Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.550
Filtrar
1.
Environ Sci Pollut Res Int ; 31(51): 61254-61269, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39412717

RESUMEN

The unregulated use and improper management of herbicides can cause negative effects on non-target species and promote changes in biological communities. Therefore, the current study is aimed at understanding morphoanatomical responses and effects on seedling development induced by the herbicides glyphosate and saflufenacil in Enterolobium contortisiliquum, a non-target tropical species. The plants were cultivated in a greenhouse and subjected to herbicides at doses of 0, 160, 480, and 1440 g a.e ha-1 for glyphosate, and 0, 25, 50, and 100 g a.i ha-1 for saflufenacil. We conducted visual and morphological assessments over 90 days post-application. Leaf samples were collected 12 days after the application for anatomical analysis, and we also performed a micromorphometric analysis of the leaf tissues. Biomarkers of phytotoxicity were identified in plants exposed to both herbicides, even at the lowest doses, including in leaves without visual symptoms. The main morphological alterations were the decrease in growth, stem diameter, and dry mass. Furthermore, the leaves and stems visually exhibited chlorosis and necrosis. Both herbicides triggered anatomical modifications such as significant changes (p < 0.05) in the thickness of leaf tissues, hypertrophy, cell collapse, and changes in epicuticular waxes. However, the alterations induced by glyphosate were more widespread compared to saflufenacil, encompassing alterations in the root system. We confirmed that the different mechanisms of action of each herbicide and the existence of an underground reserve system in this species are intrinsically linked to the morphological and developmental responses described. Our findings suggest that E. contortisiliquum could be a potential bioindicator species for these herbicides in the environment, even at concentrations lower than those typically recommended for field application.


Asunto(s)
Fabaceae , Glicina , Glifosato , Herbicidas , Herbicidas/toxicidad , Glicina/análogos & derivados , Glicina/toxicidad , Fabaceae/efectos de los fármacos , Árboles/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Pirimidinonas , Sulfonamidas
2.
Braz J Biol ; 84: e285020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39383414

RESUMEN

Termites of the genus Nasutitermes sp. (Blattodea: Termitidae), which feed on cellulose, may cause wood to become brittle and fragile. This study aimed to evaluate the natural resistance of three native wood species: Magonia pubescens (Sapindaceae), Dalbergia nigra and Machaerium amplum (Fabaceae) to attack by Nasutitermes sp. termites and to investigate the relationship between resistance, extractive content, and oven-dry density. Samples of each wood species were subjected to a forced feeding process with Nasutitermes sp. termites for 30 days. Following the exposure, the oven-dry density, extractive content, percentage of wood loss, and termite mortality were determined for each sample. Dalbergia nigra exhibited resistance to termite attack and had the highest extractive content at 13.14%. Conversely, M. amplum had the highest wood loss at 5.37% and the lowest extractive content at 1.94%. Both species showed a negative correlation between wood loss and extractive content, but no correlation with wood density. Magonia pubescens had the highest density at 0.90 g/cm3. Macherium amplum and M. pubescens caused 100% termite mortality, while D. nigra caused 40% mortality.


Asunto(s)
Fabaceae , Isópteros , Sapindaceae , Madera , Animales , Isópteros/fisiología , Fabaceae/clasificación , Dalbergia , Conducta Alimentaria/fisiología
3.
Braz J Biol ; 84: e283106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39292139

RESUMEN

Inga cylindrica, a tropical fruit tree of the Fabaceae family (subfamily Mimosoideae), is native to South America. The seeds from this family are an essential source of trypsin inhibitors, which display promising bioactivity for increasing host defense against pathogens. The aim of the present study was to characterize the antimicrobial and antibiofilm activities of the trypsin inhibitor extracted from I. cylindrica seeds, ICTI. ICTI demonstrated antifungal activity with a minimum inhibitory concentration (MIC) of 32.11 µmol.L-1, and a minimum fungicidal concentration (MFC) of 32.1 µmol.L-1, against Cryptococcus gattii, Candida albicans, Candida glabrata and Candida guilliermondii. Combining ICTI with Amphotericin B had a significant synergistic effect, reducing the concentration of the antibiotic by 75% for C. albicans and 94% for C. gatti. The significant increase (16 x) in activity observed with ergosterol (1.01 mol.L-1) for C. albicans and C. gatti, and the lack of activity against bacterial strains, suggests that ICTI interferes with the integrity of the fungal cell membrane. Treatment with ICTI at 10 x MIC resulted in a 51% reduction in biofilm formation and a 56% decrease in mature biofilm colonies for C. albicans. Finally, ICTI displayed no toxicity in the in vivo Galleria mellonella model. Given its antifungal and antibiofilm properties, ICTI could be a promising candidate for the development of new antimicrobial drug prototypes.


Asunto(s)
Antifúngicos , Biopelículas , Pruebas de Sensibilidad Microbiana , Inhibidores de Tripsina , Biopelículas/efectos de los fármacos , Animales , Antifúngicos/farmacología , Inhibidores de Tripsina/farmacología , Candida/efectos de los fármacos , Extractos Vegetales/farmacología , Fabaceae/química , Semillas/química
4.
PeerJ ; 12: e18201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346040

RESUMEN

Background: Leucaena leucocephala is a useful multipurpose tree species for agroforestry systems, but traditional seeded cultivars often become weedy and invasive. A seedless hybrid cultivar, 'KX4-Hawaii', offers a potential solution to this problem. However, relevant agronomic information and information on the performance of 'KX4-Hawaii' under varying growth conditions is required. The goal of this research was to evaluate 'KX4-Hawaii' as a source of agricultural biomass in Barbados, a small island developing state with limited arable land. Methods: 'KX4-Hawaii' air layers were imported into Barbados to create stock trees. Air layering was used to create propagation material and a field study was established with a 'KX4-Hawaii' hedgerow planted as a field border. Three plant spacings (50, 75, and 100 cm) were evaluated and data on the growth and biomass yields of the trees were collected at 4-month intervals. Precipitation data were used to investigate climatic effects on 'KX4-Hawaii' productivity. Results: 'KX4-Hawaii' was successfully propagated via air layers and could be planted directly in the field with irrigation. All recorded growth and biomass yields were correlated with precipitation. However, the woody (lignified stems and branches) biomass was more responsive to precipitation than the green (leaves and green tender stems) biomass and made up a large fraction of the total biomass produced. 'KX4-Hawaii' was productive even under drought conditions and biomass yields per meter of hedgerow increased with closer spacings. Of the tested spacing treatments, 75 cm was optimum for a 4-month pruning interval under the conditions seen in Barbados as it produced similar yields to the 50 cm spacing treatment but would require less propagation material.


Asunto(s)
Biomasa , Fabaceae/crecimiento & desarrollo , Barbados , Agricultura/métodos , Árboles/crecimiento & desarrollo
5.
Arch Microbiol ; 206(9): 377, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141120

RESUMEN

The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept Ì´ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).


Asunto(s)
Fabaceae , Micrococcus , Hidrolisados de Proteína , Micrococcus/metabolismo , Micrococcus/enzimología , Concentración de Iones de Hidrógeno , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Peso Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Perú , Temperatura , Serina Proteasas/metabolismo , Serina Proteasas/aislamiento & purificación , Serina Proteasas/química , Estabilidad de Enzimas , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Hidrólisis , Cinética
6.
Sci Rep ; 14(1): 20253, 2024 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215068

RESUMEN

Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.


Asunto(s)
Movimiento Celular , Mitocondrias , Extractos Vegetales , Neoplasias de la Mama Triple Negativas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Movimiento Celular/efectos de los fármacos , Ratones , Femenino , Línea Celular Tumoral , Humanos , Glucólisis/efectos de los fármacos , Fabaceae/química
7.
Acta Parasitol ; 69(3): 1426-1438, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147955

RESUMEN

PURPOSE: The flea Ctenocephalides felis (Siphonaptera: Pulicidae), parasitizes dogs and cats globally, acting as a vector for various pathogens affecting both animals and humans. Growing interest in environmentally friendly, plant-based products prompted this study. The aim of the study was to determine the chemical composition of essential oils (EOs) from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea, assessing their insecticidal and repellent properties, determining lethal concentrations (LC50 and LC90), and evaluating residual efficacy in vitro against Ctenocephalides felis felis. METHODS: Gas Chromatography with Flame Ionization Detector analyzed EO composition. In vitro tests involved preparing EO solutions at various concentrations. Ten specimens from each life stage (egg, larva, pupa, adult) were used for insecticidal activity assessment. Adulticidal activity was assessed using 10 cm2 filter paper strip, each treated with 0.200 mL of the test solution. Immature stages activities were evaluated using 23.76 cm2 discs of the same filter paper, each treated with 0.470 mL of the test solution. Mortality percentage was calculated using (number of dead insects × 100) / number of incubated insects. Probit analysis calculated LC50 values with a 95% confidence interval. RESULTS: Major EO constituents were ß-caryophyllene (EOCR), linalool (EOLH), linalyl acetate (EOSS), and limonene (EOCP). LC50 values were obtained for all stages except for the essential oil of C. paradisi. All oils showed repellent activity at 800 µg/cm2. OECR exhibited greater residual efficacy. CONCLUSION: Each EO demonstrated superior insecticidal activity against specific C. felis felis stages.


Asunto(s)
Ctenocephalides , Repelentes de Insectos , Insecticidas , Aceites Volátiles , Salvia , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Salvia/química , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Insecticidas/farmacología , Insecticidas/química , Ctenocephalides/efectos de los fármacos , Fabaceae/química , Lavandula/química , Larva/efectos de los fármacos , Pupa/efectos de los fármacos , Citrus/química , Monoterpenos Acíclicos/farmacología , Monoterpenos/farmacología , Monoterpenos/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Dosificación Letal Mediana
8.
Molecules ; 29(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39202855

RESUMEN

Plant peptidase inhibitors play crucial roles in plant defence mechanisms and physiological processes. In this study, we isolated and characterised a Kunitz trypsin inhibitor from Enterolobium gummiferum seeds named EgPI (E. gummiferum peptidase inhibitor). The purification process involved two chromatography steps using size exclusion and hydrophobic resins, resulting in high purity and yield. EgPI appeared as a single band of ~20 kDa in SDS-PAGE. Under reducing conditions, the inhibitor exhibited two polypeptide chains, with 15 and 5 kDa. Functional characterisation revealed that EgPI displayed an inhibition stoichiometry of 1:1 against trypsin, with a dissociation constant of 8.4 × 10-9 mol·L-1. The amino-terminal sequencing of EgPI revealed the homology with Kunitz inhibitors. Circular dichroism analysis provided insights into the secondary structure of EgPI, which displayed the signature typical of Kunitz inhibitors. Stability studies demonstrated that EgPI maintained the secondary structure necessary to exhibit its inhibitory activity up to 70 °C and over a pH range from 2 to 8. Microbiological screening revealed that EgPI has antibiofilm properties against pathogenic yeasts at 1.125 µmol·L-1, and EgPI reduced C. albicans biofilm formation by 82.7%. The high affinity of EgPI for trypsin suggests potential applications in various fields. Furthermore, its antibiofilm properties recommended its usefulness in agriculture and antimicrobial therapy research, highlighting the practical implications of our research.


Asunto(s)
Biopelículas , Fabaceae , Proteínas de Plantas , Semillas , Inhibidores de Tripsina , Semillas/química , Biopelículas/efectos de los fármacos , Fabaceae/química , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Candida albicans/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Secuencia de Aminoácidos , Péptidos
9.
Funct Plant Biol ; 512024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163498

RESUMEN

The synthesis and differential allocation of reserve compounds is an important adaptive mechanism that enables species to resprout in fire-prone ecosystems. The analysis of compound allocation dynamics (differential accumulation of compounds between plant organs) provides insights into plant responses to disturbances. The aim was to quantify reserves in eight legume species from Cerrado open savannas with high fire frequency in order to investigate the patterns of allocation and distribution of compounds between leaves and underground organs, drawing ecophysiological inferences. The species were collected in 'campo sujo' areas of the Cerrado. Leaves and underground organs (xylopodium, taproot tubers) were subjected to physiological analyses. Overall, underground organs were characterised by greater deposits of carbohydrates, mainly soluble sugars, and also with the accumulation of proteins and amino acids. This suggests that nitrogen reserves, as well as carbohydrates, may have an ecophysiological function in response to fire, being allocated to the underground organs. Phenols were mainly evident in leaves, but a morphophysiological pattern was identified, where the two species with taproot tubers tended to concentrate more phenols in the underground portion compared to species with xylopodium, possibly due to functional differences between these organs. Such data allow inferring relevant ecophysiological dynamics in legumes from open savannas.


Asunto(s)
Fabaceae , Hojas de la Planta , Fabaceae/metabolismo , Hojas de la Planta/metabolismo , Incendios , Pradera , Brasil , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Aminoácidos/metabolismo , Tubérculos de la Planta/metabolismo
10.
Sci Rep ; 14(1): 18080, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103462

RESUMEN

Introducing legumes into C4-dominated tropical pastures, may enhance their sustainability but has some pasture management constraints. One potential alternative is using arboreal legumes, but several of these species have relatively high condensed tannin (CT) concentrations, which negatively impact forage quality. There is limited knowledge, however, on how arboreal legume leaf CT content varies over the year and how this might impact forage quality. The objective of this 2 year study was to assess the seasonal variation of CT and nutritive value for ruminants of the tropical tree legumes gliricidia [Gliricidia sepium (Jacq.) Kunth ex. Walp.] and mimosa (Mimosa caesalpiniifolia Benth). The research was carried out in the sub-humid tropical region of Brazil on well-established pastures in which either legume was present with signalgrass (Urochloa decumbens Stapf.). We determined CT and nitrogen concentrations, in vitro digestible organic matter (IVDOM), and leaf δ13C and δ15N from January to October of 2017 and 2018. All parameters were affected (P < 0.05) by the interaction between legume species and sampling time, with generally higher leaf CT content for mimosa than gliricidia, and both were reduced at the start of the dry season, although much more drastically for mimosa. The IVDOM was strongly affected by CT content and increased at the start of the dry season, coincidentally when C4 grass forage quality typically decreased. There is a marked species effect, with CT from gliricidia impacting IVDOM more than the same CT content from mimosa. While N concentration from mimosa also increased at the start of the dry season, that for gliricidia did not vary over the year. We conclude that although these arboreal legumes have relatively high CT contents, these reduce during the dry season when CT concentrations coinciding with a reduced forage quality as the protein content for C4 grasses is usually inadequate in this season.


Asunto(s)
Fabaceae , Valor Nutritivo , Proantocianidinas , Árboles , Proantocianidinas/análisis , Fabaceae/química , Fabaceae/metabolismo , Hojas de la Planta/química , Estaciones del Año , Mimosa/química , Animales , Brasil , Alimentación Animal/análisis , Nitrógeno/análisis
11.
Environ Sci Pollut Res Int ; 31(38): 50722-50732, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102133

RESUMEN

Copper oxide nanoparticles (CuONPs) have been produced on a large scale because they can be applied across various fields, especially in nano-enabled healthcare and agricultural products. However, the increasing use of CuONPs leads to their release and accumulation into the environment. The CuONPs uptaken by seeds and their implications on germination behavior have been reported, but little is known or understood about their impact on photosynthesis in seed tissues. To fill knowledge gaps, this study evaluated the effects of CuONP concentrations (0-300 mg L-1) on the photosynthetic activity of Inga laurina seeds. The microscopy data showed that CuONPs had an average size distribution of 57.5 ± 0.7 nm. Copper ion release and production of reactive oxygen species (ROS) by CuONPs were also evaluated by dialysis and spectroscopy experiments, respectively. CuONPs were not able to intrinsically generate ROS and released a low content of Cu2⁺ ions (4.5%, w/w). Time evolution of chlorophyll fluorescence imaging and laser-induced fluorescence spectroscopy were used to monitor the seeds subjected to nanoparticles during 168 h. The data demonstrate that CuONPs affected the steady-state maximum chlorophyll fluorescence ( F m ' ), the photochemical efficiency of photosystem II ( F v / F m ), and non-photochemical quenching ( NPQ ) of Inga laurina seeds over time. Besides, the NPQ significantly increased at the seed development stage, near the root protrusion stage, probably due to energy dissipation at this germination step. Additionally, the results indicated that CuONPs can change the oscillatory rhythms of energy dissipation of the seeds, disturbing the circadian clock. In conclusion, the results indicate that CuONPs can affect the photosynthetic behavior of I. laurina seeds. These findings open opportunities for using chlorophyll fluorescence as a non-destructive tool to evaluate nanoparticle impact on photosynthetic activity in seed tissues.


Asunto(s)
Cobre , Fabaceae , Fotosíntesis , Semillas , Fotosíntesis/efectos de los fármacos , Semillas/efectos de los fármacos , Fabaceae/efectos de los fármacos , Germinación/efectos de los fármacos , Nanopartículas , Clorofila/metabolismo
12.
Inflammopharmacology ; 32(5): 3499-3519, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126568

RESUMEN

Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.


Asunto(s)
Antiulcerosos , Antioxidantes , Flavonoides , Extractos Vegetales , Plantas Medicinales , Ratas Wistar , Úlcera Gástrica , Animales , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control , Ratas , Extractos Vegetales/farmacología , Masculino , Antiulcerosos/farmacología , Antiulcerosos/aislamiento & purificación , Plantas Medicinales/química , Antioxidantes/farmacología , Óxido Nítrico/metabolismo , Fabaceae/química , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Simulación del Acoplamiento Molecular
13.
Plant Foods Hum Nutr ; 79(3): 551-562, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976203

RESUMEN

Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.


Asunto(s)
Productos Agrícolas , Germinación , Valor Nutritivo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Zea mays/química , Zea mays/crecimiento & desarrollo , Humanos , Chenopodium quinoa/química , Gusto , Fibras de la Dieta/análisis , Amaranthus/química , Amaranthus/crecimiento & desarrollo , Minerales/análisis , Proteínas en la Dieta/análisis , Fabaceae/química
14.
J Ethnopharmacol ; 335: 118619, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053713

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hymenaea eriogyne Benth (Fabaceae) is popularly known as "Jatobá". Despite its use in folk medicine to treat inflammatory disorders, there are no descriptions that show its anti-inflammatory potential. AIM OF THE STUDY: In this sense, this study aimed to evaluate the anti-inflammatory and antivenom action of bark and leaves extract of H. eriogyne. MATERIALS AND METHODS: The in vivo anti-inflammatory activity was conducted by carrageenan-induced paw edema and zymosan-induced air pouch models, evaluating the edematogenic effect, leukocyte migration, protein concentration, levels of pro-inflammatory cytokines, malondialdehyde (MDA) and myeloperoxidase (MPO) activity. The antivenom potential was investigated in vitro on the enzymatic action (proteolytic, phospholipase and hyaluronidase) of Bothrops brazili and B. leucurus venom, as well as in vivo on the paw edema model induced by B. leucurus. Furthermore, the influence of its markers (astilbin and rutin) on MPO activity was investigated in silico. For molecular docking, AutodockVina, Biovia Discovery Studio, and Chimera 1.16 software were used. RESULTS: The extracts and bark and leaves of H. eriogyne revealed a high anti-inflammatory effect, with a reduction in all inflammatory parameters evaluated. The bark extract showed superior results when compared to the leaf extract, suggesting the influence of the astilbin concentration, higher in the bark, on the anti-inflammatory action. In addition, only the H. eriogyne bark extract was able to reduce MDA, indicating an associated antioxidant effect. Regarding the in vitro antivenom action, the extracts (bark and leaves) revealed the ability to inhibit the proteolytic, phospholipase and hyaluronidase action of both bothropic venom, with a greater effect against B. leucurus venom. In vivo, extracts from the bark and leaves of H. eriogyne (50-200 mg/kg) showed antiedematogenic activity, reducing the release of MPO and pro-inflammatory cytokines, indicating the presence of bioactive components useful in controlling the inflammatory process induced by the venom. In the in silico assays, astilbin and rutin showed reversible interactions of 9 possible positions and orientations towards MPO, with affinities of -9.5 and -10.4 kcal/mol and interactions with Phe407, Gln91, His95 and Arg239, important active pockets of MPO. Rutin demonstrated more effective types of interactions with MPO. CONCLUSION: This approach reveals for the first time the anti-inflammatory action of H. eriogyne bark and leaf extracts in vivo, as well as its antiophidic potential. Moreover, the distinct effect of pharmacogens as antioxidant agents and distinct effect of astilbin and rutin under MPO sheds light on the different anti-inflammatory mechanisms of bioactive compounds present in H. eriogyne extracts, with high potential for the prospection of new pharmacological agents.


Asunto(s)
Antiinflamatorios , Carragenina , Edema , Simulación del Acoplamiento Molecular , Corteza de la Planta , Extractos Vegetales , Hojas de la Planta , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Hojas de la Planta/química , Corteza de la Planta/química , Masculino , Relación Estructura-Actividad , Peroxidasa/metabolismo , Fabaceae/química , Antivenenos/farmacología , Antivenenos/química , Ratas Wistar , Venenos de Crotálidos/toxicidad , Ratones , Bothrops , Citocinas/metabolismo , Zimosan , Biomarcadores/metabolismo , Rutina/farmacología
15.
Mycologia ; 116(5): 848-864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990778

RESUMEN

Species of the ectomycorrhizal (ECM) family Cortinariaceae (Agaricales, Agaricomycetes, Basidiomycota) have long been considered impoverished or absent from lowland tropical rainforests. Several decades of collecting in forests dominated by ECM trees in South America's Guiana Shield is countering this view, with discovery of numerous Cortinariaceae species. To date, ~12 morphospecies of this family have been found in the central Pakaraima Mountains of Guyana. Here, we describe three of these as new species of Cortinarius and two as new species of Phlegmacium from forests dominated by the ECM tree genera Dicymbe (Fabaceae subfam. Detarioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Cistaceae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species.


Asunto(s)
Agaricales , ADN de Hongos , Fabaceae , Micorrizas , Filogenia , Guyana , ADN de Hongos/genética , Micorrizas/clasificación , Micorrizas/genética , Agaricales/clasificación , Agaricales/genética , Agaricales/aislamiento & purificación , Fabaceae/microbiología , Análisis de Secuencia de ADN , ADN Espaciador Ribosómico/genética , Cortinarius/clasificación , Cortinarius/genética , Cortinarius/aislamiento & purificación , Ecosistema , ADN Ribosómico/genética , Esporas Fúngicas/citología , Esporas Fúngicas/clasificación
16.
J Sci Food Agric ; 104(14): 9035-9045, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38989963

RESUMEN

BACKGROUND: Extrusion cooking of cereal-legume flour mixture is an innovative strategy to introduce nutrient-enriched ready-to-eat snacks to the market. However, this thermal process triggers the formation of compounds that could impact safety aspects of these products. Maillard reaction markers and the end products known as melanoidins were evaluated to assess the toxicological and bioactive profiles of extruded snacks from corn-plus-common-bean-flour combinations. Different molecular weight fractions were isolated and purified to analyze their antioxidant activity and to investigate the role of melanoidins. RESULTS: The snack formulated with an 84:16 ratio of corn:common bean flours exhibited an enhanced toxicological profile. It displayed the lowest levels of acrylamide and furanic compounds, along with reduced blockage of lysine residues in the protein. Extrusion increased the antioxidant activity of uncooked flours (30 to 64%) and total phenolic compounds (26 to 50%), and decreased the available lysine (-72.7 to -79.5%). During the fractionation process, it was established that compounds within the range of 3-10 kDa made the greatest contribution to antioxidant activity. The fraction greater than 10 kDa, which included melanoidins, displayed 7 to 33% lower antioxidant activity. The purification of the fraction greater than 10 kDa revealed that pure melanoidins represented approximately one-third of the antioxidant activity in that fraction. Non-covalent adducts linked to the melanoidin core therefore had a relevant role in the antioxidant action of formulated snacks. CONCLUSION: This investigation illustrates the importance of considering both potential risks and associated benefits of compounds formed during the Maillard reaction while developing new extruded snacks. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes , Harina , Reacción de Maillard , Polímeros , Bocadillos , Zea mays , Antioxidantes/química , Antioxidantes/análisis , Zea mays/química , Harina/análisis , Polímeros/química , Culinaria , Fabaceae/química , Fenoles/química , Fenoles/análisis , Acrilamida/química
17.
Sci Rep ; 14(1): 17405, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075092

RESUMEN

Tilapia is one of the most important farmed fish in the world and the most cultivated in Brazil. The increase of this farming favors the appearance of diseases, including bacterial diseases. Therefore, the aim of this study was to evaluate the bactericidal activity of copaiba oil, Copaifera duckei, against Streptococcus agalactiae and Flavobacterium columnare and the dietary effect of copaiba oil on zootechnical performance, hematological, biochemical, immunological, and histological analysis before and after an intraperitoneal infection (body cavity) with S. agalactiae in Nile tilapia. For this, fish were randomly distributed into 15 fiber tanks in five treatments (0, 0.25, 0.50, 0.75, and 1.0%) and fed with a commercial diet supplemented with copaiba oil for 30 days. After this period, the fish were randomly redistributed for the experimental challenge with S. agalactiae into six treatments (T0, T1, T2, T3, T4, and T5), the fish were anesthetized, and blood samples were collected to assess hematological, biochemical, immunological, and histological parameters. Copaiba oil showed bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro. In addition, concentrations of 0.75 and 1.0% of copaiba oil have an anti-inflammatory effect and improve hematological and immunological parameters, increasing leukocyte numbers, albumin, and serum lytic activity. Furthermore, there is an increase in the intestinal villus length and tissue damage in groups at concentrations of 0.75 and 1.0% of copaiba oil. In conclusion, copaiba oil presented bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro, and oral supplementation at concentrations of 0.75 and 1.0% compared to the control group enhanced non-specific immune parameters and digestibility in Nile Tilapia.


Asunto(s)
Cíclidos , Suplementos Dietéticos , Enfermedades de los Peces , Flavobacterium , Streptococcus agalactiae , Animales , Streptococcus agalactiae/efectos de los fármacos , Flavobacterium/efectos de los fármacos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Fabaceae/química , Antibacterianos/farmacología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/prevención & control , Aceites de Plantas/farmacología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/tratamiento farmacológico , Infecciones por Flavobacteriaceae/prevención & control , Alimentación Animal , Administración Oral , Acuicultura/métodos
18.
Sci Rep ; 14(1): 16028, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992070

RESUMEN

We aimed to determine the chemical profile and unveil Anadenanthera colubrina (Vell.) Brenan standardized extract effects on inflammatory cytokines expression and key proteins from immunoregulating signaling pathways on LPS-induced THP-1 monocyte. Using the RT-PCR and Luminex Assays, we planned to show the gene expression and the levels of IL-8, IL-1ß, and IL-10 inflammatory cytokines. Key proteins of NF-κB and MAPK transduction signaling pathways (NF-κB, p-38, p-NF-κB, and p-p38) were detected by Simple Western. Using HPLC-ESI-MSn (High-Performance Liquid-Chromatography) and HPLC-HRESIMS, we showed the profile of the extract that includes an opus of flavonoids, including the catechins, quercetin, kaempferol, and the proanthocyanidins. Cell viability was unaffected up to 250 µg/mL of the extract (LD50 = 978.7 µg/mL). Thereafter, the extract's impact on the cytokine became clear. Upon LPS stimuli, in the presence of the extract, gene expression of IL-1ß and IL-10 were downregulated and the cytokines expression of IL-1ß and IL-10 were down an upregulated respectively. The extract is involved in TLR-4-related NF-κB/MAPK pathways; it ignited phosphorylation of p38 and NF-κB, orchestrating a reduced signal intensity. Therefore, Anadenanthera colubrina's showed low cytotoxicity and profound influence as a protector against the inflammation, modulating IL-1ß and IL-10 inflammatory cytokines gene expression and secretion by regulating intracellular NF-κB and p38-MAPK signaling pathways.


Asunto(s)
Inflamación , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas , FN-kappa B , Extractos Vegetales , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Fabaceae/química , Inflamación/metabolismo , Inflamación/inducido químicamente , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células THP-1
19.
mBio ; 15(8): e0142324, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012152

RESUMEN

In terrestrial forested ecosystems, fungi may interact with trees in at least three distinct ways: (i) associated with roots as symbionts; (ii) as pathogens in roots, trunks, leaves, flowers, and fruits; or (iii) decomposing dead tree tissues on soil or even on dead tissues in living trees. Distinguishing the latter two nutrition modes is rather difficult in Hymenochaetaceae (Basidiomycota) species. Herein, we have used an integrative approach of comparative genomics, stable isotopes, host tree association, and bioclimatic data to investigate the lifestyle ecology of the scarcely known neotropical genus Phellinotus, focusing on the unique species Phellinotus piptadeniae. This species is strongly associated with living Piptadenia gonoacantha (Fabaceae) trees in the Atlantic Forest domain on a relatively high precipitation gradient. Phylogenomics resolved P. piptadeniae in a clade that also includes both plant pathogens and typical wood saprotrophs. Furthermore, both genome-predicted Carbohydrate-Active Enzymes (CAZy) and stable isotopes (δ13C and δ15N) revealed a rather flexible lifestyle for the species. Altogether, our findings suggest that P. piptadeniae has been undergoing a pathotrophic specialization in a particular tree species while maintaining all the metabolic repertoire of a wood saprothroph. IMPORTANCE: This is the first genomic description for Phellinotus piptadeniae. This basidiomycete is found across a broad range of climates and ecosystems in South America, including regions threatened by extensive agriculture. This fungus is also relevant considering its pathotrophic-saprotrophic association with Piptadenia goanocantha, which we began to understand with these new results that locate this species among biotrophic and necrotrophic fungi.


Asunto(s)
Genómica , Filogenia , Basidiomycota/genética , Basidiomycota/clasificación , Fabaceae/microbiología , Árboles/microbiología , Enfermedades de las Plantas/microbiología , Isótopos de Carbono/análisis , Genoma Fúngico , Isótopos de Nitrógeno/análisis , Bosques
20.
Toxicon ; 246: 107794, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38851021

RESUMEN

Teratogenic plants can be found in pastures in different parts of the world and represent a threat to the reproduction of ruminants. In the northeast region of Brazil, several studies have indicated that Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis is one of the main poisonous plants that causes reproductive problems in sheep and goats. In this context, the present study reviewed spontaneous and experimental poisonings reports by C. pyramidale in sheep and goats, as well as analyzing the phytochemical evidence related to this species. The scientific documents were retrieved from different databases and, after applying the selection criteria, a total of 16 articles published between 2000 and 2024 were included in this review. Cenostigma pyramidale causes embryonic loss, abortion, and congenital malformations in pregnant sheep and goats in the Brazilian semi-arid region. The main malformations observed in newborn animals are arthrogryposis, scoliosis, micrognathia, multiple skull deformities, cleft palate, and brachygnathism. Many secondary metabolites have already been isolated from C. pyramidale, however, to date, no evidence has been found regarding the possible teratogenic compounds that occur in this plant. From this perspective, new phytochemical studies are necessary to help unravel the mechanisms of action of embryotoxic agents from C. pyramidale.


Asunto(s)
Fabaceae , Fitoquímicos , Intoxicación por Plantas , Teratógenos , Animales , Intoxicación por Plantas/veterinaria , Brasil/epidemiología , Teratógenos/toxicidad , Embarazo , Ovinos , Femenino , Cabras , Plantas Tóxicas/toxicidad , Teratogénesis/efectos de los fármacos , Enfermedades de las Ovejas/inducido químicamente , Enfermedades de las Ovejas/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA