Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.812
Filtrar
1.
J Ethnopharmacol ; 336: 118759, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209003

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY: The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS: A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS: Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION: CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.


Asunto(s)
Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Hipercolesterolemia , Metabolómica , Farmacología en Red , Ratas Sprague-Dawley , Salvia miltiorrhiza , Animales , Hipercolesterolemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Cromatografía Líquida de Alta Presión , Salvia miltiorrhiza/química , Ratas , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Canfanos , Panax notoginseng
2.
J Ethnopharmacol ; 336: 118715, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Ni-San (SNS), a traditional Chinese medicinal formula derived from Treatise on Febrile Diseases, is considered effective in the treatment of inflammatory bowel diseases based upon thousands of years of clinical practice. However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. AIM OF THE STUDY: This study aimed to evaluate the effect, explore the bioactive ingredients and the underlying mechanisms of SNS in ameliorating ulcerative colitis (UC) and associated liver injury in dextran sodium sulphate (DSS)-induced mouse colitis models. MATERIALS AND METHODS: The effect of SNS (1.5, 3, 6 g/kg) on 3% DSS-induced acute murine colitis was evaluated by disease activity index (DAI), colon length, inflammatory cytokines, hematoxylin-eosin (H&E) staining, tight junction proteins expression, ALT, AST, and oxidative stress indicators. HPLC-ESI-IT/TOF MS was used to analyze the chemical components of SNS and the main xenobiotics in the colon of UC mice after oral administration of SNS. Network pharmacological study was then conducted based on the main xenobiotics. Flow cytometry and immunohistochemistry techniques were used to demonstrate the inhibitory effect of SNS on Th17 cells differentiation and the amelioration of Th17/Treg cell imbalance. LC-MS/MS, Real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting techniques were performed to investigate the oxysterol-Liver X receptor (LXRs) signaling activity in colon. Targeted bile acids metabolomics was conducted to reveal the change of the two major pathways of bile acid synthesis in the liver, and the expression of key metabolic enzymes of bile acids synthesis was characterized by RT-qPCR and western blotting techniques. RESULTS: SNS (1.5, 3, 6 g/kg) decreased the DAI scores, protected intestinal mucosa barrier, suppressed the production of pro-inflammatory cytokines, improved hepatic and splenic enlargement and alleviated liver injury in a dose-dependent manner. A total of 22 components were identified in the colon of SNS (6 g/kg) treated colitis mice, and the top 10 components ranked by relative content were regarded as the potential effective chemical components of SNS, and used to conduct network pharmacology research. The efficacy of SNS was mediated by a reduction of Th17 cell differentiation, restoration of Th17/Treg cell homeostasis in the colon and spleen, and the experimental results were consistent with our hypothesis and the biological mechanism predicted by network pharmacology. Mechanistically, SNS regulated the concentration of 25-OHC and 27-OHC by up-regulated CH25H, CYP27A1 protein expression in colon, thus affected the expression and activity of LXR, ultimately impacted Th17 differentiation and Th17/Treg balance. It was also found that SNS repressed the increase of hepatic cholesterol and reversed the shift of BA synthesis to the acidic pathway in UC mice, which decreased the proportion of non-12-OH BAs in total bile acids (TBAs) and further ameliorated colitis and concomitant liver injury. CONCLUSIONS: This study set the stage for considering SNS as a multi-organ benefited anti-colitis prescription based on the significant effect of ameliorating intestinal and liver damage, and revealed that derivatives of cholesterol, namely oxysterols and bile acids, were closely involved in the mechanism of SNS anti-colitis effect.


Asunto(s)
Colesterol , Colitis Ulcerosa , Sulfato de Dextran , Medicamentos Herbarios Chinos , Animales , Medicamentos Herbarios Chinos/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Ratones , Masculino , Colesterol/sangre , Células Th17/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Farmacología en Red , Citocinas/metabolismo , Linfocitos T Reguladores/efectos de los fármacos
3.
J Ethnopharmacol ; 336: 118717, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181284

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thrombosis is a common cause of morbidity and mortality worldwide. Lagopsis supina (Stephan ex Willd.) Ikonn.-Gal. ex Knorring is an ancient Chinese herbal medicine used for treating thrombotic diseases. Nevertheless, the antithrombotic mechanisms and effective constituents of this plant have not been clarified. AIM OF THE STUDY: This work aimed to elucidate the pharmacodynamics and mechanism of L. supina against thrombosis. MATERIALS AND METHODS: Systematic network pharmacology was used to explore candidate effective constituents and hub targets of L. supina against thrombosis. Subsequently, the binding affinities of major constituents with core targets were verified by molecular docking analysis. Afterward, the therapeutic effect and mechanism were evaluated in an arteriovenous bypass thrombosis rat model. In addition, the serum metabolomics analysis was conducted using ultra-high performance liquid chromatography coupled with Q-Exactive mass spectrometry. RESULTS: A total of 124 intersected targets of L. supina against thrombosis were predicted. Among them, 24 hub targets were obtained and their mainly associated with inflammation, angiogenesis, and thrombosis approaches. Furthermore, 9 candidate effective constituents, including (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3ß-ol, aurantiamide, (22E,24R)-5α,8α-epidioxyergosta-6,9 (11),22-trien-3ß-ol, lagopsinA, lagopsin C, 15-epi-lagopsin C, lagopsin D, 15-epi-lagopsin D, and lagopsin G in L. supina and 6 potential core targets (TLR-4, TNF-α, HIF-1α, VEGF-A, VEGFR-2, and CLEC1B) were acquired. Then, these 9 constituents demonstrated strong binding affinities with the 6 targets, with their lowest binding energies were all less than -5.0 kcal/mol. The antithrombotic effect and potential mechanisms of L. supina were verified, showing a positively associated with the inhibition of inflammation (TNF-α, IL-1ß, IL-6, IL-8, and IL-10) and coagulation cascade (TT, APTT, PT, FIB, AT-III), promotion of angiogenesis (VEGF), suppression of platelet activation (TXB2, 6-keto-PGF1α, and TXB2/6-keto-PGF1α), and prevention of fibrinolysis (t-PA, u-PA, PAI-1, PAI-1/t-PA, PAI-1/u-PA, and PLG). Finally, 14 endogenous differential metabolites from serum samples of rats were intervened by L. supina based on untargeted metabolomics analysis, which were closely related to amino acid metabolism, inflammatory and angiogenic pathways. CONCLUSION: Our integrated strategy based on network pharmacology, molecular docking, metabolomics, and in vivo experiments revealed for the first time that L. supina exerts a significant antithrombotic effect through the inhibition of inflammation and coagulation cascade, promotion of angiogenesis, and suppression of platelet activation. This paper provides novel insight into the potential of L. supina as a candidate agent to treat thrombosis.


Asunto(s)
Fibrinolíticos , Metabolómica , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratas Sprague-Dawley , Trombosis , Animales , Fibrinolíticos/farmacología , Fibrinolíticos/química , Fibrinolíticos/aislamiento & purificación , Ratas , Masculino , Trombosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química
4.
J Ethnopharmacol ; 336: 118737, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182705

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pogostemonis Herba has long been used in traditional Chinese medicine to treat inflammatory disorders. Patchouli essential oil (PEO) is the primary component of Pogostemonis Herba, and it has been suggested to offer curative potential when applied to treat ulcerative colitis (UC). However, the pharmacological mechanisms of PEO for treating UC remain to be clarified. AIM OF THE STUDY: To elucidate the pharmacological mechanisms of PEO for treating UC. METHODS AND RESULTS: In the present study, transcriptomic and network pharmacology approaches were combined to clarify the mechanisms of PEO for treating UC. Our results reveal that rectal PEO administration in UC model mice significantly alleviated symptoms of UC. In addition, PEO effectively suppressed colonic inflammation and oxidative stress. Mechanistically, PEO can ameliorate UC mice by modulating gut microbiota, inhibiting inflammatory targets (OPTC, PTN, IFIT3, EGFR, and TLR4), and inhibiting the PI3K-AKT pathway. Next, the 11 potential bioactive components that play a role in PEO's anti-UC mechanism were identified, and the therapeutic efficacy of the pogostone (a bioactive component) in UC mice was partially validated. CONCLUSION: This study highlights the mechanisms through which PEO can treat UC, providing a rigorous scientific foundation for future efforts to develop and apply PEO for treating UC.


Asunto(s)
Colitis Ulcerosa , Aceites Volátiles , Animales , Colitis Ulcerosa/tratamiento farmacológico , Aceites Volátiles/farmacología , Ratones , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Pogostemon/química , Estrés Oxidativo/efectos de los fármacos , Farmacología en Red , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología
5.
J Ethnopharmacol ; 336: 118736, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186991

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY: This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS: Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS: ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1ß and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION: ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Metabolómica , Farmacología en Red , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Masculino , Ratas , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Citocinas/sangre , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos
6.
J Ethnopharmacol ; 336: 118740, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197800

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In accordance with the tenets of traditional Chinese medicine, sepsis is categorized into three distinct syndromes: heat syndrome, blood stasis syndrome, and deficiency syndrome. Xiaochaihu decoction (XCHD) has many functions, including the capacity to protect the liver, cholagogue, antipyretic, anti-inflammatory, and anti-pathogenic microorganisms. XCHD exerts the effect of clearing heat and reconciling Shaoyang. The XCHD contains many efficacious active ingredients, yet the mechanism of sepsis-induced cardiomyopathy (SIC) remains elusive. AIM OF THE STUDY: To investigate the molecular mechanisms underlying the protective effects of XCHD against SIC using an integrated approach combining network pharmacology and molecular biology techniques. MATERIALS AND METHODS: Network pharmacology methods identified the active ingredients, target proteins, and pathways affected by XCHD in the context of SIC. We conducted in vivo experiments using mice with lipopolysaccharide-induced SIC, evaluating cardiac function through echocardiography and histology. XCHD-containing serum was analyzed to determine its principal active components using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of XCHD-containing serum on SIC were further tested in vitro in LPS-treated H9c2 cardiac cells. Protein expression levels were quantified via Western blotting and enzyme-linked immunosorbent assay (ELISA). Additionally, molecular docking was performed between the active components and ZBP1, a potential target protein. Overexpression of ZBP1 in H9c2 cells allowed for a deeper exploration of its role in modulating SIC-associated gene expression. RESULTS: UPLC-MS/MS identified 31 shared XCHD and XCHD-containing serum components. These included organic acids, terpenoids, and flavonoids, which have been identified as the active components of XCHD. Our findings revealed that XCHD alleviated LPS-induced myocardial injury, improved cardiac function, and preserved cardiomyocyte morphology in mice. In vitro studies, we demonstrated that XCHD-containing serum significantly suppressed the expression of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) in LPS-induced H9c2 cells. Mechanistic investigations showed that XCHD downregulated genes associated with PANoptosis, a novel cell death pathway, suggesting its protective role in sepsis-damaged hearts. Conversely, overexpression of ZBP1 abolished the protective effects of XCHD and amplified PANoptosis-related gene expression. CONCLUSIONS: Our study provides the first evidence supporting the protective effects of XCHD against SIC, both in vitro and in vivo. The underlying mechanism involves the inhibition of ZBP1-initiated PANoptosis, offering new insights into treating SIC using XCHD.


Asunto(s)
Cardiomiopatías , Medicamentos Herbarios Chinos , Sepsis , Animales , Medicamentos Herbarios Chinos/farmacología , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Ratones , Masculino , Línea Celular , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Lipopolisacáridos/toxicidad , Farmacología en Red , Ratas , Modelos Animales de Enfermedad , Espectrometría de Masas en Tándem
7.
J Ethnopharmacol ; 336: 118720, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197802

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jinye Baidu granules (JYBD) have been used to treat acute respiratory tract infections and demonstrated clinical efficacy for the treatment of emerging or epidemic respiratory viruses such as SARS-CoV-2 and influenza virus. AIM OF THE STUDY: This study is to investigate the antiviral effect of JYBD against influenza A viruses (IAV) in vitro and in vivo and elucidate its underlying mechanism. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography connected with Orbitrap mass spectrometer (UHPLC-Orbitrap MS) was employed to describe the chemical profile of JYBD. The potential pathways and targets involved in JYBD against IAV infection were predicted by network pharmacology. The efficacy and mechanism of JYBD were validated through both in vivo and in vitro experiments. Moreover, combination therapy with JYBD and the classic anti-influenza drugs was also investigated. RESULTS: A total of 126 compounds were identified by UHPLC-Orbitrap MS, of which 9 compounds were unambiguously confirmed with reference standards. JYBD could significantly inhibit the replication of multiple strains of IAV, especially oseltamivir-resistant strains. The results of qRT-PCR and WB demonstrated that JYBD could inhibit the excessive induction of pro-inflammatory cytokines induced by IAV infection and regulate inflammatory response through inhibiting JAK/STAT, NF-κB and MAPK pathways. Moreover, both JYBD monotherapy or in combination with oseltamivir could alleviate IAV-induced severe lung injury in mice. CONCLUSIONS: JYBD could inhibit IAV replication and mitigate virus-induced excessive inflammatory response. Combinations of JYBD and neuraminidase inhibitors conferred synergistic suppression of IAV both in vitro and in vivo. It might provide a scientific basis for clinical applications of JYBD against influenza virus infected diseases.


Asunto(s)
Antivirales , Medicamentos Herbarios Chinos , Virus de la Influenza A , Farmacología en Red , Infecciones por Orthomyxoviridae , Antivirales/farmacología , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Virus de la Influenza A/efectos de los fármacos , Perros , Ratones , Humanos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacos , Células A549 , Ratones Endogámicos BALB C , Masculino , Femenino , Cromatografía Líquida de Alta Presión
8.
J Ethnopharmacol ; 336: 118739, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197805

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Danzhi Xiaoyao San (MDXS) is an effective clinical prescription for depression in China, which was deprived of Danzhi Xiaoyao San in the Ming Dynasty. MDSX has significant implications for the development of new antidepressants, but its pharmacological mechanism has been rarely studied. AIM OF THE STUDY: To reveal the active components and molecular mechanism of MDXS in treating depression through network pharmacology and experimental verification in vivo and in vitro. MATERIALS AND METHODS: UPLC-Q-TOF-MS/MS was used to identify the chemical components in the MDXS freeze-dried powder, drug-containing serum, and cerebrospinal fluid (CSF). Based on the analysis of prototype components in the CSF, the major constituents, potential therapeutic targets and possible pharmacological mechanisms of MDXS in treating depression were investigated using network pharmacological and molecular docking. Then corticosterone (CORT)-induced mice model of depression was established to investigate the antidepressant effects of MDXS. HT22 cells were cultured to verify the neuroprotective effects and core targets of the active components. RESULTS: There were 81 compounds in MDXS freeze-dried powder, 36 prototype components in serum, and 13 prototype components in CSF were identified, respectively. Network pharmacology analysis showed that these 13 prototype components in the CSF shared 190 common targets with depression, which were mainly enriched in MAPK and PI3K/AKT signaling pathways. PPI analysis suggested that AKT1 and MAPK1 (ERK1/2) were the core targets. Molecular docking revealed that azelaic acid (AA), senkyunolide A (SA), atractylenolide III (ATIII), and tokinolide B (TB) had the highest binding energy with AKT1 and MAPK1. Animal experiments verified that MDXS could reverse CORT-induced depression-like behaviors, improve synaptic plasticity, alleviate neuronal injury in hippocampal CA3 regions, and up-regulate the protein expression of p-ERK1/2 and p-AKT. In HT22 cells, azelaic acid, senkyunolide A, and atractylenolide III significantly protected the cell injury caused by CORT, and up-regulated the protein levels of p-ERK1/2 and p-AKT. CONCLUSIONS: These results suggested that MDXS may exert antidepressant effects partially through azelaic acid, senkyunolide A, and atractylenolide III targeting ERK1/2 and AKT.


Asunto(s)
Antidepresivos , Depresión , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Línea Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Corticosterona/sangre , Espectrometría de Masas en Tándem , Conducta Animal/efectos de los fármacos
9.
J Ethnopharmacol ; 336: 118678, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39121925

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yupingfeng powder (YPF) is a classic traditional Chinese medicine prescription with a long history of clinical application. However, there is a consensus on the clinical efficacy of YPF in the prevention and treatment of influenza, the underlying pharmacological mechanisms and functional substances have not been thoroughly investigated. AIM OF THE STUDY: This study aimed to elucidate the functional substances and potential mechanisms of YPF against influenza infections by integrating network analysis, metabolomics, computational system pharmacology, and in vitro experiments. MATERIALS AND METHODS: In this study, the active ingredients, related targets, and potential mechanisms of YPF against influenza were identified through network pharmacology and GEO database mining. Combined with metabolomics to corroborate the results of network pharmacology analysis and construct C-T-P-D-M network. Based on this, the key network motifs (KNM) with significance were predicted by system pharmacology algorithm. Finally, the key components as functional substances in the KNM were validated by the coverage of influenza-causing genes and functional pathways, and in vitro experiments. RESULTS: A total of 238 active components and 158 potential target genes intersecting with influenza infection differential genes were screened from YPF. KEGG enrichment analysis indicated that metabolism participated in YPF-provided prevention and treatment on influenza, and metabolomic results further corroborated the significance of the metabolic pathways intervened by YPF included pyruvate metabolism, Valine, leucine and isoleucine degradation, etc. The KNM prediction strategy was computed to include wogonin and isoimperaporin, a group of 48 potential functional components. This functional component group maintained a high degree of consistency with the corresponding C-T network in terms of the coverage of influenza pathogenic genes, and the coverage of functional pathways. Meanwhile, the in vitro results showed that wogonin and isoimperaporin had significant inhibitory effects on inflammation induced by influenza infection, confirming the reliability and accuracy of the KNM prediction strategy. CONCLUSION: YPF against influenza has multi-target and multi-pathway effects, and the underlying mechanisms may be related to metabolism. The pharmacodynamic effects of core components such as wogonin and isoimperaporin on influenza prevention and treatment were confirmed, which represent promising functional candidates for subsequent influenza prevention and treatment, and provide references for the pharmacological and mechanistic analyses of subsequent formulas.


Asunto(s)
Medicamentos Herbarios Chinos , Gripe Humana , Metabolómica , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Metabolómica/métodos , Gripe Humana/tratamiento farmacológico , Humanos , Antivirales/farmacología , Animales , Polvos , Células de Riñón Canino Madin Darby , Perros , Medicina Tradicional China/métodos
10.
J Ethnopharmacol ; 336: 118721, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39173723

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence and mortality of cerebrovascular diseases are increasing year by year. Cerebral ischemia-reperfusion injury (CIRI) is common in patients with ischemic stroke. Naoxintong (NXT) is composed of a variety of Chinese medicines and has the ability to treat CIRI. AIM OF THE STUDY: The aim of this study is to investigate whether NXT regulates mitophagy in CIRI based on network pharmacology analysis and experimental validation. MATERIALS AND METHODS: Oxygen and glucose deprivation/re-oxygenation (OGD/R, 2/22 h) model of PC12 cells and transient middle cerebral artery occlusion (tMCAO, 2/22 h) model of rats were established. Pharmacodynamic indicators include neurological deficit score, 2,3,5-triphenyte-trazoliumchloride (TTC) staining, hematoxylin-eosin (HE) staining and cell viability. Network pharmacology was used to predict pharmacological mechanisms. Pharmacological mechanism indexes include transmission electron microscopy (TEM), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), immunohistochemistry (IHC), western blot (WB) and immunofluorescence (IF). Kevetrin (an agonists of p53) and pifithrin-α (an inhibitor of p53) used to detect the key role of p53 in mitophagy of NXT. RESULTS: NXT (1% serum containing NXT and 110 mg/kg) improved the damage of OGD/R PC12 cells and tMCAO rats, and this protective effect was related to the anti-oxidation and ability to promote mitophagy of NXT. NXT and pifithrin-α increased the expression of promoting-mitophagy targets (PINK1, PRKN and LC3B) and inhibited the expression of inhibiting-mitophagy targets (p52) via restraining p53, and finally accelerated mitophagy caused by CIRI. CONCLUSION: This study demonstrates that NXT promotes mitophagy in CIRI through restraining p53 and promoting PINK1/PRKN in vivo and in vitro.


Asunto(s)
Medicamentos Herbarios Chinos , Mitofagia , Farmacología en Red , Proteínas Quinasas , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Mitofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células PC12 , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas
11.
J Ethnopharmacol ; 336: 118751, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39214192

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huachansu Capsule (HCSc) is a simple enteric-coated capsule refined from the skin of the dried toad, a traditional medicinal herb. It has been used clinically for many years to treat a variety of malignant tumors with remarkable efficacy. To date, a number of main components of HCSc have been reported to be cardiotoxic, but the specific mechanism of cardiotoxicity is still unknown. AIM OF THE STUDY: The aim of this study was to elucidate the possible cardiotoxic symptoms caused by high-doses of HCSc and to further reveal the complex mechanisms by which it causes cardiotoxicity. MATERIALS AND METHODS: UPLC-Q-Exactive Orbitrap MS and network toxicology were used to identify and predict the potential toxic components, related signaling pathways. Then, we used acute and sub-acute toxicity experiments to reveal the apparent phenomenon of HCSc-induced cardiotoxicity. Finally, we combined transcriptomics and metabolomics to elucidate the potential mechanism of action, and verified the putative mechanism by molecular docking, RT-qPCR, and Western blot. RESULTS: We found 8 toad bufadienolides components may be induced cardiac toxicity HCSc main toxic components. Through toxicity experiments, we found that high dose of HCSc could increase a variety of blood routine indexes, five cardiac enzymes, heart failure indexes (BNP), troponin (cTnI and cTnT), heart rate and the degree of heart tissue damage, while low-dose of HCSc had no such changes. In addition, by molecular docking, found that 8 kinds of main toxic components and cAMP, AMPK, IL1ß, mTOR all can be a very good combination, especially in the cAMP. Meanwhile, RT-qPCR and Western blot results showed that HCSc could induce cardiotoxicity by regulating a variety of heart-related differential genes and activating the cAMP signaling pathway. CONCLUSIONS: In this study, network toxicology, transcriptomics and metabolomics were used to elucidate the complex mechanism of possible cardiotoxicity induced by high-dose HCSc. Animal experiments, molecular docking, Western blot and RT-qPCR experiments were also used to verify the above mechanism. These findings will inform further mechanistic studies and provide theoretical support for its safe clinical application.


Asunto(s)
Cardiotoxicidad , Metabolómica , Transcriptoma , Animales , Metabolómica/métodos , Masculino , Transcriptoma/efectos de los fármacos , Ratas , Bufanólidos/toxicidad , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Farmacología en Red , Cápsulas , Transducción de Señal/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Anuros
12.
Indian J Pharmacol ; 56(4): 268-276, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250624

RESUMEN

ABSTRACT: Quantitative and systems pharmacology (QSP) is an innovative and integrative approach combining physiology and pharmacology to accelerate medical research. This review focuses on QSP's pivotal role in drug development and its broader applications, introducing clinical pharmacologists/researchers to QSP's quantitative approach and the potential to enhance their practice and decision-making. The history of QSP adoption reveals its impact in diverse areas, including glucose regulation, oncology, autoimmune disease, and HIV treatment. By considering receptor-ligand interactions of various cell types, metabolic pathways, signaling networks, and disease biomarkers simultaneously, QSP provides a holistic understanding of interactions between the human body, diseases, and drugs. Integrating knowledge across multiple time and space scales enhances versatility, enabling insights into personalized responses and general trends. QSP consolidates vast data into robust mathematical models, predicting clinical trial outcomes and optimizing dosing based on preclinical data. QSP operates under a "learn and confirm paradigm," integrating experimental findings to generate testable hypotheses and refine them through precise experimental designs. An interdisciplinary collaboration involving expertise in pharmacology, biochemistry, genetics, mathematics, and medicine is vital. QSP's utility in drug development is demonstrated through integration in various stages, predicting drug responses, optimizing dosing, and evaluating combination therapies. Challenges exist in model complexity, communication, and peer review. Standardized workflows and evaluation methods ensure reliability and transparency.


Asunto(s)
Desarrollo de Medicamentos , Farmacología Clínica , Humanos , Desarrollo de Medicamentos/métodos , Animales , Farmacología en Red , Biología de Sistemas
13.
Hum Exp Toxicol ; 43: 9603271241281159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39244670

RESUMEN

OBJECTIVE: Precancerous lesions of gastric cancer (PLGC) are key pathological stages in the transformation of gastric "inflammation-cancer", and timely and effective intervention at this stage is of great importance in the prevention and treatment of gastric cancer. Zhiwei Fuwei Pills (ZWFW), as a traditional Chinese medicine formulation, has been proven to have good clinical efficacy in the treatment of PLGC, but its specific mechanism of action has not been fully explained. Thus, this study validated the efficacy and explored the potential mechanisms of ZWFW in treating PLGC by integrating network pharmacology analyses and experimental verification. METHODS: The TCMSP database was used to obtain the active ingredients of ZWFW and their corresponding targets, and the GeneCards database was used to retrieve PLGC-related targets. The intersecting targets between ZWFW and PLGC were obtained through mapping, and protein-protein interaction (PPI) networks and "drug-active ingredient-target" networks were constructed by using Cytoscape software. The DAVID database was used for GO functional enrichment analysis and KEGG pathway enrichment analysis. AutoDockTools software was used for molecular docking of key active ingredients and key targets. In order to verify the analysis results of network pharmacology, TEM and H&E were used to observe the effects of different dosage groups of ZWFW on gastric mucosal microvasculature in PLGC rats. Subsequently, the ELISA, IF, IHC, RT-PCR and western blot were used to detected the expression levels of relevant targets in the tissues, so as to verify the potential mechanism of ZWFW in intervening PLGC. RESULTS: After the screening, 258 effective active ingredients and 325 targets were obtained, and 1294 disease-related targets were determined, resulting in 139 intersection targets through mapping. The KEGG enrichment results showed that PI3K/Akt and HIF-1 signaling pathway might play important roles in the treatment mechanism of PLGC. The molecular docking results showed that active ingredients of ZWFW all had a strong affinity and stable structure with key targets, including AKT1 and VEGF. In vivo experiments confirmed that ZWFW could improve gastric mucosal microvascular abnormalities in PLGC, effectively intervene in gastric mucosal pathological grading. Meanwhile, compared with the model group, this formulation could reduce the expression levels of PI3K, Akt, mTOR, HIF-1α, and VEGF in gastric mucosa, showing a dose-effect relationship. CONCLUSION: ZWFW can intervene in the neovascularization and pathological evolution of PLGC, and this mechanism of action may be achieved by inhibiting abnormal activation of the PI3K/Akt/mTOR/HIF-1α/VEGF signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Neovascularización Patológica , Farmacología en Red , Lesiones Precancerosas , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Masculino , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , Mapas de Interacción de Proteínas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratas Sprague-Dawley , Ratas , Simulación del Acoplamiento Molecular , Angiogénesis
14.
Hereditas ; 161(1): 31, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243097

RESUMEN

BACKGROUND: Previous clinical and basic studies have revealed that ginseng might have cardioprotective properties against anthracycline-induced cardiotoxicity (AIC). However, the underlying mechanism of ginseng action against AIC remains insufficiently understood. The aim of this study was to explore the related targets and pathways of ginseng against AIC using network pharmacology, molecular docking, cellular thermal shift assay (CETSA) and molecular dynamics (MD) simulations. RESULTS: Fourteen drug-disease common targets were identified. Enrichment analysis showed that the AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathway were potentially involved in the action of ginseng against AIC. Molecular docking demonstrated that the core components including Kaempferol, beta-Sitosterol, and Fumarine had notable binding activity with the three core targets CCNA2, STAT1, and ICAM1. Furthermore, the stable complex of STAT1 and Kaempferol with favorable affinity was further confirmed by CETSA and MD simulation. CONCLUSIONS: This study suggested that ginseng might exert their protective effects against AIC through the derived effector compounds beta-Sitosterol, Kaempferol and Fumarine by targeting CCNA2, STAT1, and ICAM1, and modulating AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathways.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Panax , Panax/química , Antraciclinas/efectos adversos , Antraciclinas/química , Antraciclinas/toxicidad , Humanos , Sitoesteroles/farmacología , Sitoesteroles/química , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Quempferoles/farmacología , Quempferoles/química , Transducción de Señal/efectos de los fármacos
15.
J Musculoskelet Neuronal Interact ; 24(3): 291-300, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219327

RESUMEN

OBJECTIVES: To investigate the therapeutic effect and mechanism of Danggui Buxue Tang in the treatment of biceps longus tendon lesions, and to preliminarily explore the relevant factors affecting this injury. METHODS: Using network pharmacology analysis methods, the potential mechanism of Danggui Buxue Tang in treating key lesions of the long head of the biceps brachii muscle was studied. RESULTS: Model analysis revealed 44 protein-protein interactions associated with long head binding. The distribution of 19 strongly correlated targets is Pharmaper>SEA>Stitch>Swiss. Further discovery revealed 17 immune system and inflammation related KEGG pathways with P values less than 0.01. The TNF and sphingolipid signaling pathways are associated with inflammation, while the MAPK signaling pathway is associated with immunity. Finally, it was found that the FoxO and HIF-1 signaling pathways are directly associated with long head restraint injury in the biceps brachii muscle. CONCLUSION: Danggui Buxue Tang inhibits related pathways, regulates the immune system, reduces inflammation, and alleviates disease progression. Danggui Buxue Tang can be an effective choice for treating combined lesions of the long head of the biceps brachii muscle.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Tendinopatía , Farmacología en Red/métodos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Tendinopatía/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculos Isquiosurales/efectos de los fármacos
16.
Drug Des Devel Ther ; 18: 3853-3870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219692

RESUMEN

Purpose: Currently, there is still no clear treatment for polycystic ovary syndrome (PCOS). YJKL has better therapeutic effects and lower toxic side effects for PCOS type infertility. This study aims to clarify the potential mechanism of YJKL Decoction in the treatment of PCOS based on network pharmacology and experiments verification. Patients and Methods: Network pharmacology and experimental validation approach were used to investigate the bioactive ingredients, critical targets and potential mechanisms of YJKL Decoction against PCOS. Firstly, we use network pharmacology methods to collect core targets, and then validate their effects on diseases through experiments. Results: Five core targets were screened, Threonine kinase 1 (AKT1), Cellular tumor antigen p53 (TP53), Tumor necrosis factor (TNF), Albumin (ALB) and Vascular endothelial growthfactor A (VEGFA). KEGG analysis showed that YJKL treatment for PCOS mainly include AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway and HIF-1 signaling pathway. The molecular docking results showed that compounds have higher affinity with targets. Finally, experimental results had shown that YJKL Decoction had an better therapeutic effects in the treatment of PCOS. Conclusion: Based on a systematic network pharmacology approach and experimental verification, our results comprehensively illustrated the active ingredients, potential targets, and molecular mechanism of YJKL for application to PCOS and helps to illustrate mechanism of action on a comprehensive level.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Animales , Infertilidad Femenina/tratamiento farmacológico
17.
Drug Des Devel Ther ; 18: 3791-3809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219695

RESUMEN

Background: Yujiang Paidu Decoction (YJPD) has demonstrated clinical efficacy in the treatment of chronic rhinosinusitis. However, the effects and mechanisms of the YJPD on chronic rhinosinusitis with nasal polyps (CRSwNP) remain unclear. Purpose: This study aimed to elucidate the potential mechanism of action of YJPD in the treatment of CRSwNP based on network pharmacology, transcriptomics and experiments. Methods: A CRSwNP mouse model was established using ovalbumin (OVA) and staphylococcus aureus enterotoxin B (SEB) for 12 weeks and the human nasal epithelial cell (HNEpC) model was induced with IL-13 in vitro. Behavioral tests, scanning electron microscopy (SEM), micro-CT and pathological change of nasal tissues were observed to investigate the therapeutic effects of YJPD. Network pharmacology and transcriptomics were launched to explore the pharmacological mechanisms of YJPD in CRSwNP treatment. Finally, an ELISA, immunofluorescence, RT-qPCR, Western blotting and Tunel were performed for validation. Results: Different doses of YJPD intervention effectively alleviated rubbing and sneezing symptoms in CRSwNP mice. Additionally, YJPD significantly reduced abnormal serological markers, structural damage of the nasal mucosa, inflammatory cell infiltration, goblet cell increases, and inhibited OVA-specific IgE levels and the secretion of Th2 cytokines such as IL-4, IL-5, and IL-13. Moreover, transcriptomics and network pharmacology analyses indicated that YJPD may exert anti-inflammatory and anti-apoptotic effects by inhibiting the MAPK/AP-1 signaling pathway. The experimental findings supported this conclusion, which was further corroborated by similar results observed in IL13-induced HNEpCs in vitro. Conclusion: YJPD could alleviate inflammatory status and epithelial apoptosis by inhibiting aberrant activation of MAPK/AP-1 signaling pathway. This finding provides a strong basis for using YJPD as a potential treatment in CRSwNP.


Asunto(s)
Medicamentos Herbarios Chinos , Pólipos Nasales , Farmacología en Red , Rinitis , Sinusitis , Animales , Sinusitis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/patología , Enfermedad Crónica , Humanos , Rinitis/tratamiento farmacológico , Rinitis/metabolismo , Rinitis/patología , Transcriptoma/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Masculino , Relación Dosis-Respuesta a Droga , Células Cultivadas , Rinosinusitis
18.
Drug Des Devel Ther ; 18: 3871-3889, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219696

RESUMEN

Background: Psoriasis is an immune-mediated chronic inflammatory disease. Qingre Lishi Decoction (QRLSD) has achieved great clinical effect in the treatment of psoriasis. However, the potential bioactive components and the mechanisms are yet unclear. Aim: To analyze the serum parameters of rats fed with QRLSD, screen out the active components of QRLSD, and explore the potential targets and pathway of QRLSD in the treatment of psoriasis. Materials and Methods: The active components of serum containing QRLSD were analyzed using ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The targets of QRLSD in the treatment of psoriasis were predicted by network pharmacology and molecular docking. In vitro experiments verified the underlying mechanism. Results: By UPLC-Q-TOF/MS, 15 prototype components and 22 metabolites were identified in serum containing QRLSD. Subsequently, 260 chemical composition targets and 218 psoriasis targets were overlapped to obtain 23 intersection targets, including LGALS3, TNF, F10, DPP4, EGFR, MAPK14, STAT3 and others. TNF, IL-10, GAPDH, STAT3, EGFR, ITGB1, LGALS3 genes were identified as potential drug targets in the PPI network analyzed by CytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that QRLSD may improve psoriasis by regulating immune and inflammatory pathways, the cytokine mediated signal transduction pathways and other signaling pathways. Molecular docking results showed that the main active components of the serum containing QRLSD had higher affinities for TNF and LGALS3. In vitro experiments confirmed that QRLSD may decrease levels of inflammatory cytokines by suppressing the NF-κB signaling pathway activated by TNF-α in human keratinocytes. Conclusion: This study explores the potential compounds, targets and signaling pathways of QRLSD in the treatment of psoriasis, which will help clarify the efficacy and mechanism of QRLSD.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Psoriasis , Psoriasis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Animales , Ratas , Cromatografía Líquida de Alta Presión , Humanos , Masculino , Ratas Sprague-Dawley , Espectrometría de Masas , Células Cultivadas
19.
Sci Rep ; 14(1): 21486, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277626

RESUMEN

Naringin, a flavonoid, exhibits diverse therapeutic properties and has been proven to exert cytotoxic effects on cancer cells. Nevertheless, the precise mechanism of naringin maintaining its cytotoxic effect on glioblastoma (GBM) remains unknown. Thus, the current study aimed to establish a plausible cellular mechanism for Naringin's inhibition of GBM. We employed various system biology techniques to forecast the primary targets, including gene ontology and cluster analysis, KEGG enrichment pathway estimation, molecular docking, MD (molecular dynamic) simulation and MMPBSA analysis. Glioblastoma target sequences were obtained via DisGeNet and Therapeutic Target Prediction, aligned with naringin targets, and analyzed for gene enrichment and ontology. Gene enrichment analysis identified the top ten hub genes. Further, molecular docking was conducted on all identified targets. For molecular dynamics modelling, we selected the two complexes that exhibited the most docking affinity and the two most prominent genes of the hub identified through analysis of the enrichment of genes. The PARP1 and ALB1 signalling pathways were found to be the main regulated routes. Naringin exhibited the highest binding potential of - 12.90 kcal/mol with PARP1 (4ZZZ), followed by ABL1 (2ABL), with naringin showing a - 8.4 kcal/mol binding score, as determined by molecular docking. The molecular dynamic approach and MM-PBSA investigation along with PCA study revealed that the complex of Naringin, with 4ZZZ (PARP1) and, 2ABL (ABL1), are highly stable compared to that of imatinib and talazoparib. Analyses of the signalling pathway suggested that naringin may have anticancer effects against GBM by influencing the protein PARP and ALB1 levels. Cytotoxicity assay was performed on two different glioblastoma cell lines C6 and U87MG cells. Naringin demonstrates a higher cytotoxic potency against U87MG human glioblastoma cells compared to C6 rat glioma cells.


Asunto(s)
Flavanonas , Glioblastoma , Simulación del Acoplamiento Molecular , Flavanonas/farmacología , Flavanonas/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Simulación de Dinámica Molecular , Farmacología en Red , Antineoplásicos/farmacología , Antineoplásicos/química , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Drug Des Devel Ther ; 18: 4033-4049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280256

RESUMEN

Purpose: This study was designed to evaluate the effect and mechanism of the Qushi Huatan (QSHT) decoction against coronary heart disease (CHD) through network pharmacology and experimental verification. Methods: In the present study, the active ingredients of the QSHT decoction were identified by ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS), then the potential ingredients and coronary heart disease targets were predicted using the SwissTarget Prediction database and the database of Genecards and OMIM database, respectively. A herb-compound-target network was constructed using Cytoscape. GO and KEGG enrichment analysis were performed using the ClusterProfiler data package of R software. Molecular docking was used to predict the core targets of QSHT against CHD. In addition, we used a myocardial infarction (MI) and high-fat diet ApoE-/- mice model to investigate the cardioprotective effects of QSHT. Western blotting and immunochemistry were used to verify the core targets and the signaling pathway. Results: A total of 68 active ingredients were found in the QSHT decoction. Network pharmacology indicated 28 targets and 147 signal pathways, including AKT1, HIF-1α, GSK-3ß, TLR4 and NF-κB, those key targets were also verified by molecular docking. The results of GO and KEGG enrichment analysis showed that the targets of QSHT against CHD were largely associated with inflammatory and oxidative stress, and AKT/HIF-1α and TLR4/NF-κB pathways might be key functional pathways. In vivo, QSHT significantly improved cardiac function and attenuated fibrosis and inflammation. Furthermore, QSHT could significantly inhibit the expression of HIF-1α, TLR4, phosphorylation of AKT1, GSK-3ß and NF-κB after MI in ApoE-/- mice. Conclusion: Based on network pharmacology, molecular docking and experimental verification, this study demonstrated that QSHT could improve cardiac function and attenuate cardiac fibrosis by regulating TLR4/NF-κB and AKT/HIF-1α signaling pathway in post- MI and high-fat diet ApoE-/- mice.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/metabolismo , Masculino , Modelos Animales de Enfermedad , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA