Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; 8(6): e2300623, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38640923

RESUMEN

Recent evidence suggests that glia maturation factor ß (GMFß) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFß can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFß in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFß is upregulated in the lungs of PAH rats. Knockout GMFß alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFß absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFß reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFß ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.


Asunto(s)
Factor de Maduración de la Glia , Interleucina-6 , Remodelación Vascular , Animales , Remodelación Vascular/genética , Remodelación Vascular/fisiología , Ratas , Masculino , Interleucina-6/metabolismo , Interleucina-6/genética , Factor de Maduración de la Glia/metabolismo , Factor de Maduración de la Glia/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Transducción de Señal , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256254

RESUMEN

Parkinson's disease (PD) is the second most common progressive neurodegenerative disease characterized by the presence of dopaminergic neuronal loss and motor disorders. PD dementia (PDD) is a cognitive disorder that affects many PD patients. We have previously demonstrated the proinflammatory role of the glia maturation factor (GMF) in neuroinflammation and neurodegeneration in AD, PD, traumatic brain injury (TBI), and experimental autoimmune encephalomyelitis (EAE) in human brains and animal models. The purpose of this study was to investigate the expression of the GMF in the human PDD brain. We analyzed the expression pattern of the GMF protein in conjunction with amyloid plaques (APs) and neurofibrillary tangles (NFTs) in the substantia nigra (SN) and striatum of PDD brains using immunostaining. We detected a large number of GMF-positive glial fibrillary acidic protein (GFAP) reactive astrocytes, especially abundant in areas with degenerating dopaminergic neurons within the SN and striatum in PDD. Additionally, we observed excess levels of GMF in glial cells in the vicinity of APs, and NFTs in the SN and striatum of PDD and non-PDD patients. We found that the majority of GMF-positive immunoreactive glial cells were co-localized with GFAP-reactive astrocytes. Our findings suggest that the GMF may be involved in the pathogenesis of PDD.


Asunto(s)
Demencia , Encefalomielitis Autoinmune Experimental , Factor de Maduración de la Glia , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Encéfalo , Factor de Maduración de la Glia/genética
3.
Aging Dis ; 15(1): 311-337, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307824

RESUMEN

Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor ß (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Factor de Maduración de la Glia/genética , Neuroprotección , Fármacos Neuroprotectores/farmacología , Lisina
4.
Eur J Cell Biol ; 103(1): 151378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071835

RESUMEN

How cells tightly control the formation and turnover of branched actin filament arrays to drive cell motility, endocytosis, and other cellular processes is still not well understood. Here, we investigated the mechanistic relationship between two binding partners of the Arp2/3 complex, glia maturation factor (GMF) and cortactin. Individually, GMF and cortactin have opposite effects on the stability of actin filament branches, but it is unknown how they work in concert with each other to govern branch turnover. Using TIRF microscopy, we observe that GMF's branch destabilizing activities are potently blocked by cortactin (IC50 = 1.3 nM) and that this inhibition requires direct interactions of cortactin with Arp2/3 complex. The simplest model that would explain these results is competition for binding Arp2/3 complex. However, we find that cortactin and GMF do not compete for free Arp2/3 complex in solution. Further, we use single molecule analysis to show that cortactin's on-rate (3 ×107 s-1 M-1) and off-rate (0.03 s-1) at branch junctions are minimally affected by excess GMF. Together, these results show that cortactin binds with high affinity to branch junctions, where it blocks the destabilizing effects of GMF, possibly by a mechanism that is allosteric in nature. In addition, the affinities we measure for cortactin at actin filament branch junctions (Kd = 0.9 nM) and filament sides (Kd = 206 nM) are approximately 20-fold stronger than previously reported. These observations contribute to an emerging view of molecular complexity in how Arp2/3 complex is regulated through the integration of multiple inputs.


Asunto(s)
Cortactina , Factor de Maduración de la Glia , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/química , Factor de Maduración de la Glia/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo
5.
Exp Mol Med ; 55(5): 898-909, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121966

RESUMEN

Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.


Asunto(s)
Diabetes Mellitus Tipo 1 , Osteoporosis , Ratas , Animales , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Factor de Maduración de la Glia/farmacología , Actinas/genética , Osteoclastos/metabolismo , Osteoporosis/etiología , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular
6.
Stem Cell Res Ther ; 14(1): 117, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122014

RESUMEN

BACKGROUND: In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS: In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS: We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS: We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.


Asunto(s)
Factor de Maduración de la Glia , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Pez Cebra/genética
7.
Biomolecules ; 12(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36551252

RESUMEN

The geomagnetic field (GMF) is a natural component of Earth's biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) production in time-course experiments on Arabidopsis thaliana. Plants exposed to NNMF in a triaxial Helmholtz coils system were sampled from 10 min to 96 h to evaluate differentially expressed genes (DEGs) of oxidative stress responses by gene microarray. In 24-96 h developing stages, H2O2 and polyphenols were also analyzed from roots and shoots. A total of 194 DEGs involved in oxidative reactions were selected, many of which showed a fold change ≥±2 in at least one timing point. Heatmap clustering showed DEGs both between roots/shoots and among the different time points. NNMF induced a lower H2O2 than GMF, in agreement with the expression of ROS-related genes. Forty-four polyphenols were identified, the content of which progressively decreased during NNMF exposition time. The comparison between polyphenols content and DEGs showed overlapping patterns. These results indicate that GMF reduction induces metabolomic and transcriptomic modulation of ROS-scavenging enzymes and H2O2 production in A. thaliana, which is paralleled by the regulation of antioxidant polyphenols.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Factor de Maduración de la Glia/farmacología , Proteínas de Arabidopsis/metabolismo , Campos Magnéticos , Metabolómica , Regulación de la Expresión Génica de las Plantas
8.
PLoS One ; 16(11): e0260071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793551

RESUMEN

Hyperglycemia is generally considered to be an important cause of diabetic retinopathy (DR). The aim of the present study was to investigate the role of miR-5195-3p in high glucose (HG)-induced human retinal pigment epithelial ARPE-19 cell injury. Here, we first found that the expression level of miR-5195-3p was significantly downregulated in HG-stimulated ARPE-19 cells using reverse transcription quantitative PCR. Overexpression of miR-5195-3p attenuated the impaired cell viability, increased apoptosis and pro-inflammatory cytokines secretion in ARPE-19 cells under HG condition using CCK-8 assay, flow cytometry and ELISA assay, respectively. Luciferase reporter assay showed that miR-5195-3p could specifically bind to the 3'UTR of glia maturation factor-ß (GMFB). GMFB overexpression reversed, while knockdown enhanced the protective effects of miR-5195-3p overexpression against HG-induced ARPE-19 cell injury. In summary, miR-5195-3p targeting GMFB might be a potential therapeutic target for DR.


Asunto(s)
Factor de Maduración de la Glia/metabolismo , MicroARNs/genética , Epitelio Pigmentado de la Retina/metabolismo , Regiones no Traducidas 3' , Comunicación Celular , Línea Celular , Supervivencia Celular , Retinopatía Diabética/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Factor de Maduración de la Glia/genética , Glucosa/metabolismo , Humanos , Hiperglucemia/genética , MicroARNs/metabolismo , Fagocitosis
9.
Biochem Biophys Res Commun ; 560: 105-111, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33984767

RESUMEN

Anti-prion effects of cellulose ether (CE) are reported in rodents, but the molecular mechanism is fully unknown. Here, we investigated the genetic background of CE effectiveness by proteomic and genetic analysis in mice. Proteomic analysis in the two mouse lines showing a dramatic difference in CE effectiveness revealed a distinct polymorphism in the glia maturation factor ß gene. This polymorphism was significantly associated with the CE effectiveness in various prion-infected mouse lines. Sequencing of this gene and its vicinity genes also revealed several other polymorphisms that were significantly related to the CE effectiveness. These polymorphisms are useful as genetic markers for finding more suitable mouse lines and exploring the genetic factors of CE effectiveness.


Asunto(s)
Factor de Maduración de la Glia/genética , Derivados de la Hipromelosa/uso terapéutico , Enfermedades por Prión/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Marcadores Genéticos , Genómica , Masculino , Ratones , Polimorfismo Genético , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteómica
10.
BMC Cancer ; 21(1): 423, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33863293

RESUMEN

BACKGROUND: Glia maturation factor-γ (GMFG) is reported to inhibit the actin nucleation through binding to the actin-related protein-2/3 complex (Arp2/3). Considering the main function of GMFG in actin remodeling, which is vital for immune response, angiogenesis, cell division and motility, GMFG is supposed to have important roles in tumor development, while up to now, only two studies described the role of GMFG in cancers. By investigating the clinical values of GMFG using The Cancer Genome Atlas (TCGA) data and the functional mechanisms of GMFG through analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments, this study was aimed to better understand the impact of GMFG in pan-cancers and to draw more attentions for the future research of GMFG. METHODS: RNA-seq and clinical data of cancer patients were collected from TCGA and analyzed by the Kaplan-Meier methods. GO and KEGG analyses were conducted using the online tools from the Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS: Compared to the corresponding normal samples, GMFG was significantly upregulated in glioblastoma (GBM), kidney clear cell carcinoma (KIRC), lower grade glioma (LGG), acute myeloid leukemia (LAML), and pancreatic cancer (PAAD), testicular cancer (TGCT), but was downregulated in kidney chromophobe (KICH), lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) (P < 0.05 for all). High expression of GMFG predicted worse OS in GBM (HR = 1.5, P = 0.017), LGG (HR = 2.2, P < 0.001), LUSC (HR = 1.4, P = 0.022) and ocular melanomas (UVM) (HR = 7, P < 0.001), as well as worse DFS in LGG (HR = 1.8, P < 0.001) and prostate cancer (PRAD) (HR = 1.9, P = 0.004). In contrast, high expression of GMFG was associated with better OS in skin cutaneous melanoma (SKCM) (HR = 0.59, P < 0.001) and thymoma (THYM) (HR = 0.098, P = 0.031), as well as better DFS in bile duct cancer (CHOL) (HR = 0.2, P = 0.003). GMFG was mainly involved in the immune response, protein binding and cytokine-cytokine receptor interaction pathways, and was positively associated with multiple immunomodulators in most cancers. CONCLUSION: Our study preliminarily identified that GMFG may cause different survivals for different cancers through modulating tumor progression, immune response status and tissue-specific tumor microenvironment (TME).


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Factor de Maduración de la Glia/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Inmunomodulación/genética , Estimación de Kaplan-Meier , Estadificación de Neoplasias , Especificidad de Órganos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/inmunología , Pronóstico , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
Int Immunopharmacol ; 83: 106441, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32259702

RESUMEN

Neuroinflammation plays an active role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD). Earlier studies from this laboratory showed that glia maturation factor (GMF), a proinflammatory mediator; is up-regulated in the brain in neurodegenerative diseases and that deficiency of GMF showed decreased production of IL-1ß and improved behavioral abnormalities in mouse model of PD. However, the mechanisms linking GMF and dopaminergic neuronal death have not been completely explored. In the present study, we have investigated the expression of NLRP3 inflammasome and caspase-1 in the substantia nigra (SN) of human PD and non-PD brains by immunohistochemistry. Wild-type (WT) and GMF-/- (GMF knock-out) mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) and the brains were isolated for neurochemical and morphological examinations. NLRP3 and caspase-1 positive cells were found significantly increased in PD when compared to non-PD control brains. Moreover, GMF co-localized with α-Synuclein within reactive astrocytes in the midbrain of PD. Mice treated with MPTP exhibit glial activation-induced inflammation, and nigrostriatal dopaminergic neurodegeneration. Interestingly, increased expression of the inflammasome components in astrocytes and microglia observed in the SN of MPTP-treated WT mice were significantly reduced in GMF-/- mice. Additionally, we show that NLRP3 activation in microglia leads to translocation of GMF and NLRP3 to the mitochondria. We conclude that downregulation of GMF may have beneficial effects in prevention of PD by modulating the cytotoxic functions of microglia and astrocytes through reduced activation of the NLRP3 inflammasome; a major contributor of neuroinflammation in the CNS.


Asunto(s)
Neuronas Dopaminérgicas/patología , Factor de Maduración de la Glia/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuroglía/fisiología , Enfermedad de Parkinson/inmunología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Apoptosis , Células Cultivadas , Modelos Animales de Enfermedad , Factor de Maduración de la Glia/genética , Humanos , Ratones , Ratones Noqueados , Inflamación Neurogénica
12.
J Neurotrauma ; 37(14): 1645-1655, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32200671

RESUMEN

Traumatic brain injury (TBI) is the primary cause of death and disability affecting over 10 million people in the industrialized world. TBI causes a wide spectrum of secondary molecular and cellular complications in the brain. However, the pathological events are still not yet fully understood. Previously, we have shown that the glia maturation factor (GMF) is a mediator of neuroinflammation in neurodegenerative diseases. To identify the potential molecular pathways accompanying TBI, we used an in vitro cell culture model of TBI. A standardized injury was induced by scalpel cut through a mixed primary cell culture of astrocytes, microglia and neurons obtained from both wild type (WT) and GMF-deficient (GMF-KO) mice. Cell culture medium and whole-cell lysates were collected at 24, 48, and 72 h after the scalpel cuts injury and probed for oxidative stress using immunofluorescence analysis. Results showed that oxidative stress markers such as glutathione and glutathione peroxidase were significantly reduced, while release of cytosolic enzyme lactate dehydrogenase along with nitric oxide and prostaglandin E2 were significantly increased in injured WT cells compared with injured GMF-KO cells. In addition, injured WT cells showed increased levels of oxidation product 4-hydroxynonenal and 8-oxo-2'-deoxyguanosine compared with injured GMF-KO cells. Further, we found that injured WT cells showed a significantly increased expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and phosphorylated ezrin/radixin/moesin proteins, and reduced microtubule associated protein expression compared with injured GMF-KO cells after injury. Collectively, our results demonstrate that GMF exacerbates the oxidative stress-mediated neuroinflammation that could be brought about by TBI-induced astroglial activation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Factor de Maduración de la Glia/deficiencia , Mediadores de Inflamación/metabolismo , Neuronas/metabolismo , Neuronas/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Lesiones Traumáticas del Encéfalo/genética , Movimiento Celular/fisiología , Células Cultivadas , Factor de Maduración de la Glia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Estrés Oxidativo/fisiología
13.
Blood Adv ; 3(8): 1211-1225, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30971398

RESUMEN

In macrophages, cellular iron metabolism status is tightly integrated with macrophage phenotype and associated with mitochondrial function. However, how molecular events regulate mitochondrial activity to integrate regulation of iron metabolism and macrophage phenotype remains unclear. Here, we explored the important role of the actin-regulatory protein glia maturation factor-γ (GMFG) in the regulation of cellular iron metabolism and macrophage phenotype. We found that GMFG was downregulated in murine macrophages by exposure to iron and hydrogen peroxide. GMFG knockdown altered the expression of iron metabolism proteins and increased iron levels in murine macrophages and concomitantly promoted their polarization toward an anti-inflammatory M2 phenotype. GMFG-knockdown macrophages exhibited moderately increased levels of mitochondrial reactive oxygen species (mtROS), which were accompanied by decreased expression of some mitochondrial respiration chain components, including the iron-sulfur cluster assembly scaffold protein ISCU as well as the antioxidant enzymes SOD1 and SOD2. Importantly, treatment of GMFG-knockdown macrophages with the antioxidant N-acetylcysteine reversed the altered expression of iron metabolism proteins and significantly inhibited the enhanced gene expression of M2 macrophage markers, suggesting that mtROS is mechanistically linked to cellular iron metabolism and macrophage phenotype. Finally, GMFG interacted with the mitochondrial membrane ATPase ATAD3A, suggesting that GMFG knockdown-induced mtROS production might be attributed to alteration of mitochondrial function in macrophages. Our findings suggest that GMFG is an important regulator in cellular iron metabolism and macrophage phenotype and could be a novel therapeutic target for modulating macrophage function in immune and metabolic disorders.


Asunto(s)
Factor de Maduración de la Glia/metabolismo , Hierro/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor de Maduración de la Glia/genética , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células RAW 264.7 , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
14.
J Neuroimmune Pharmacol ; 14(4): 537-550, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30810907

RESUMEN

Microglial cells are brain specific professional phagocytic immune cells that play a crucial role in the inflammation- mediated neurodegeneration especially in Parkinson's disease (PD) and Alzheimer's disease. Glia maturation factor (GMF) is a neuroinflammatory protein abundantly expressed in the brain. We have previously shown that GMF expression is significantly upregulated in the substantia nigra (SN) of PD brains. However, its possible role in PD progression is still not fully understood. The Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) protein9 (CRISPR/Cas9) system is a simple, rapid and often extremely efficient gene editing tool at desired loci, enabling complete gene knockout or homology directed repair. In this study, we examined the effect of GMF editing by using the CRISPR/Cas9 technique in BV2 microglial cells (hereafter referred to as BV2-G) on oxidative stress and nuclear factor erythroid 2-related factor 2 (NRF2)/Hemeoxygenase1 (HO-1)-dependent ferritin activation after treatment with (1-methyl-4-phenylpyridinium) MPP+. Knockout of GMF in BV2-G cells significantly attenuated oxidative stress via reduced ROS production and calcium flux. Furthermore, deficiency of GMF significantly reduced nuclear translocation of NRF2, which modulates HO-1 and ferritin activation, cyclooxygenase 2 (COX2) and nitric oxide synthase 2 (NOS2) expression in BV2 microglial cells. Lack of GMF significantly improved CD11b and CD68 positive microglial cells as compared with untreated cells. Our results also suggest that pharmacological and genetic intervention targeting GMF may represent a promising and a novel therapeutic strategy in controlling Parkinsonism by regulating microglial functions. Targeted regulation of GMF possibly mediates protein aggregation in microglial homeostasis associated with PD progression through regulation of iron metabolism by modulating NRF2-HO1 and ferritin expression.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Ferritinas/genética , Factor de Maduración de la Glia/genética , Hemo-Oxigenasa 1/genética , Proteínas de la Membrana/genética , Dinámicas Mitocondriales/fisiología , Factor 2 Relacionado con NF-E2/genética , Neuroglía/fisiología , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Proteína 9 Asociada a CRISPR/biosíntesis , Proteína 9 Asociada a CRISPR/genética , Línea Celular , Ferritinas/biosíntesis , Edición Génica/métodos , Factor de Maduración de la Glia/deficiencia , Hemo-Oxigenasa 1/biosíntesis , Proteínas de la Membrana/biosíntesis , Ratones , Factor 2 Relacionado con NF-E2/biosíntesis , Neuroglía/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
15.
Mol Neurobiol ; 56(1): 378-393, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29704201

RESUMEN

Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disorder that leads to severe cognitive impairment in elderly patients. Chronic neuroinflammation plays an important role in the AD pathogenesis. Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory, is significantly upregulated in various regions of AD brains. We have previously reported that GMF is predominantly expressed in the reactive glial cells surrounding the amyloid plaques (APs) in the mouse and human AD brain. Microglia are the major source of proinflammatory cytokines and chemokines including GMF. Recently clustered regularly interspaced short palindromic repeats (CRISPR) based genome editing has been recognized to study the functions of genes that are implicated in various diseases. Here, we investigated if CRISPR-Cas9-mediated GMF gene editing leads to inhibition of GMF expression and suppression of microglial activation. Confocal microscopy of murine BV2 microglial cell line transduced with an adeno-associated virus (AAV) coexpressing Staphylococcus aureus (Sa) Cas9 and a GMF-specific guide RNA (GMF-sgRNA) revealed few cells expressing SaCas9 while lacking GMF expression, thereby confirming successful GMF gene editing. To further improve GMF gene editing efficiency, we developed lentiviral vectors (LVs) expressing either Streptococcus pyogenes (Sp) Cas9 or GMF-sgRNAs. BV2 cells cotransduced with LVs expressing SpCas9 and GMF-sgRNAs revealed reduced GMF expression and the presence of indels in the exons 2 and 3 of the GMF coding sequence. Lipopolysaccharide (LPS) treatment of GMF-edited cells led to reduced microglial activation as shown by reduced p38 MAPK phosphorylation. We believe that targeted in vivo GMF gene editing has a significant potential for developing a unique and novel AD therapy.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Edición Génica , Factor de Maduración de la Glia/genética , Microglía/metabolismo , Terapia Molecular Dirigida , Animales , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Análisis Mutacional de ADN , Dependovirus/metabolismo , Factor de Maduración de la Glia/metabolismo , Lentivirus/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , ARN Guía de Kinetoplastida/metabolismo , Transducción Genética
16.
J Alzheimers Dis ; 66(3): 1117-1129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30372685

RESUMEN

Parkinson's disease (PD) is characterized by the presence of inflammation-mediated dopaminergic neurodegeneration in the substantia nigra. Inflammatory mediators from activated microglia, astrocytes, neurons, T-cells and mast cells mediate neuroinflammation and neurodegeneration. Administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induces PD like motor deficits in rodents. 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP activates glial cells, neurons and mast cells to release neuroinflammatory mediators. Glia maturation factor (GMF), mast cells and proteinase activated receptor-2 (PAR-2) are implicated in neuroinflammation. Alpha-synuclein which induces neurodegeneration increases PAR-2 expression in the brain. However, the exact mechanisms are not yet understood. In this study, we quantified inflammatory mediators in the brains of MPTP-administered wild type (Wt), GMF-knockout (GMF-KO), and mast cell knockout (MC-KO) mice. Additionally, we analyzed the effect of MPP+, GMF, and mast cell proteases on PAR-2 expression in astrocytes and neurons in vitro. Results show that the levels of interleukin-1beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and the chemokine (C-C motif) ligand 2 (CCL2) were lesser in the brains of GMF-KO mice and MC-KO mice when compared to Wt mice brain after MPTP administration. Incubation of astrocytes and neurons with MPP+, GMF, and mouse mast cell protease-6 (MMCP-6) and MMCP-7 increased the expression of PAR-2. Our studies show that the absence of mast cells and GMF reduce the expression of neuroinflammatory mediators in the brain. We conclude that GMF along with mast cell interactions with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD and other neuroinflammatory disorders.


Asunto(s)
Encéfalo/metabolismo , Factor de Maduración de la Glia/metabolismo , Mediadores de Inflamación/metabolismo , Mastocitos/metabolismo , Trastornos Parkinsonianos/metabolismo , Receptor PAR-2/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimasas/metabolismo , Quimasas/farmacología , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/farmacología , Interleucina-1beta/metabolismo , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Biochim Biophys Acta Proteins Proteom ; 1866(10): 1008-1020, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981887

RESUMEN

BACKGROUND: The GMF class of the ADF-H domain family proteins regulate actin dynamics by binding to the Arp2/3 complex and F-actin through their Site-1 and Site-2, respectively. CeGMF of C. elegans is analogous to GMFγ of human and mouse and is 138 amino acids in length. METHODS: We have characterized the solution structure and dynamics of CeGMF by solution NMR spectroscopy and its thermal stability by DSC. RESULTS: The solution structure of CeGMF shows canonical ADF-H fold with two additional ß-strands in the ß4-ß5 loop region. The Site-1 of CeGMF is well formed and residues of all three regions of Site-1 show dynamic flexibility. However, the ß4-ß5 loop of Site-2 is less inclined towards the C-terminal, as the latter is truncated by four residues in comparison to GMF isoforms of human and mouse. Regions of Site-2 show motions on ns-ps timescale, but dynamic flexibility of ß4-ß5 loop is low in comparison to corresponding F-loop region of ADF/cofilin UNC-60B. A general difference in packing of α3 and α1 between GMF and ADF/cofilins was noticed. Additionally, thermal stability of CeGMF was significantly higher than its ADF/cofilin homologs. CONCLUSION: We have presented the first solution structure of GMF from C. elegans, which highlights the structural differences between the Site-2 of CeGMF and mammalian GMF isoforms. Further, we have seen the differences in structure, dynamics, and thermal stability of GMF and ADF/cofilin. GENERAL SIGNIFICANCE: This study provides a useful insight to structural and dynamics factors that define the specificity of GMF towards Arp2/3 complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Factor de Maduración de la Glia/química , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Rastreo Diferencial de Calorimetría , Factor de Maduración de la Glia/genética , Factor de Maduración de la Glia/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Lámina beta , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
18.
Nat Commun ; 9(1): 2895, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042427

RESUMEN

Formation and turnover of branched actin networks underlies cell migration and other essential force-driven processes. Type I nucleation-promoting factors (NPFs) such as WASP recruit actin monomers to Arp2/3 complex to stimulate nucleation. In contrast, mechanisms of type II NPFs such as Abp1 (also known as HIP55 and Drebrin-like protein) are less well understood. Here, we use single-molecule analysis to investigate yeast Abp1 effects on Arp2/3 complex, and find that Abp1 strongly enhances Arp2/3-dependent branch nucleation by stabilizing Arp2/3 on sides of mother filaments. Abp1 binds dynamically to filament sides, with sub-second lifetimes, yet associates stably with branch junctions. Further, we uncover a role for Abp1 in protecting filament junctions from GMF-induced debranching by competing with GMF for Arp2/3 binding. These data, combined with EM structures of Abp1 dimers bound to Arp2/3 complex in two different conformations, expand our mechanistic understanding of type II NPFs.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Factor de Maduración de la Glia/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Factor de Maduración de la Glia/química , Factor de Maduración de la Glia/genética , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Exp Neurol ; 305: 129-138, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655639

RESUMEN

Gliosis is a hallmark of neural pathology that occurs after most forms of central nervous system (CNS) injuries including traumatic brain injury (TBI). Identification of genes that control gliosis may provide novel treatment targets for patients with diverse CNS injuries. Glia maturation factor beta (GMFB) is crucial in brain development and stress response. In the present study, GMFB was found to be widely expressed in adult zebrafish telencephalon. A gmfb mutant zebrafish was created using CRISPR/cas9. In the uninjured zebrafish telencephalon, glial fibrillary acidic protein (GFAP) fibers in gmfb mutants were disorganized and shorter than wild type zebrafish. After TBI, transformation of quiescent type I radial glial cells (RGC) to proliferative type II RGCs was significantly suppressed in the gmfb mutant. RGC proliferation and hypertrophy post-TBI was reduced in gmfb mutants, indicating that reactive gliosis was attenuated. TBI-induced acute inflammation was also found to be alleviated in the gmfb mutant. Morphological changes also suggest attenuation of microglial reactive gliosis. In a mouse model of TBI, GMFB expression was increased around the injury site. These GMFB+ cells were identified as astrocytes and microglia. Taken together, the data suggests that GMFB is not only required for normal development of GFAP fibers in the zebrafish telencephalon, but also promotes reactive gliosis after TBI. Our findings provide novel information to help better understand the reactive gliosis process following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Factor de Maduración de la Glia/biosíntesis , Gliosis/metabolismo , Animales , Animales Modificados Genéticamente , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Técnicas de Silenciamiento del Gen/métodos , Factor de Maduración de la Glia/genética , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Gliosis/genética , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo , Telencéfalo/patología , Pez Cebra
20.
J Alzheimers Dis ; 61(2): 553-560, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29172001

RESUMEN

Apolipoprotein E4 (ApoE4) is a major genetic risk factor for Alzheimer's disease (AD). The E4 allele of ApoE plays a crucial role in the inflammatory and neurodegenerative processes associated with AD. This is evident from the multiple effects of the ApoE isoforms in amyloid-ß (Aß) aggregation. Glia maturation factor (GMF) is a brain-specific neuroinflammatory protein that we have previously demonstrated to be significantly upregulated in various regions of AD brains compared to non-AD control brains and that it induces neurodegeneration. We have previously reported that GMF is predominantly expressed in the reactive astrocytes surrounding amyloid plaques (APs) in AD brain. In the present study, using immunohistochemical and dual immunofluorescence staining, we show the expression and colocalization of GMF and ApoE4 in AD brains. Our results show that ApoE4 is present within the APs of AD brain. Further, we found that GMF and ApoE4 were strongly expressed and co-associated in APs and in the reactive astrocytes surrounding APs in AD. An increased expression of GMF in APs and neurofibrillary tangles in the AD brain, and the co-localization of GMF and ApoE4 in APs suggest that GMF and ApoE4 together should be contributing to the neuropathological changes associated with AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Factor de Maduración de la Glia/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Encéfalo/patología , Estudios de Casos y Controles , Técnica del Anticuerpo Fluorescente , Factor de Maduración de la Glia/genética , Humanos , Ovillos Neurofibrilares/patología , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA