaceutical drug that conjugates glutamine for renal excretion, would reduce mitochondrial 2-ketoglutarate, thereby leading to improved cellular bioenergetics. Metabolomic and RNA-seq analyses of PB-treated fibroblasts demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of PB, an increased level of phenylacetylglutamine in patient cells was consistent with the drug acting as 2-ketoglutarate sink. CONCLUSION: Our pre-clinical studies suggest that citrate supplementation has the possibility exacerbating energy metabolism in this condition. However, improvement in cellular bioenergetics suggests phenylbutyrate might have interventional utility for this rare disease.


Asunto(s)
Fibroblastos , Glutaratos , Fenilbutiratos , Humanos , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glutaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/genética , Metabolómica , Secuenciación del Exoma , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/genética , Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Multiómica , Proteínas Mitocondriales , Transportadores de Anión Orgánico
11.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644727

RESUMEN

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Asunto(s)
Factor de Transcripción Activador 4 , Apoptosis , Autofagia , Hipoxia de la Célula , Fenilbutiratos , Preeclampsia , Factor de Transcripción CHOP , Trofoblastos , eIF-2 Quinasa , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Trofoblastos/patología , Femenino , Humanos , Preeclampsia/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/patología , Autofagia/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Apoptosis/efectos de los fármacos , Embarazo , Fenilbutiratos/farmacología , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular
12.
Brain Res ; 1835: 148930, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604556

RESUMEN

The anxiety caused by morphine protracted abstinence is considered to be an important factor contributes to drug-seeking and relapse. Endoplasmic reticulum (ER) stress plays important roles in many kinds of mental disorders including drug addiction and anxiety, but it is unclear whether ER stress is involved in anxiety-like behaviors induced by morphine withdrawal. In this study, by using behavioral test, western blot, immunofluorescence, electron transmission microscope, we found that: (1) Inhibition of endoplasmic reticulum stress by 4-Phenylbutyric acid (4-PBA) could attenuate anxiety-like behaviors induced by morphine withdrawal. (2) The endoplasmic reticulum stress-related proteins in the lateral habenula (LHb) but not in the nucleus accumbens (NAc), ventral pallidum (VP), basolateral amygdala (BLA) and CA1 of hippocampus was upregulated by morphine withdrawal, upregulation of endoplasmic reticulum stress-related proteins in the lateral habenula induced by morphine withdrawal was inhibited by 4-PBA. (3) Endoplasmic reticulum stress-related protein CHOP and eIF2α were expressed in neurons but not in microglia in the LHb. (4) Morphine withdrawal induced neuronal morphological change in the LHb, which was attenuated by 4-PBA.


Asunto(s)
Ansiedad , Estrés del Retículo Endoplásmico , Morfina , Síndrome de Abstinencia a Sustancias , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Masculino , Morfina/farmacología , Ansiedad/metabolismo , Ansiedad/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo , Ratones , Fenilbutiratos/farmacología , Dependencia de Morfina/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL
13.
Metabolomics ; 20(3): 46, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641695

RESUMEN

INTRODUCTION: Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES: We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS: The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS: The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS: PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.


Asunto(s)
Cardiopatías , Fenilbutiratos , Sepsis , Choque Séptico , Aminoácidos/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Cardiopatías/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Metabolómica , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Choque Séptico/complicaciones , Choque Séptico/tratamiento farmacológico , Animales , Ratones , Modelos Animales de Enfermedad , Catecol O-Metiltransferasa/efectos de los fármacos , Catecol O-Metiltransferasa/metabolismo , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo
14.
J Clin Endocrinol Metab ; 109(10): 2589-2601, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38469646

RESUMEN

CONTEXT: Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease that leads to severe global developmental delay. MCT8 facilitates thyroid hormone (TH) transport across the cell membrane, and the serum TH profile is characterized by high T3 and low T4 levels. Recent studies have shown that the chemical chaperone sodium phenylbutyrate (NaPB) restored mutant MCT8 function and increased TH content in patient-derived induced pluripotent stem cells, making it a potential treatment for MCT8 deficiency. OBJECTIVE: We aimed to assess the efficacy and safety of glycerol phenylbutyrate (GPB) in MCT8 deficiency. METHODS: We treated 2 monozygotic twins aged 14.5 years with MCT8 deficiency due to P321L mutation with escalating doses of GPB over 13 months. We recorded TH, vital signs, anthropometric measurements, and neurocognitive functions. Resting metabolic rate (RMR) was measured by indirect calorimetry. Serum metabolites of GPB were monitored as a safety measure. In vitro effects of NaPB were evaluated in MDCK1 cells stably expressing the MCT8P321L mutation. The effects of GPB were compared to the effects of DITPA and TRIAC, thyromimetic medications that the patients had received in the past. RESULTS: NaPB restored mutant MCT8 expression in MDCK1 cells and increased T3 transport into cells carrying the P321L mutation. GPB treatment reduced high T3 and increased low T4 levels. The patients showed a significant weight gain simultaneously with a reduction in RMR. Only minor neurocognitive improvement was observed, in hyperreflexia score and in cognitive functions. Serum metabolites did not exceed the toxic range, but elevated liver transaminases were observed. CONCLUSION: In the first report of GPB treatment in MCT8 deficiency we found an improvement in TH profile and body mass index, with minor neurodevelopmental changes.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Fenilbutiratos , Simportadores , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Fenilbutiratos/uso terapéutico , Fenilbutiratos/farmacología , Adolescente , Masculino , Simportadores/genética , Hipotonía Muscular/tratamiento farmacológico , Hipotonía Muscular/genética , Animales , Femenino , Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Resultado del Tratamiento , Mutación , Atrofia Muscular
15.
Inflammation ; 47(4): 1067-1082, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38308704

RESUMEN

Acute lung injury (ALI) is a life-threatening clinical disorder with high mortality rate. Ferroptosis is a new type of programmed cell death with lipid peroxidation and iron ion overloading as the main characteristics. Endoplasmic reticulum (ER) stress and ferroptosis play pivotal roles in the pathogenesis of ALI. The study aimed to investigate the underlying relationship between ER stress and ferroptosis in ALI. The ER stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated LPS-induced inflammation, and decreased IL-1ß, IL-6, and TNF-α levels in BALF and lungs. The increased MDA and decreased GSH induced by LPS were partially reversed by 4-PBA, which also inhibited the expressions of ferroptosis-related protein ACSL4, COX-2, and FTH1. TEM further confirmed the ferroptosis within airway epithelia cells was ameliorated by 4-PBA. Moreover, 4-PBA reduced the production of ROS and lipid ROS in LPS-exposed BEAS-2B cells in a concentration-dependent way. Meanwhile, 4-PBA mitigated LPS-induced cell apoptosis in vivo and in vitro. Mechanistically, the MAPK signaling pathway activated by LPS was downregulated by 4-PBA. Collectively, these findings suggested that 4-PBA protected against ALI by inhibiting inflammation and ferroptosis through downregulating ER stress, thus providing a potential intervention for ALI and revealing the possible interaction between ER stress and ferroptosis in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Estrés del Retículo Endoplásmico , Ferroptosis , Inflamación , Lipopolisacáridos , Fenilbutiratos , Ferroptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Ratones , Humanos , Línea Celular , Masculino , Ratones Endogámicos C57BL
16.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069413

RESUMEN

Artificial insemination (AI) with liquid-stored semen is the most prevalent and efficient assisted reproduction technique in the modern pork industry. Pyruvate dehydrogenase complex component X (PDHX) was demonstrated to be associated with sperm metabolism and affected the boar sperm viability, motility, and fertility. Pyruvate Dehydrogenase Kinases (PDKs) are the key metabolic enzymes that regulate pyruvate dehydrogenase complex (PDHC) activity and also the conversion from glycolysis to oxidative phosphorylation. In the present study, two PDK inhibitors, Dichloroacetate (DCA) and Phenylbutyrate (4-PBA), were added to an extender and investigated to determine their regulatory roles in liquid-stored boar sperm at 17 °C. The results indicated that PDK1 and PDK3 were predominantly located at the head and flagella of the boar sperm. The addition of 2 mM DCA and 0.5 mM 4-PBA significantly enhanced the sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and ATP content. In addition, DCA and 4-PBA exerted their effects by inhibiting PDK1 and PDK3, respectively. In conclusion, DCA and 4-PBA were found to regulate the boar sperm metabolic activities via PDK1 and PDK3. These both can improve the quality parameters of liquid-stored boar sperm, which will help to improve and optimize liquid-stored boar semen after their addition in the extender.


Asunto(s)
Preservación de Semen , Semen , Porcinos , Masculino , Animales , Semen/metabolismo , Fenilbutiratos/farmacología , Preservación de Semen/métodos , Motilidad Espermática , Espermatozoides/metabolismo , Análisis de Semen , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Complejo Piruvato Deshidrogenasa/metabolismo
17.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958799

RESUMEN

Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously, we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human airway smooth muscle (hASM) cells. The ER stress pathway is activated by the accumulation of unfolded proteins in the ER. Accordingly, chemical chaperones such as 4-phenylbutyric acid (4-PBA) may reduce ER stress activation. In the present study, we hypothesized that chemical chaperone 4-PBA mitigates TNFα-induced ER stress in hASM cells. hASM cells were isolated from bronchiolar tissue obtained from five patients with no history of smoking or respiratory diseases. The hASM cells' phenotype was confirmed via the expression of alpha-smooth muscle actin and elongated morphology. hASM cells from the same patient sample were then separated into three 12 h treatment groups: (1) TNFα (20 ng/mL), (2) TNFα + 4-PBA (1 µM, 30 min pretreatment), and (3) untreated control. The expressions of total IRE1α and phosphorylated IRE1α (pIRE1αS724) were determined through Western blotting. The splicing of XBP1 mRNA was analyzed using RT-PCR. We found that TNFα induced an increase in pIRE1αS724 phosphorylation, which was mitigated by treatment with chemical chaperone 4-PBA. We also found that TNFα induced an increase in XBP1s mRNA, which was also mitigated by treatment with chemical chaperone 4-PBA. These results support our hypothesis and indicate that chemical chaperone 4-PBA treatment mitigates TNFα-induced ER stress in hASM cells.


Asunto(s)
Asma , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico , Fenilbutiratos/farmacología , Chaperonas Moleculares , Músculo Liso/metabolismo , ARN Mensajero
18.
Ann Clin Transl Neurol ; 10(12): 2297-2304, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37807839

RESUMEN

OBJECTIVE: Sodium phenylbutyrate and taurursodiol (PB and TURSO) was evaluated in amyotrophic lateral sclerosis (ALS) in the CENTAUR trial encompassing randomized placebo-controlled and open-label extension phases. On intent-to-treat (ITT) survival analysis, median overall survival (OS) was 4.8 months longer and risk of death 36% lower in those originally randomized to an initial 6-month double-blind period of PB and TURSO versus placebo. To estimate PB and TURSO treatment effect without placebo-to-active crossover, we performed a post hoc survival analysis comparing PB and TURSO-randomized participants from CENTAUR and a propensity score-matched, PB and TURSO-naïve external control cohort from the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database. METHODS: Clinical trial control participants from the PRO-ACT database who met prespecified eligibility criteria were propensity score matched 1:1 with PB and TURSO-randomized CENTAUR participants using prognostically significant covariates in ALS. RESULTS: Baseline characteristics including propensity score-matched covariates were generally well balanced between CENTAUR PB and TURSO (n = 89) and PRO-ACT external control (n = 85) groups. Estimated median (IQR) OS was 23.54 (14.56-39.32) months in the CENTAUR PB and TURSO group and 13.15 (9.83-19.20) months in the PRO-ACT external control group; hazard of death was 52% lower in the former group (hazard ratio, 0.48; 95% CI, 0.31-0.72; p = 0.00048). INTERPRETATION: This analysis suggests potentially greater survival benefit with PB and TURSO in ALS without placebo-to-active crossover than seen on ITT analysis in CENTAUR. Analyses using well-matched external controls may provide additional context for evaluating survival effects in future ALS trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Análisis de Supervivencia , Modelos de Riesgos Proporcionales
19.
Aging Cell ; 21(12): e13738, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36373957

RESUMEN

Loss of proteostasis can occur due to mutations, the formation of aggregates, or general deficiency in the correct translation and folding of proteins. These phenomena are commonly observed in pathologies, but most significantly, loss of proteostasis characterizes aging. This loss leads to the chronic activation of stress responses and has a generally deleterious impact on the organism. While finding molecules that can alleviate these symptoms is an important step toward solutions for these conditions, some molecules might be mischaracterized on the way. 4-phenylbutyric acid (4PBA) is known for its role as a chemical chaperone that helps alleviate endoplasmic reticulum (ER) stress, yet a scan of the literature reveals that no biochemical or molecular experiments have shown any protein refolding capacity. Here, we show that 4PBA is a conserved weak inhibitor of mRNA translation, both in vitro and in cellular systems, and furthermore-it does not promote protein folding nor prevents aggregation. 4PBA possibly alleviates proteostatic or ER stress by inhibiting protein synthesis, allowing the cells to cope with misfolded proteins by reducing the protein load. Better understanding of 4PBA biochemical mechanisms will improve its usage in basic science and as a drug in different pathologies, also opening new venues for the treatment of different diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Fenilbutiratos , Fenilbutiratos/farmacología , Proteostasis , Pliegue de Proteína , Respuesta de Proteína Desplegada
20.
Oncol Rep ; 48(4)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36004467

RESUMEN

Pancreatic cancer has a low response rate to chemotherapy due to the low drug transferability caused by the low blood flow around the tumor. In the present study, focusing on nitric oxide (NO) for its vasodilatory and antitumor effects, a novel NO donor, a nitrated form of phenylbutyrate (NPB) was synthesized and the antitumor effect on human pancreatic cancer cells (AsPC1 and BxPC3) and xenografts was examined. Using Annexin V, NPB was confirmed to induce cell death against AsPC1 and BxPC3 in a time­ and concentration­dependent manner. In NPB­exposed cells, DAF­FM DA (a probe to detect intracellular NO) derived fluorescence was observed. Release of nitrite and nitrate from NPB in aqueous solution was very gradual until even 72 h after dissolution. Phenylbutyrate (PB) and hydroxy PB in which the nitro group of NPB was replaced with a hydroxyl group did not have the cell death­inducing effect as observed in NPB. These results suggest that the effect of NPB was dependent on NO release form NPB. Apoptosis inhibitor, Z­VAD FMK, had no effect on the cell death­inducing effect of NPB, and NPB did not show significant activation of caspase­3/7. In addition, NPB significantly decreased cellular ATP levels, suggesting that necrosis is involved in the effect of NPB. NPB also accumulated cells specifically at the S phase of the cell cycle. A single dose of NPB (10 mg/kg) into mice with established BxPC3 xenografts significantly suppressed tumor growth for at least 7 weeks without apparent toxicity. The findings of the present study indicate that NPB has potential as a novel therapeutic agent for NO­based therapy of pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Fenilbutiratos , Animales , Apoptosis , Muerte Celular , Línea Celular Tumoral , Xenoinjertos , Humanos , Ratones , Nitratos/farmacología , Nitratos/uso terapéutico , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Neoplasias Pancreáticas/patología , Fenilbutiratos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA